
Supercomputing Challenge Kickoff, 2009-2010

Computational Solution Techniques for
Mathematical Programming Problems

A Brief Survey of Problems and Exact and Heuristic Solution
Methods

Nick Bennett, Bob Robey, and Tom Robey

Optimization
or

Computational Solution Techniques In Mathematical Programming Page 2

Basic Definitions

• Optimization, or mathematical programming, is the study and
practice of seeking, in a systematic way, the maximum or
minimum values of a function (the objective function), and the
values of the decision variables (the inputs to a given function)
where the maximum or minimum objective function values are
found. Complicating this in practice is that decision variables
are often subject to constraints, and that the nature of the
objective function may make analysis difficult.

• An algorithm is a step-by-step problem solving procedure.
Algorithms can range from very simple (e.g. cooking recipes,
driving directions between two locations on a map, the Sieve of
Eratosthenes for enumerating prime numbers) to moderately
complicated (e.g. Runge-Kutta methods of numerical
integration) to very complicated (e.g. algorithms to maximize
potential profits from oil-drilling activities).

Computational Solution Techniques In Mathematical Programming Page 3

Basic Definitions (cont.)

• The feasible region is the set of decision variable values which
satisfy all of the constraints in a mathematical programming
problem. Constraints define the limits of the feasible region.

• A maximum or minimum (the plural forms are maxima and
minima), is a point in the feasible region where the value of the
objective function can't be increased (for a maximum) or
decreased (for a minimum) by moving in any direction in the
local neighborhood. If this condition holds for the entire feasible
region, then the point is a global maximumglobal maximum or global minimumglobal minimum.;
otherwise, it's a local maximumlocal maximum or local minimumlocal minimum.

• Extremum (pl: extrema) can be used to refer to either a
minimum or maximum.

• Optimum (pl: optima) is a minimum or maximum (usually
global), as relevant to the stated problem. For example, if we're
trying to minimize the objective function, then the optimum is
the point at which the objective function is minimized.

Computational Solution Techniques In Mathematical Programming Page 4

Basic Definitions (cont.)

• An exact algorithm is one which is mathematically guaranteed
(under some stated conditions) to arrive at the solution to a
particular type of problem. For some problems, there are
known exact algorithms which are computationally very
efficient; for others, all known exact algorithms are
computationally expensive – prohibitively so, in some cases.

• NP-complete – computationally expensive usually requiring an
exhaustive search of all possibilities. NP is nondeterministic
polynomial time. NP-hard is similar complexity but without a
formal proof.

• A heuristic algorithm is one which incorporates certain rules of
thumb, or experience-based rules. It ignores whether the
algorithm can be mathematically proven correct. In most cases,
heuristics require fewer mathematical and logical operations
than exact algorithms – though there is no guarantee that the
heuristic will arrive at the same solution.

Computational Solution Techniques In Mathematical Programming Page 5

Optimization

•Sometimes more of an art than a mathematical science

•There is no “perfect” optimization method

•Powerful – worth $$$

◦ A 1% savings in operation costs can increase profit by 10%

•Used in nearly every business, engineering, science or
professional field

•Many advances in the last decade (compare to most math
disciplines with little change in 100 years)

This makes it great material for a SC This makes it great material for a SC
ProjectProject

Computational Solution Techniques In Mathematical Programming Page 6

1st Step – What is “Good”?

•Determine what you are optimizing

◦ Less fuel, less time, more widgets

◦ Must be quantifiable

• Often called an objective function, cost function, fitness
function, or an evaluation function

• Evaluation functions should be written where the optimum is a
maximum or a minimum

A minimum will be assumed for the rest of this
presentation

Computational Solution Techniques In Mathematical Programming Page 7

2nd Step – What are the Independent
Variables?

•One variable

•Two variables

Computational Solution Techniques In Mathematical Programming Page 8

Example: Global vs. Local Extrema

Consider the following graph. Assume that the decision space is
represented by the X values (limited to the visible width of the graph),
and that the objective function values are the Y values.

• At which of the labeled X values does the graph reach its minimum
and maximum Y values? These are the global minimum and global
maximum (i.e. global extrema).

• Which of the labeled X values are local – but not global – extrema?

x
1

x
2 x

3

x
4 x

5

Computational Solution Techniques In Mathematical Programming Page 9

Considerations

•Methods work best with smooth functions

•Independent variables should not themselves be correlated. If
they are, as they often are, the optimum values of the
independent variables may be wildly off. Yet the minimum of
the objective function will be reasonable.

•There is no guarantee in most of the methods of a global
minimum, just a local minimum

Computational Solution Techniques In Mathematical Programming Page 10

Tricks

•Isolate independent variables and
solve

◦ Similar to technique in “Clue”®

• Example – Objective function is
highest level of ant activity.
Independent variables are hours
of daylight and temperature.

• Take data at same temperature
but on different length days

Computational Solution Techniques In Mathematical Programming Page 11

What is a Good Method?

•Method should evaluate the function as few times as possible
or fewest number of steps/guesses

•Parallel methods can work better with more guesses at each
step rather than the least number of evaluations. For parallel
methods we should redefine steps to consist of one or more
guesses or function evaluations

•A good method for one problem is not necessarily a good
method for another problem

•Robustness (i.e. working for all cases) can be more important
than efficiency or fewest steps

Computational Solution Techniques In Mathematical Programming Page 12

Types of Problems
•Linear – treated in Operations Research, Business Schools.
A function example is 22 lbs of plastic per 100 widgets
produced. (Note: Operations Research also delves into most of
the following types of problems also.)

•Non-linear – occurs more often in science where inter-
relationships between variables are more complex. A small
change in an independent variable can generate large changes
in the objective function.

•Complex problems (or NP-complete) – a solution
can be verified, but there is no known efficient
way to locate a solution. Examples are the
traveling salesman problem or the knapsack
problem. While an optimum solution cannot be
easily computed, a near-optimal solution (good
enough solution) can be found. Computing a
“perfect” chess move is a good example of this
type of problem.

Computational Solution Techniques In Mathematical Programming Page 13

Simple Mathematical Optimization

•Optimum must be at a point where the slope is zero. In math
this is expressed as when the derivative is zero. This point is a
local minimum. However, it doesn't necessarily follow that any
such zero-slope point is a global optimum for the function.

•The points where the slope is zero are the set of candidate
points. Some adjustments must be made

◦ Points that violate the constraints must be discarded (such as
negative values that violate physical reality)

◦ Add to the set of points the intersections of the optimization
surface and the constraints.

• We now examine this set to see which are global extrema, and
which of those is a minimum extrema.

Computational Solution Techniques In Mathematical Programming Page 14

Example: Maximize Fenced-in Area

Imagine that you own a piece of land, located at the bottom of a
cliff. You intend to fence in a portion of this land, as a pen for
animals.

• You have enough material for 100' of fence.

• For simplicity, you've decided to make the pen rectangular in
shape.

• For economy, you're going to use the cliff wall as one side of
the rectangle; you don't need to put fencing material on that
side.

Your task is to find the dimensions for the fenced-in area that
maximize the area enclosed, using only the materials you have.

• What mathematical function describes the area enclosed by
the fence, in terms of its dimensions?

• Are there any constraints on the dimensions? What are they?

Computational Solution Techniques In Mathematical Programming Page 15

Example: Maximize Fenced-in Area
(cont.)

We can draw a simple diagram of the problem, as follows:

x

100 − 2 x

Our task is to find the value of x that gives the
largest value for f(x). We recognize f(x) as a
quadratic of the form f(x) = ax2 + bx + c. From
intermediate algebra, we remember that the
vertex of the parabola described by the
quadratic is found where x = b/2a.

In this case, b = 100, and a = 2. Computing x and
the resulting area, we get the maximum area
(1250 ft2), when the dimensions are 25' X 50'.

area = f x = x100 − 2 x = 100 x − 2 x2

cliff

10 0 10 20 30 40 50 60
1500

1000

500

0

500

1000

1500

x

ar
ea

x

Computational Solution Techniques In Mathematical Programming Page 16

Three Main Approaches

1. Direct solution – used for linear, quadratic and
other simpler problems where simple analytic
approaches are workable.

◦ Simplex Method or Linear Programming are typical solution
techniques. Also Lemke's algorithm for quadratic
programming, the stepping-stone algorithm for the
transportation problem, the Hungarian method for the
assignment problem, and Dijkstra's algorithm for finding the
shortest path on a network

2. Iterative solution methods – take slight
perturbations of the initial guess and search in the
direction with the better value.

◦ Steepest Descent and Conjugate Gradient solvers are
examples of methods to solve these problems

Computational Solution Techniques In Mathematical Programming Page 17

Three Main Approaches (cont.)

3. Directed random search methods – search
algorithms have randomness as a key element, where
the sampling distributions are influenced by the
objective function, and where the amount of
randomness tends to decrease as the number of
iterations increase.

◦ Simulated Annealing, Genetic Algorithms (GA), Ant Colony
optimization, and Particle Swarm Optimization are some of
the methods most suitable for this class of problems.

Computational Solution Techniques In Mathematical Programming Page 18

Direct Methods
Linear Programming via the Simplex Method

When the objective function is linear, all the constraints are linear, and
the decision variables are continuous, we have a linear programming
problem (LP). In 1947, George Dantzig invented the simplex method to
solve linear programming problems. In very general terms, this
algorithm proceeds as follows:

• Set up the problem as a system of linear equations, with more
variables than equations (new variables are added as needed, to turn
inequalities into equations).

• By a series of matrix “pivoting” operations, move from one feasible
solution to another, where each successive solution improves the
objective function.

• When the objective function cannot be improved further, we've found
the optimum.

This process is as a series of moves from vertex to vertex, along the
edges of an n-dimensional convex polytope, with each move improving
the objective function. When none of the edges lead in a direction that
improves the objective function, we've found the optimal solution.

Computational Solution Techniques In Mathematical Programming Page 19

Exercise: Maximize Profit on Exports1

A firm exports two types of machines: P and Q. Type P occupies 2m3 of
space, and type Q requires 4m3. The mass of type P is 9kg; type Q
masses 6kg. The total available shipping space is 1,600m3 and the total
mass of the machines cannot exceed 3,600kg. The profit on type P is
$100 and the profit on type Q is $80. How many of each machine must
be exported to maximize profit, and what is that maximum profit?

Here's the LP formulation, along with a graphical view of the feasible
region (i.e. the region containing all points satisfying the constraints):

p = number of type P machines exported
q = number of type Q machines exported

Maximize:
100 p 80q

Subject to:
2 p 4q ≤ 1600
9 p 6q ≤ 3600

p ≥ 0
q ≥ 0

0 400 800

400

800
Q

P

Computational Solution Techniques In Mathematical Programming Page 20

Exercise: Maximize Profit on Exports
(cont.)

We could easily solve this example by computing the profit at all four
vertices of the feasible region and selecting the vertex with the highest
profit. The advantage of the simplex method is that it almost never
needs to visit each vertex; it always moves along the edge that
improves the objective function most. This is a big advantage when
problems are much larger than this one.

There are many libraries that implement the simplex method. For this
example, we'll use Apache Commons Math, an open source Java library.

1.In NetBeans, open the SimplexExample project.

2.Open the SimplexExample.java file from the
org.nm.challenge.optimization source package.

3.Complete the code by following the instructions that begin on line 72
of SimplexExample.java (hint: review the constants declared in lines
42-48).

4.Compile and run the program. What's the result?

5.Is the answer integral? If not, how should we interpret it?

Computational Solution Techniques In Mathematical Programming Page 21

Exercise: Giapetto's Woodcarving
•Giapetto's Woodcarving Inc. manufactures two types of wooden toys:
soldiers and trains. A soldier sells for $27 and uses $10 worth of raw
materials. Each soldier that is manufactured increases Giapetto's variable
labor and overhead costs by $14. A train sells for $21 and uses $9 worth
of raw materials. Each train built increases Giapetto's variable labor and
overhead costs by $10. The manufacture of wooden soldiers and trains
requires two types of skilled labor: carpentry and finishing. A soldier
requires 2 hours of finishing labor and 1 hour of carpentry labor. A train
requires 1 hour of finishing and 1 hour of carpentry labor. Each week,
Giapetto can obtain all the needed raw material but only 100 finishing
hours and 80 carpentry hours. Demand for trains is unlimited, but at most
40 soldier are bought each week. Giapetto wants to maximize weekly
profits (revenues – costs).

Operations Research: Applications and Algorithms, 4th Edition, by Wayne
L. Winston (Thomson, 2004).

•More detail on this problem at:

http://www.ibm.com/developerworks/linux/library/l-glpk1/

http://www.ibm.com/developerworks/linux/library/l-glpk1/

Computational Solution Techniques In Mathematical Programming Page 22

Exercise: Giapetto's Woodcarving
To summarize the important information and
assumptions about this problem:

1. There are two types of wooden toys: soldiers and trains.

2. A soldier sells for $27, uses $10 worth of raw materials,
and increases variable labor and overhead costs by $14.

3. A train sells for $21, uses $9 worth of raw materials, and
increases variable labor and overhead costs by $10.

4. A soldier requires 2 hours of finishing labor and 1 hour
of carpentry labor.

5. A train requires 1 hour of finishing labor and 1 hour of
carpentry labor.

6. At most, 100 finishing hours and 80 carpentry hours are
available weekly.

7. The weekly demand for trains is unlimited, while, at
most, 40 soldiers will be sold.

•The goal is to find the numbers of soldiers and trains
that will maximize the weekly profit.

Computational Solution Techniques In Mathematical Programming Page 23

Exercise: Giapetto's Woodcarving
•Install libgplk0, libglpk-dev, glpk-utils, glpk

•Copy the file giapetto.mod from the giapettoLP directory

•glpsol -m giapetto.mod -o giapetto.sol
Problem: giapetto
Rows: 4
Columns: 2
Non-zeros: 7
Status: OPTIMAL
Objective: profit = 180 (MAXimum)

 No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------
 1 profit B 180
 2 carpentry NU 80 80 1
 3 finishing NU 100 100 1
 4 soldier_demand
 B 20 40

 No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------
 1 soldiers B 20 0
 2 trains B 60 0

Computational Solution Techniques In Mathematical Programming Page 24

Specialized Linear Programming Variations
Some optimization problems are better suited to more specialized
methods than the general-purpose simplex method. Examples include:

• The transportation problem: Given n sources, each with a supply s
n
 of

some commodity; m destinations, each with a demand d
m
 for that

commodity; a cost c
ij
 for transporting one unit of the commodity from

source i to destination j; find the transportation scheme that satisfies
the demand at minimum cost. Solution techniques for this problem
exploit the network nature of the problem to solve it more efficiently.

• The assignment problem: Given n resources, and m tasks (where m ≥ n),
where there is a cost c

ij
 associated with assigning resource i to task j,

and where each resource must be assigned to exactly one task, and
each task may be assigned a maximum of one resource, find the set of
assignments that minimizes the total cost. The most well-known
technique for solving this type of problem is the Hungarian method.

• In general, problems where some or all decision variables must have
integral values often require specialized algorithms. This is especially
the case where only the values 0 and 1 are allowed.

Computational Solution Techniques In Mathematical Programming Page 25

Interior Point Solution Techniques

While the simplex method and its variants are usually very good, and
they're widely used, there are extreme instances where the simplex
method gives close to worst-case performance. The first practical
alternative to the simplex method for these problems was Karmarkar's
algorithm, invented in 1984.

Karmarkar's algorithm can be viewed as moving through the interior of
the polytope, in a relatively small number of steps. For this reason, we
refer to this and similar methods as interior point methods.

The computational cost of formulating LPs for interior point methods,
and of computing each step through the interior of the polytope, are
very high, but the number of iterations required for solution is low. This
trade-off makes these techniques well suited to certain types of very
large problems, but poorly suited to most others.

Computational Solution Techniques In Mathematical Programming Page 26

Iterative solution methods
Bracket methods

•for single variable cases with unimodal objective
function (no local minima)

•Take 3 starting points widely separated. The middle
point, b, must be lower than the other two. Then take
a point in between a-b or b-c. Suppose we take a
point in b-c called d. If d > b, then the new bracket
triplet is a < b < d, else, the new triplet is b < d < c.
•The various methods use
different ways to estimate the
best point to take for the next
guess. Golden mean method
uses the golden ratio. Other
methods use a parabolic
function or first derivatives.

Computational Solution Techniques In Mathematical Programming Page 27

Exercise 1 – Bracket Method
Find the minimum of f(x) = cos(x) + 1, which occurs at x = . The

starting interval is (0,6), with an initial guess for the minimum of 2.

◦ Install libgsl0ldbl, libgsl0-dev

◦ Open up Eclipse. Select New Project, New C Project, Executable:Empty
Project. Put in name of project – Bracket. Click through rest of windows.

◦ Right click on Bracket in Project Explorer. Select new: C Source file. Name it
bracket.c. Enter source from BracketExample/bracket.c or
http://www.gnu.org/software/gsl/manual/html_node/Minimization-Examples.html

◦ Right click on Bracket again and select Properties all the way down at the
bottom. Open up C/C++ Build and select settings. Select GCC C
Linker:Libraries. Add the libraries gsl and then gslcblas. Compile project.

◦ Select Run menu: Run configurations. Click on add (small page with plus sign
at upper left). Setup run configuration and run problem.

◦ See the Appendix for platform specific instructions.

• Try the other minimization algorithms in the library, golden section and quad
golden. The reference page is
http://www.gnu.org/software/gsl/manual/html_node/Minimization-Algorithms.html. The
function names are gsl_min_fminimizer_goldensection and
gsl_min_fminimizer_quad_golden.

◦ Which works best for this problem?

http://www.gnu.org/software/gsl/manual/html_node/Minimization-Examples.html
http://www.gnu.org/software/gsl/manual/html_node/Minimization-Algorithms.html

Computational Solution Techniques In Mathematical Programming Page 28

Exercise 2 – Bracket Method

•Take you favorite Netlogo model. Let's say that it is a fire
egress model. For one slider, optimize the number of people that
escape. Note that at each input value, you will have to take a
statistical average of the result because of the random number
used in the simulation.

Computational Solution Techniques In Mathematical Programming Page 29

Iterative solution methods
Steepest Descent

•Extension of bracketing to multi-
variable cases

•Start at point x
0.

Move from point x
i
 to

x
i+1

 by minimizing along the line from

x
i
 in the direction of the downhill

gradient. Repeat until the value for the
minimum no longer decreases.

• See Numerical Recipes for
description, method and sample
code

Computational Solution Techniques In Mathematical Programming Page 30

Iterative solution methods
Conjugate Gradient

•Trick here is to take the
conjugate to all previous
search directions to try and
force solution "down the
valley"

•Why are valleys important?
Usually one independent
variable is stronger than the
other, producing a long valley

Computational Solution Techniques In Mathematical Programming Page 31

Iterative solution methods
Conjugate Gradient

•One of the most difficult test cases is called the
Rosenbrock function. It can be found at:
http://www.aridolan.com/ga/gaa/Rosenbrock.html

Shown here is the steepest
descent algorithm applied to
the Rosenbrock problem. The
narrow curved valley causes
the method to take a lot of
steps. The conjugate gradient
approach was developed to
work better on this type of
problem. (From wikipedia)

ORNL has pictures of various optimization methods applied to the Rosenbrock
and Beale functions: http://www.phy.ornl.gov/csep/mo/node17.html

http://www.aridolan.com/ga/gaa/Rosenbrock.html
http://www.phy.ornl.gov/csep/mo/node17.html

Computational Solution Techniques In Mathematical Programming Page 32

Example: Conjugate Gradient

◦ Install libgsl0ldbl, libgsl0-dev

◦ Open up Eclipse. Select New Project, New C Project, Executable:Empty Project.
Put in name of project – SurfaceMin. Click through rest of windows.

◦ Right click on SurfaceMin in Project Explorer. Select
Import:FileSystem:Kickoff/SurfaceMin. Select both c source files (*.c) and
import them.

◦ Right click on SurfaceMin again and select Properties all the way down at the
bottom. Open up C/C++ Build and select settings. Select GCC C
Linker:Libraries. Add the libraries gsl and then gslcblas. Compile project.

◦ Select Run menu: Run configurations. Click on add (small page with plus sign at
upper left). Setup run configuration and run problem.

◦ See Appendix for platform specific instructions.

Computational Solution Techniques In Mathematical Programming Page 33

Graph the results (Mac Only)

 Graph the function by going to
Applications>Utilities>Grapher
 select #D Graph and White and enter
the equation:
 z= 10(x1)2+(y2)2+30

 Then go to Format>Axes and Frame
and select Height Axis and make it go
from 0 to 700.

Create a text file and cut and paste the results. Using vi, use i to insert and then paste
and escape. Then separate the numbers with "," and rows with ";" and then join the
rows using "J". Then go to grapher and click on "+" and New Point Set and Edit Points,
then import your *.txt file.

Computational Solution Techniques In Mathematical Programming Page 34

Directed Random Search Methods

•Has some randomness in the
solution technique

•Think of method you use for
“Battleship”®

•Heuristic based methods work
better than exact algorithms

•Examples of Solution Methods

◦ Simulated Annealing

◦ Genetic Algorithms

◦ Ant Colony Optimization

◦ Particle Swarm Optimization

•Best where optimization surface is complex or has local
minima

Computational Solution Techniques In Mathematical Programming Page 35

The Traveling Salesman Problem

One example of this is the traveling salesman problem (TSP):
Given n cities (points), with a distance d

ij
 between cities i and j,

find the route through all the cities that minimizes the total
distance, and returns to the starting point. Exact solution
techniques are very expensive once the number of cities moves
into the thousands (not that uncommon, when we start seeing
such parallels as those between points on a circuit board and
cities on a map) and may be years of CPU time.

One of the best heuristics for the TSP is the Lin-Kernighan
algorithm, introduced in 1973. This algorithm works by
adaptively swapping pairs of tour fragments to formulate an
improved tour at each step.

Computational Solution Techniques In Mathematical Programming Page 36

Simulated Annealing

•In simulated annealing (which refers to the analogy with how
metals cool and anneal), the solution method is allowed to
sometimes take an upward step rather than always going in the
downward direction. This can be helpful in avoiding local minima
and stepping “over the hump” to the global minimum. The
frequency of the upward step is always an heuristic algorithm
which must be developed for the problem at hand.

Computational Solution Techniques In Mathematical Programming Page 37

Exercise - Simulated Annealing

•Traveling Salesman Problem

◦ Open up Eclipse. Select New Project, New C Project, Executable:Empty
Project. Put in name of project – Traveling_Salesman_Problem. Click through
rest of windows.

◦ Right click on Traveling_Salesman_Problem in Project Explorer. Select new: C
Source file. Name it siman_tsp.c. Enter source from
TravelingSalesmanProblem/siman_tsp.c or search the web for
siman/siman_tsp.c.

◦ Right click on Traveling_Salesman_Problem again and select Properties all
the way down at the bottom. Open up C/C++ Build and select settings.
Select GCC C Linker:Libraries. Add the libraries gsl and then gslcblas.
Compile project.

◦ Select Run menu: Run configurations. Click on add (small page with plus sign
at upper left). Setup run configuration and run problem.

◦ To plot results, run “sh plot.sh” or “sh plotgif.sh”. Look at the files *.eps or
*.gif.

Computational Solution Techniques In Mathematical Programming Page 38

Traveling Salesman Problem Results

Computational Solution Techniques In Mathematical Programming Page 39

Particle Swarm Optimization

•For particle swarm optimization, each particle is given a position
and velocity. Then an acceleration is applied to each particle
towards its “personal best” and towards the “global best”. The
further away from these locations, the stronger the acceleration
towards them. A random factor is also applied to the acceleration
forces.

•Exercise – Start up Netlogo
4.1RC5. Open up the models
library and go to Sample
Models:Computer
Science:Particle Swarm
Optimization (Uri Wilensky,
Northwestern University).
Setup and run.

Computational Solution Techniques In Mathematical Programming Page 40

Genetic Algorithms

A genetic algorithm (GA) is a heuristic that emulates some of the
mechanisms of evolution to find a good enough solution to a problem. A
GA starts with a population of randomly-generated solutions to a
problem; each of these is encoded as the genome of an individual
member of the population. Then, we follow these steps to produce
successive generations of the population:

• Each member of the population is evaluated to assess its fitness

• A subset of the population is chosen to survive to the next generation.
This selection is random, but individuals with better fitness are more
likely to be selected.

• To replace individuals that don't survive, a subset of the population is
chosen (randomly again, but again weighted to the most fit) to
reproduce.

• The next generation is produced by combining the genomes from
pairs of individuals selected for reproduction.

• Optionally, an offspring's genomes may be mutated slightly in a
random fashion.

Computational Solution Techniques In Mathematical Programming Page 41

Exercise: TSP with a Genetic Algorithm

Exercise 1. There is a website, GA Playground, that specializes
in Genetic Algorithms. It has the Traveling Salesman, Knapsack,
and several other test problems.

http://www.aridolan.com/ga/gaa/gaa.html

Pick one of the problems from this site and run it. Note: The site
uses a java runtime < 1.4, so many of the examples will not run
if you have a more recent java plugin.

Exercise 2. Start up netlogo, v4.1RC5. Open the models library
and select Sample Models:Computer Science:Simple Genetic
Algorithm(Uri Wilensky, Northwestern University). Set it up and
run it.

http://www.aridolan.com/ga/gaa/gaa.html

Computational Solution Techniques In Mathematical Programming Page 42

Convex Hull Construction Heuristic for
TSP

One relatively intuitive and effective approach to the TSP begins
by finding the subset of points, and the tour connecting them,
such that all of the points are either in the subset, or in the
interior of the polygon formed by the tour. This polygon is called
the convex hull of the full set of points. (The concept of the
convex hull can be applied to n-dimensional polytopes, but the
application to the TSP is primarily of use in two dimensions only.)

Once we have this initial subset and tour (collectively called a
sub-tour), we add to it progressively, incorporating an additional
point at each step. One reasonable heuristic is to select at each
step the point that results in the smallest immediate increase in
the length of the sub-tour; this type of heuristic is referred to as
“greedy”, since decisions are based only on the cost/benefit of
immediately available alternatives.

When all points in the set are incorporated into the sub-tour, the
algorithm is done.

Computational Solution Techniques In Mathematical Programming Page 43

Exercise: TSP w/ Convex Hull & Greedy
Insertion

Go to the site

 http://www-e.uni-magdeburg.de/mertens/TSP/node2.html

Try running the second applet. Select a large number of nodes
(25) to get a better idea of how the algorithm performs. Then
select run. Select solve to see how it compares to the best
solution.

http://www-e.uni-magdeburg.de/mertens/TSP/node2.html

Computational Solution Techniques In Mathematical Programming Page 44

Appendices

Computational Solution Techniques In Mathematical Programming Page 45

Linux setup (64 bit Ubuntu)
•NetLogo

◦ Run the NetLogo installer

•Eclipse for C programs

◦ Install Eclipse by running the eclipse-cpp-galileo-SR1-linux-gtk-x86_64 installer

◦ Install Java by running the jdk-6u16-nb-6_7_1-linux-ml.sh installer

◦ Install compilers and supporting tools with the package manager

• build-essential

◦ Install libraries and gnu software with the package manager

• libgsl0ldbl and libgsl0-dev
• glpk-utils
• plotutils

◦ When setting up the compiling in Eclipse

• Add to GCC C Linker:Libraries
gsl
gslcblas

•Netbeans for Java programs

◦ Run the netbeans installer

Computational Solution Techniques In Mathematical Programming Page 46

Windows Setup
NetLogo
 Run the NetLogo installer
Eclipse for C programs
 Install Wascana by running the Wascana installer
 Install libraries and gnu software by running gnu installers for
 gsl1.8,
 glpk4.34setup and
 plotutils
 Add to system path by opening up control panel, search for system environment and
 adding to the end of the path
 ;C:\Program Files (x86)\GnuWin32\bin;C:\Program Files (x86)\Wascana\mingw\bin
 When setting up the compiling in Eclipse
 Add to GCC C Compiler:Directories
 "C:\Program Files (x86)\GnuWin32\include"
 Add to GCC C Compiler:Symbols
 GSL_DLL
 Add to MinGW C Linker:Libraries
 Libraries
 gsl
 gslcblas
 Library search path
 "C:\Program Files (x86)\GnuWin32\lib"
Netbeans for Java programs
 Run the netbeans installer

Computational Solution Techniques In Mathematical Programming Page 47

OSX (Mac)
NetLogo
 Run the NetLogo installer

NetBeans
 Run the NetBeans installer

C/C++ Code
 Install Xcode development tools. These should be on your OS disk or register and
 download at http://developer.apple.com/technology/xcode.html

 Install MacPorts (choose the version for your OS): http://www.macports.org/install.php
 If necessary update using sudo port d selfupdate
 Make the following directory and cd to it: /opt/local/bin/portslocation/dports/gsl
 Then install the Gnu Scientific Library sudo port install gsl

 Running from the command line
 Copy SurfaceMin.c and myfunction.c to a directory. Then type the following:
 gcc o multimin SurfaceMin.c myfunction.c Wall I/opt/local/include L/opt/local/lib
 lgsl lgslcblas
 To run the program ./multimin

http://developer.apple.com/technology/xcode.html
http://www.macports.org/install.php

Computational Solution Techniques In Mathematical Programming Page 48

OSX (Mac) (cont)
 To run the program in the Xcode IDE:
 1. Open XCode (/Developer/Applications/ and drag Xcode.app to your Dashboard.)
 2. Then open File/New Project...
 3. In the "New Project" Assistant, expand the "Command Line Utility" group.
 4. Select "Standard Tool"
 5. Click "Next"
 6. Give a project name (MultiMin) and directory, then click "Finish".
 7. Press CmdShiftR to open the Console window. Output will appear there.

 Project>Add to Project and add SurfaceMin.c and myfunction.c. Delete main.c.

 Edit Project>Edit Project Settings
 Under Search Paths:
 Add to User Header Search Paths /opt/local/include
 Add to Library Search Paths /opt/local/lib/
 Under Linking:
 Add to Other Linker Flags: lgsl lgslcblas
 Set the Architecture to Native Architecture
 Click the "Build and Go" toolbar button.

	Optimization Title Slide
	Definitions
	Slide 3
	Slide 4
	Optimization Intro
	Step 1. What is Good?
	Step 2. What are the Independent Variables?
	Extrema Example
	Considerations
	Tricks
	What is a Good Method?
	Types of Problems.
	Simple Optimization Example.
	Slide 14
	Slide 15
	Three Main Approaches.
	Slide 17
	Direct Methods.
	Slide 19
	Slide 20
	Giapetto LP Exercise
	Slide 22
	Slide 23
	Slide 24
	Interior Point Method
	Iterative Solution
	Slide 27
	Slide 28
	Steepest Descent
	Conjugate Gradient
	Slide 31
	Slide 32
	Slide 33
	Directed Random Search
	Traveling Salesman Problem
	Simulated Annealing
	Slide 37
	Slide 38
	Slide 39
	Genetic Algorithms
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

