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Basic Definitions

• Optimization, or mathematical programming, is the study and 
practice of seeking, in a systematic way, the maximum or 
minimum values of a function (the objective function), and the 
values of the decision variables (the inputs to a given function) 
where the maximum or minimum objective function values are 
found. Complicating this in practice is that decision variables 
are often subject to constraints, and that the nature of the 
objective function may make analysis difficult.

• An algorithm is a step-by-step problem solving procedure. 
Algorithms can range from very simple (e.g. cooking recipes, 
driving directions between two locations on a map, the Sieve of 
Eratosthenes for enumerating prime numbers) to moderately 
complicated (e.g. Runge-Kutta methods of numerical 
integration) to very complicated (e.g. algorithms to maximize 
potential profits from oil-drilling activities).



Computational Solution Techniques In Mathematical Programming Page 3

Basic Definitions (cont.)

• The feasible region is the set of decision variable values which 
satisfy all of the constraints in a mathematical programming 
problem. Constraints define the limits of the feasible region.

• A maximum or minimum  (the plural forms are  maxima and 
minima), is a point in the feasible region where the value of the 
objective function can't be increased (for a maximum) or 
decreased (for a minimum) by moving in any direction in the 
local neighborhood. If this condition holds for the entire feasible 
region, then the point is a global maximumglobal maximum or global minimumglobal minimum.; 
otherwise, it's a local maximumlocal maximum or local minimumlocal minimum.

• Extremum  (pl: extrema) can be used to refer to either a 
minimum or maximum.

• Optimum (pl: optima) is a minimum or maximum (usually 
global), as relevant to the stated problem. For example, if we're 
trying to minimize the objective function, then the optimum is 
the point at which the objective function is minimized.
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Basic Definitions (cont.)

• An exact algorithm is one which is mathematically guaranteed 
(under some stated conditions) to arrive at the solution to a 
particular type of problem. For some problems, there are 
known exact algorithms which are computationally very 
efficient; for others, all known exact algorithms are 
computationally expensive – prohibitively so, in some cases.

• NP-complete – computationally expensive usually requiring an 
exhaustive search of all possibilities. NP is nondeterministic 
polynomial time. NP-hard is similar complexity but without a 
formal proof.

• A heuristic algorithm is one which incorporates certain rules of 
thumb, or experience-based rules. It ignores whether the 
algorithm can be mathematically proven correct. In most cases, 
heuristics require fewer mathematical and logical operations 
than exact algorithms – though there is no guarantee that the 
heuristic will arrive at the same solution.
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Optimization

•Sometimes more of an art than a mathematical science

•There is no “perfect” optimization method

•Powerful – worth $$$

◦ A 1% savings in operation costs can increase profit by 10%

•Used in nearly every business, engineering, science or 
professional field

•Many advances in the last decade (compare to most math 
disciplines with little change in 100 years)

This makes it great material for a SC This makes it great material for a SC 
ProjectProject
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1st Step – What is “Good”?

•Determine what you are optimizing

◦ Less fuel, less time, more widgets

◦ Must be quantifiable

• Often called an objective function, cost function, fitness 
function, or an evaluation function

• Evaluation functions should be written where the optimum is a 
maximum or a minimum

A minimum will be assumed for the rest of this 
presentation
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2nd Step – What are the Independent 
Variables?

•One variable

•Two variables
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Example: Global vs. Local Extrema

Consider the following graph. Assume that the decision space is 
represented by the X values (limited to the visible width of the graph), 
and that the objective function values are the Y values.

• At which of the labeled X values does the graph reach its minimum 
and maximum Y values? These are the global minimum and global 
maximum (i.e. global extrema).

• Which of the labeled X values are local – but not global – extrema?

x
1
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2 x

3

x
4 x
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Considerations

•Methods work best with smooth functions

•Independent variables should not themselves be correlated. If 
they are, as they often are, the optimum values of the 
independent variables may be wildly off. Yet the minimum of 
the objective function will be reasonable.

•There is no guarantee in most of the methods of a global 
minimum, just a local minimum
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Tricks

•Isolate independent variables and 
solve

◦ Similar to technique in “Clue”®

• Example – Objective function is 
highest level of ant activity. 
Independent variables are hours 
of daylight and temperature.

• Take data at same temperature 
but on different length days
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What is a Good Method?

•Method should evaluate the function as few times as possible 
or fewest number of steps/guesses

•Parallel methods can work better with more guesses at each 
step rather than the least number of evaluations. For parallel 
methods we should redefine steps to consist of one or more 
guesses or function evaluations

•A good method for one problem is not necessarily a good 
method for another problem

•Robustness (i.e. working for all cases) can be more important 
than efficiency or fewest steps
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Types of Problems
•Linear – treated in Operations Research, Business Schools. 
A function example is 22 lbs of plastic per 100 widgets 
produced. (Note: Operations Research also delves into most of 
the following types of problems also.)

•Non-linear – occurs more often in science where inter-
relationships between variables are more complex. A small 
change in an independent variable can generate large changes 
in the objective function.

•Complex problems (or NP-complete) – a solution 
can be verified, but there is no known efficient 
way to locate a solution.  Examples are the 
traveling salesman problem or the knapsack 
problem. While an optimum solution cannot be 
easily computed, a near-optimal solution (good 
enough solution) can be found. Computing a 
“perfect” chess move is a good example of this 
type of problem.
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Simple Mathematical Optimization

•Optimum must be at a point where the slope is zero. In math 
this is expressed as when the derivative is zero. This point is a 
local minimum. However, it doesn't necessarily follow that any 
such zero-slope point is a global optimum for the function. 

•The points where the slope is zero are the set of candidate 
points. Some adjustments must be made

◦ Points that violate the constraints must be discarded (such as 
negative values that violate physical reality)

◦ Add to the set of points the intersections of the optimization 
surface and the constraints. 

• We now examine this set to see which are global extrema, and 
which of those is a minimum extrema.
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Example: Maximize Fenced-in Area

Imagine that you own a piece of land, located at the bottom of a 
cliff. You intend to fence in a portion of this land, as a pen for 
animals.

• You have enough material for 100' of fence.

• For simplicity, you've decided to make the pen rectangular in 
shape.

• For economy, you're going to use the cliff wall as one side of 
the rectangle; you don't need to put fencing material on that 
side.

Your task is to find the dimensions for the fenced-in area that 
maximize the area enclosed, using only the materials you have.

• What mathematical function describes the area enclosed by 
the fence, in terms of its dimensions?

• Are there any constraints on the dimensions? What are they?
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Example: Maximize Fenced-in Area 
(cont.)

We can draw a simple diagram of the problem, as follows:

x

100 − 2 x

Our task is to find the value of x that gives the 
largest value for f(x). We recognize f(x) as a 
quadratic of the form f(x) = ax2 + bx + c. From 
intermediate algebra, we remember that the 
vertex of the parabola described by the 
quadratic is found where x = b/2a.

In this case, b = 100, and a = 2. Computing x and 
the resulting area, we get the maximum area 
(1250 ft2), when the dimensions are 25' X 50'.

area = f  x = x100 − 2 x = 100 x − 2 x2
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Three Main Approaches

1. Direct solution – used for linear, quadratic and 
other simpler problems where simple analytic 
approaches are workable.  

◦ Simplex Method or Linear Programming are typical solution 
techniques. Also Lemke's algorithm for quadratic 
programming, the stepping-stone algorithm for the 
transportation problem, the Hungarian method for the 
assignment problem, and Dijkstra's algorithm for finding the 
shortest path on a network

2. Iterative solution methods – take slight 
perturbations of the initial guess and search in the 
direction with the better value. 

◦ Steepest Descent and Conjugate Gradient solvers are 
examples of methods to solve these problems
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Three Main Approaches (cont.)

3. Directed random search methods – search 
algorithms have randomness as a key element, where 
the sampling distributions are influenced by the 
objective function, and where the amount of 
randomness tends to decrease as the number of  
iterations increase. 

◦ Simulated Annealing, Genetic Algorithms (GA), Ant Colony 
optimization, and Particle Swarm Optimization are some of 
the methods most suitable for this class of problems.
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Direct Methods
Linear Programming via the Simplex Method

When the objective function is linear, all the constraints are linear, and 
the decision variables are continuous, we have a linear programming 
problem (LP). In 1947, George Dantzig invented the simplex method to 
solve linear programming problems. In very general terms, this 
algorithm proceeds as follows:

• Set up the problem as a system of linear equations, with more 
variables than equations (new variables are added as needed, to turn 
inequalities into equations).

• By a series of matrix “pivoting” operations, move from one feasible 
solution to another, where each successive solution improves the 
objective function.

• When the objective function cannot be improved further, we've found 
the optimum.

This process is as a series of moves from vertex to vertex, along the 
edges of an n-dimensional convex polytope, with each move improving 
the objective function. When none of the edges lead in a direction that 
improves the objective function, we've found the optimal solution.
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Exercise: Maximize Profit on Exports1

A firm exports two types of machines: P and Q. Type P occupies 2m3 of 
space, and type Q requires 4m3. The mass of type P is 9kg; type Q 
masses 6kg. The total available shipping space is 1,600m3 and the total 
mass of the machines cannot exceed 3,600kg. The profit on type P is 
$100 and the profit on type Q is $80. How many of each machine must 
be exported to maximize profit, and what is that maximum profit?

Here's the LP formulation, along with a graphical view of the feasible 
region (i.e. the region containing all points satisfying the constraints):

p =  number of type P machines exported
q =  number of type Q machines exported

Maximize:
100 p  80q

Subject to:
2 p  4q ≤ 1600
9 p  6q ≤ 3600

p ≥ 0
q ≥ 0

0 400 800

400

800
Q

P
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Exercise: Maximize Profit on Exports 
(cont.)

We could easily solve this example by computing the profit at all four 
vertices of the feasible region and selecting the vertex with the highest 
profit. The advantage of the simplex method is that it almost never 
needs to visit each vertex; it always moves along the edge that 
improves the objective function most. This is a big advantage when 
problems are much larger than this one.

There are many libraries that implement the simplex method. For this 
example, we'll use Apache Commons Math, an open source Java library.

1.In NetBeans, open the SimplexExample project.

2.Open the SimplexExample.java file from the 
org.nm.challenge.optimization source package.

3.Complete the code by following the instructions that begin on line 72 
of  SimplexExample.java (hint: review the constants declared in lines 
42-48).

4.Compile and run the program. What's the result?

5.Is the answer integral? If not, how should we interpret it?
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Exercise: Giapetto's Woodcarving
•Giapetto's Woodcarving Inc. manufactures two types of wooden toys: 
soldiers and trains. A soldier sells for $27 and uses $10 worth of raw 
materials. Each soldier that is manufactured increases Giapetto's variable 
labor and overhead costs by $14. A train sells for $21 and uses $9 worth 
of raw materials. Each train built increases Giapetto's variable labor and 
overhead costs by $10. The manufacture of wooden soldiers and trains 
requires two types of skilled labor: carpentry and finishing. A soldier 
requires 2 hours of finishing labor and 1 hour of carpentry labor. A train 
requires 1 hour of finishing and 1 hour of carpentry labor. Each week, 
Giapetto can obtain all the needed raw material but only 100 finishing 
hours and 80 carpentry hours. Demand for trains is unlimited, but at most 
40 soldier are bought each week. Giapetto wants to maximize weekly 
profits (revenues – costs).

Operations Research: Applications and Algorithms, 4th Edition, by Wayne 
L. Winston (Thomson, 2004). 

•More detail on this problem at:

http://www.ibm.com/developerworks/linux/library/l-glpk1/

http://www.ibm.com/developerworks/linux/library/l-glpk1/
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Exercise: Giapetto's Woodcarving
To summarize the important information and 
assumptions about this problem:

1.   There are two types of wooden toys: soldiers and trains.

2.   A soldier sells for $27, uses $10 worth of raw materials, 
and increases variable labor and overhead costs by $14.

3.   A train sells for $21, uses $9 worth of raw materials, and 
increases variable labor and overhead costs by $10.

4.   A soldier requires 2 hours of finishing labor and 1 hour 
of carpentry labor.

5.   A train requires 1 hour of finishing labor and 1 hour of 
carpentry labor.

6.   At most, 100 finishing hours and 80 carpentry hours are 
available weekly.

7.   The weekly demand for trains is unlimited, while, at 
most, 40 soldiers will be sold. 

•The goal is to find the numbers of soldiers and trains 
that will maximize the weekly profit. 
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Exercise: Giapetto's Woodcarving
•Install libgplk0, libglpk-dev, glpk-utils, glpk 

•Copy the file giapetto.mod from the giapettoLP directory

•glpsol -m giapetto.mod -o giapetto.sol
Problem:    giapetto
Rows:       4
Columns:    2
Non-zeros:  7
Status:     OPTIMAL
Objective:  profit = 180 (MAXimum)

   No.   Row name   St   Activity     Lower bound   Upper bound    Marginal
------ ------------ -- ------------- ------------- ------------- -------------
     1 profit       B            180                             
     2 carpentry    NU            80                          80             1
     3 finishing    NU           100                         100             1
     4 soldier_demand
                    B             20                          40 

   No. Column name  St   Activity     Lower bound   Upper bound    Marginal
------ ------------ -- ------------- ------------- ------------- -------------
     1 soldiers     B             20             0               
     2 trains       B             60             0               
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Specialized Linear Programming Variations
Some optimization problems are better suited to more specialized 
methods than the general-purpose simplex method. Examples include:

• The transportation problem: Given n sources, each with a supply s
n
 of 

some commodity; m destinations, each with a demand d
m
 for that 

commodity; a cost c
ij
 for transporting one unit of the commodity from 

source i to destination j; find the transportation scheme that satisfies 
the demand at minimum cost. Solution techniques for this problem 
exploit the network nature of the problem to solve it more efficiently.

• The assignment problem: Given n resources, and m tasks (where m ≥ n), 
where there is a cost c

ij
 associated with assigning resource i to task j, 

and where each resource must be assigned to exactly one task, and 
each task may be assigned a maximum of one resource, find the set of 
assignments that minimizes the total cost. The most well-known 
technique for solving this type of problem is the Hungarian method.

• In general, problems where some or all decision variables must have 
integral values often require specialized algorithms. This is especially 
the case where only the values 0 and 1 are allowed.
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Interior Point Solution Techniques

While the simplex method and its variants are usually very good, and 
they're widely used, there are extreme instances where the simplex 
method gives close to worst-case performance. The first practical 
alternative to the simplex method for these problems was Karmarkar's 
algorithm, invented in 1984.

Karmarkar's algorithm can be viewed as moving through the interior of 
the polytope, in a relatively small number of steps. For this reason, we 
refer to this and similar methods as interior point methods.

The computational cost of formulating LPs for interior point methods, 
and of computing each step through the interior of the polytope, are 
very high, but the number of iterations required for solution is low. This 
trade-off makes these techniques well suited to certain types of very 
large problems, but poorly suited to most others.
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Iterative solution methods
Bracket methods

•for single variable cases with unimodal objective 
function (no local minima)

•Take 3 starting points widely separated. The middle 
point, b,  must be lower than the other two. Then take 
a point in between a-b or b-c. Suppose we take a 
point in b-c called d. If d > b, then the new bracket 
triplet is a < b < d, else, the new triplet is b < d < c.
•The various methods use 
different ways to estimate the 
best point to take for the next 
guess. Golden mean method 
uses the golden ratio. Other 
methods use a parabolic 
function or first derivatives.
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Exercise 1 – Bracket Method
Find the minimum of f(x) = cos(x) + 1, which occurs at x = . The 

starting interval is (0,6), with an initial guess for the minimum of 2.

◦ Install libgsl0ldbl, libgsl0-dev

◦ Open up Eclipse. Select New Project, New C Project, Executable:Empty 
Project. Put in name of project – Bracket. Click through rest of windows.

◦ Right click on Bracket in Project Explorer. Select new: C Source file. Name it 
bracket.c. Enter source from BracketExample/bracket.c or 
http://www.gnu.org/software/gsl/manual/html_node/Minimization-Examples.html

◦ Right click on Bracket again and select Properties all the way down at the 
bottom. Open up C/C++ Build and select settings. Select GCC C 
Linker:Libraries. Add the libraries gsl and then gslcblas. Compile project. 

◦ Select Run menu: Run configurations. Click on add (small page with plus sign 
at upper left). Setup run configuration and run problem.

◦ See the Appendix for platform specific instructions.

• Try the other minimization algorithms in the library, golden section and quad 
golden. The reference page is 
http://www.gnu.org/software/gsl/manual/html_node/Minimization-Algorithms.html. The 
function names are gsl_min_fminimizer_goldensection and 
gsl_min_fminimizer_quad_golden. 

◦ Which works best for this problem?

http://www.gnu.org/software/gsl/manual/html_node/Minimization-Examples.html
http://www.gnu.org/software/gsl/manual/html_node/Minimization-Algorithms.html
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Exercise 2 – Bracket Method

•Take you favorite Netlogo model. Let's say that it is a fire 
egress model. For one slider, optimize the number of people that 
escape. Note that at each input value, you will have to take a 
statistical average of the result because of the random number 
used in the simulation.
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Iterative solution methods
Steepest Descent

•Extension of bracketing to multi-
variable cases

•Start at point x
0. 

Move from point x
i
 to 

x
i+1

 by minimizing along the line from 

x
i
 in the direction of the downhill 

gradient. Repeat until the value for the 
minimum no longer decreases.

• See Numerical Recipes for 
description, method and sample 
code 
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Iterative solution methods
Conjugate Gradient

•Trick here is to take the 
conjugate to all previous 
search directions to try and 
force solution "down the 
valley"

•Why are valleys important? 
Usually one independent 
variable is stronger than the 
other, producing a long valley
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Iterative solution methods
Conjugate Gradient

•One of the most difficult test cases is called the 
Rosenbrock function. It can be found at:
http://www.aridolan.com/ga/gaa/Rosenbrock.html

Shown here is the steepest 
descent algorithm applied to 
the Rosenbrock problem. The 
narrow curved valley causes 
the method to take a lot of 
steps. The conjugate gradient 
approach was developed to 
work better on this type of 
problem. (From wikipedia)

ORNL has pictures of various optimization methods applied to the Rosenbrock 
and Beale functions: http://www.phy.ornl.gov/csep/mo/node17.html

http://www.aridolan.com/ga/gaa/Rosenbrock.html
http://www.phy.ornl.gov/csep/mo/node17.html
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Example: Conjugate Gradient

◦ Install libgsl0ldbl, libgsl0-dev

◦ Open up Eclipse. Select New Project, New C Project, Executable:Empty Project. 
Put in name of project – SurfaceMin. Click through rest of windows.

◦ Right click on SurfaceMin in Project Explorer. Select 
Import:FileSystem:Kickoff/SurfaceMin. Select both c source files (*.c) and 
import them.

◦ Right click on SurfaceMin again and select Properties all the way down at the 
bottom. Open up C/C++ Build and select settings. Select GCC C 
Linker:Libraries. Add the libraries gsl and then gslcblas. Compile project. 

◦ Select Run menu: Run configurations. Click on add (small page with plus sign at 
upper left). Setup run configuration and run problem.

◦ See Appendix for platform specific instructions.
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Graph the results (Mac Only)

    Graph the function by going to 
Applications>Utilities>Grapher
   select #D Graph and White and enter 
the equation:
                 z= 10(x1)2+(y2)2+30

   Then go to Format>Axes and Frame 
and select Height Axis and make it go 
from 0 to 700.

   

Create a text file and cut and paste the results.  Using vi, use i to insert and then paste 
and escape.  Then separate the numbers with "," and rows with ";" and then join the 
rows using "J".  Then go to grapher and click on "+" and New Point Set and Edit Points, 
then import your *.txt file.
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Directed Random Search Methods

•Has some randomness in the 
solution technique

•Think of method you use for 
“Battleship”®

•Heuristic based methods work 
better than exact algorithms

•Examples of Solution Methods

◦ Simulated Annealing

◦ Genetic Algorithms

◦ Ant Colony Optimization

◦ Particle Swarm Optimization

•Best where optimization surface is complex or has local 
minima
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The Traveling Salesman Problem

One example of this is the traveling salesman problem (TSP): 
Given n cities (points), with a distance d

ij
 between cities i and j, 

find the route through all the cities that minimizes the total 
distance, and returns to the starting point. Exact solution 
techniques are very expensive once the number of cities moves 
into the thousands (not that uncommon, when we start seeing 
such parallels as those between points on a circuit board and 
cities on a map) and may be years of CPU time.

One of the best heuristics for the TSP is the Lin-Kernighan 
algorithm, introduced in 1973. This algorithm works by 
adaptively swapping pairs of tour fragments to formulate an 
improved tour at each step.
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Simulated Annealing

•In simulated annealing (which refers to the analogy with how 
metals cool and anneal), the solution method is allowed to 
sometimes take an upward step rather than always going in the 
downward direction. This can be helpful in avoiding local minima 
and stepping “over the hump” to the global minimum. The 
frequency of the upward step is always an heuristic algorithm 
which must be developed for the problem at hand.
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Exercise - Simulated Annealing

•Traveling Salesman Problem

◦ Open up Eclipse. Select New Project, New C Project, Executable:Empty 
Project. Put in name of project – Traveling_Salesman_Problem. Click through 
rest of windows.

◦ Right click on Traveling_Salesman_Problem in Project Explorer. Select new: C 
Source file. Name it siman_tsp.c. Enter source from 
TravelingSalesmanProblem/siman_tsp.c or search the web for 
siman/siman_tsp.c.

◦ Right click on Traveling_Salesman_Problem again and select Properties all 
the way down at the bottom. Open up C/C++ Build and select settings. 
Select GCC C Linker:Libraries. Add the libraries gsl and then gslcblas. 
Compile project. 

◦ Select Run menu: Run configurations. Click on add (small page with plus sign 
at upper left). Setup run configuration and run problem.

◦ To plot results, run “sh plot.sh” or “sh plotgif.sh”. Look at the files *.eps or 
*.gif.
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Traveling Salesman Problem Results
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Particle Swarm Optimization

•For particle swarm optimization, each particle is given a position 
and velocity. Then an acceleration is applied to each particle 
towards its “personal best” and towards the “global best”. The 
further away from these locations, the stronger the acceleration 
towards them. A random factor is also applied to the acceleration 
forces.

•Exercise – Start up Netlogo 
4.1RC5. Open up the models 
library and go to Sample 
Models:Computer 
Science:Particle Swarm 
Optimization (Uri Wilensky, 
Northwestern University). 
Setup and run.
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Genetic Algorithms

A genetic algorithm (GA) is a heuristic that emulates some of the 
mechanisms of evolution to find a good enough solution to a problem. A 
GA starts with a population of randomly-generated solutions to a 
problem; each of these is encoded as the genome of an individual 
member of the population. Then, we follow these steps to produce 
successive generations of the population:

• Each member of the population is evaluated to assess its fitness

• A subset of the population is chosen to survive to the next generation. 
This selection is random, but individuals with better fitness are more 
likely to be selected.

• To replace individuals that don't survive, a subset of the population is 
chosen (randomly again, but again weighted to the most fit) to 
reproduce.

• The next generation is produced by combining the genomes from 
pairs of individuals selected for reproduction.

• Optionally, an offspring's genomes may be mutated slightly in a 
random fashion.
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Exercise: TSP with a Genetic Algorithm

Exercise 1. There is a website, GA Playground, that specializes 
in Genetic Algorithms. It has the Traveling Salesman, Knapsack, 
and several other test problems.

http://www.aridolan.com/ga/gaa/gaa.html

Pick one of the problems from this site and run it. Note: The site 
uses a java runtime < 1.4, so many of the examples will not run 
if you have a more recent java plugin.

Exercise 2. Start up netlogo, v4.1RC5. Open the models library 
and select Sample Models:Computer Science:Simple Genetic 
Algorithm(Uri Wilensky, Northwestern University). Set it up and 
run it.

http://www.aridolan.com/ga/gaa/gaa.html
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Convex Hull Construction Heuristic for 
TSP

One relatively intuitive and effective approach to the TSP begins 
by finding the subset of points, and the tour connecting them, 
such that all of the points are either in the subset, or in the 
interior of the polygon formed by the tour. This polygon is called 
the convex hull of the full set of points. (The concept of the 
convex hull can be applied to n-dimensional polytopes, but the 
application to the TSP is primarily of use in two dimensions only.) 

Once we have this initial subset and tour (collectively called a 
sub-tour), we add to it progressively, incorporating an additional 
point at each step. One reasonable heuristic is to select at each 
step the point that results in the smallest immediate increase in 
the length of the sub-tour; this type of heuristic is referred to as 
“greedy”, since decisions are based only on the cost/benefit of 
immediately available alternatives.

When all points in the set are incorporated into the sub-tour, the 
algorithm is done.
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Exercise: TSP w/ Convex Hull & Greedy 
Insertion

Go to the site

 http://www-e.uni-magdeburg.de/mertens/TSP/node2.html

Try running the second applet. Select a large number of nodes 
(25) to get a better idea of how the algorithm performs. Then 
select run. Select solve to see how it compares to the best 
solution.

http://www-e.uni-magdeburg.de/mertens/TSP/node2.html
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Appendices
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Linux setup (64 bit Ubuntu)
•NetLogo

◦ Run the NetLogo installer

•Eclipse for C programs

◦ Install Eclipse by running the eclipse-cpp-galileo-SR1-linux-gtk-x86_64 installer

◦ Install Java by running the jdk-6u16-nb-6_7_1-linux-ml.sh installer

◦ Install compilers and supporting tools with the package manager

• build-essential

◦ Install libraries and gnu software with the package manager

• libgsl0ldbl and libgsl0-dev
• glpk-utils
• plotutils

◦ When setting up the compiling in Eclipse

• Add to GCC C Linker:Libraries
gsl
gslcblas

•Netbeans for Java programs

◦ Run the netbeans installer
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Windows Setup
NetLogo
   Run the NetLogo installer
Eclipse for C programs
   Install Wascana by running the Wascana installer
   Install libraries and gnu software by running gnu installers for 
     gsl1.8, 
     glpk4.34setup and 
     plotutils
   Add to system path by opening up control panel, search for system environment and 
      adding to the end of the path
    ;C:\Program Files (x86)\GnuWin32\bin;C:\Program Files (x86)\Wascana\mingw\bin
   When setting up the compiling in Eclipse
      Add to GCC C Compiler:Directories
          "C:\Program Files (x86)\GnuWin32\include"
      Add to GCC C Compiler:Symbols
          GSL_DLL
      Add to MinGW C Linker:Libraries
          Libraries
            gsl
            gslcblas
          Library search path
            "C:\Program Files (x86)\GnuWin32\lib"
Netbeans for Java programs
   Run the netbeans installer
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OSX (Mac)
NetLogo
   Run the NetLogo installer

NetBeans
   Run the NetBeans installer

C/C++ Code
   Install Xcode development tools.  These should be on your OS disk or register and
      download at http://developer.apple.com/technology/xcode.html

   Install MacPorts (choose the version for your OS): http://www.macports.org/install.php
      If necessary update using sudo port d selfupdate
   Make the following directory and cd to it:  /opt/local/bin/portslocation/dports/gsl
   Then install the Gnu Scientific Library   sudo port install gsl

   Running from the command line
   Copy SurfaceMin.c and myfunction.c to a directory.  Then type the following:
       gcc o multimin SurfaceMin.c myfunction.c Wall I/opt/local/include L/opt/local/lib 
          lgsl lgslcblas
   To run the program  ./multimin

http://developer.apple.com/technology/xcode.html
http://www.macports.org/install.php
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OSX (Mac) (cont)
   To run the program in the Xcode IDE:
      1. Open XCode (/Developer/Applications/ and drag Xcode.app to your Dashboard.)
      2. Then open File/New Project...
      3. In the "New Project" Assistant, expand the "Command Line Utility" group.
      4. Select "Standard Tool"
      5. Click "Next"
      6. Give a project name (MultiMin) and directory, then click "Finish".
      7. Press CmdShiftR to open the Console window. Output will appear there.

    Project>Add to Project and add SurfaceMin.c and myfunction.c.  Delete main.c.

    Edit Project>Edit Project Settings
    Under Search Paths:
       Add to User Header Search Paths      /opt/local/include
       Add to Library Search Paths               /opt/local/lib/
    Under Linking:
       Add to Other Linker Flags:                 lgsl lgslcblas
    Set the Architecture to Native Architecture
    Click the "Build and Go" toolbar button.
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