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Executive Summary 

 My project involves the analysis of word usage frequencies in the English language. This type of 

analysis has implications not only for critical fields of research, such as crypto analysis, speech 

recognition, and human-like artificial intelligence, but also for managing enormous data sets that are 

beyond the capacity of the typical computer. For this project, I developed algorithms for working with 

linguistic data sets involving billions of words, and doing so efficiently. I have also written code to collect 

new and original linguistic data sets. I hope some of the techniques I have developed might suggest 

approaches to other researchers attempting to handle similar large linguistic data sets.  

To gather a representative data set of words in literature, I utilized data from the Google N-

grams project which was compiled from about five million books. In addition, I developed code 

to compile my own data set from Twitter. I developed code to calculate frequency data from these two 

sources, and to analyze the similarities and differences between the two samples using C++, C Sharp, 

and R. My analyses take into consideration a wide range of variables involved in computer analysis of 

linguistic data, from how to determine what is a word, to weights of word frequencies over time, to 

spelling errors on Twitter, and even upper versus lower case.      
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Problem Statement 

I began considering word frequencies out of curiosity about infrequently used words. I didn’t 

initially appreciate how long it might take me to get answers, especially regarding comparative word 

usage frequency; however, it quickly became apparent that it would be much more complicated than 

the 30-line python program I had set out to write. So I began thinking about ways I could write code to 

efficiently analyze word usage frequencies. When I decided to develop this project for the 

Supercomputing Challenge, I was told that linguistic analysis would be too massive of an undertaking to 

tackle, and I was urged to downsize.  

 When performing linguistic analysis, immense amounts of data need to be processed and 

analyzed. The problem is that without specialized methods, computers cannot work with that quantity 

of data. This means that important questions in linguistics have not been tackled and/or adequately 

answered because the data sets are too unwieldy. As I delved into this project, I became fascinated not 

only with finding answers to my questions regarding word usage frequency, but with the challenge of 

writing code that could solve some of the problems with analyzing these large data sets. I decided to 

forge ahead.  

 The purpose of my project is to analyze the word usage frequency in English literature and in 

social media, analyze the differences between the data sets, and offer possible conclusions from those 

results.   
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Literature 

 The first part of this project is analyzing the word usage frequency in literature. Since I do not 

have the means to obtain a reasonable sample size of digitized books to process, I am relying on 

previous research done by researchers at Google. The Google N-grams project is a fascinating project, 

aimed at looking at the frequency of words or phrases over time (see Appendix A for an example). 

Google’s data is built from about five million (roughly 4% of all books ever printed) digitized books. 

These books were sourced in libraries from about 40 universities worldwide (see Appendix B for more 

information). Google also excluded N-grams which appeared less than 40 times. We can assume that 

Google’s data is independent: if books influence each other, it would be statistically insignificant with 

this large of a sample. We can assume that the data is random, since university libraries should have a 

sufficiently random sample of books. This is important, because it means that we can use a normal 

model for estimating the true proportions of data. Google has made the results of their research 

available to the public on the Google Books N-grams Viewer, as well as making the raw data available to 

everyone under the creative commons license. The sheer quantity of data is ginormous, something that 

only a large corporation like Google would have the resources to process. Thus, in order to make the 

raw data manageable, Google has subdivided the data into several categories: 1-grams, 2-grams, 3-

grams, 4-grams, and 5-grams. 1-grams are single words or strings of characters which are not separated 

by a space, such as “Hello” or “3.1415”. 2-grams are strings of characters which are separated by 1 

space, like “Hello, World”, or “Pi: 3.14159”. The same pattern follows for the rest of the N-grams. The 

data is available to be downloaded on the google N-grams project page (see Appendix C for more 

information). For this project, I am limiting the scope to 1-grams, single words. The English 1-grams 

consist of 39 files, each containing 1-grams beginning with a different letter. The other files are for N-

grams that do not begin with letters. Every file is in a consistent format, as shown in Figure 1. 
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0'9 1797 1 1 
0'9 1803 1 1 
0'9 1816 2 2 
0'9 1817 1 1 
0'9 1824 4 4 
0'9 1835 1 1 
0'9 1836 2 2 
0'9 1839 8 4 
0'9 1843 2 1 
0'9 1846 3 3 
0'9 1848 1 1 
0'9 1849 2 2 
0'9 1850 3 3 
0'9 1851 5 4 
0'9 1852 2 2 
0'9    … … … 
0'9 2008 43 36 

 

Figure 1 

This is from the “googlebooks-eng-all-1gram-20120701-0”, which contains all the 1-grams beginning 

with the number “0”. The first column is the 1-gram itself, followed by a tab, then followed by the year. 

The next two numbers are the number of occurrences and the number of volumes respectively for that 

year. This tells us that in 1851, the 1-gram “0’9” was used 5 times in 4 distinct volumes. Getting the 

frequency of this 1-gram is straightforward. Google provides a file with total counts for each year, 

containing the year, the total occurrences for that year, pages, and volumes. Figure 2 shows the 

corresponding total count for the year 1851. 

 

1851 537705793 2787491 4021 

 

Figure 2 

So the frequency of the 1-gram “0’9” in 1851 was 5 / 537705793, which is roughly 9.299𝑥𝑥10−9. 
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The size of all the data combined is almost 30 gigabytes, more than the amount of RAM most 

computers have. Some files, like the file with 1-grams starting with “A”, are over 1.67 gigabytes alone. 

There is just too much data to all be handled at the same time. There is a simple solution to this, and 

that is to pre-process every file, compressing it down to just the information that is needed. One huge 

memory optimization can be made that drastically reduces the computation time, which is compressing 

the data from multiple years into just one line and only keeping the data that is needed. Since the focus 

of this project is to find the frequency of a word - as opposed to the frequency over time - an algorithm 

must be used to compress the frequencies from multiple years into just one year. There are a handful of 

methods for computing this; one such method would be to simply take a raw mean of the frequency for 

each year. However, since the frequency data from this will be compared against data from today’s 

Twitter feeds, it makes the most sense to do a weighted mean, with more recent years weighed more 

heavily. The best way to do that is by weighing each term exponentially, as defined by the following 

formula: 

𝜇𝜇𝑛𝑛 = 𝛼𝛼𝛼𝛼𝑛𝑛 + (1 − 𝛼𝛼)𝜇𝜇𝑛𝑛−1. 

𝛼𝛼 = 2
𝑛𝑛−1

. 

Where 𝜇𝜇0 = 𝛼𝛼0, and 𝛼𝛼𝑛𝑛 is the frequency from index 𝑛𝑛. It can be implemented very easily with the 

following code: 

int N = frequencies.size(); 
double Mu; 
if (N > 1) { 
 Mu = frequencies[N - 1]; 
 double k = 2.0 / ((double)N + 1.0); 
 for (int i = N - 2; i >= 0; i--) { 
  Mu = (double)((frequencies[i] * k) + (Mu * (1 - k))); 
 } 
} 
else { 
 Mu = frequencies[0]; 
} 
worddata wdata = { currentWord, Mu, previousRecentCount, previousRecentTotal }; 
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localWordBank.push_back(wdata); 

Where frequencies is a vector, composed of the frequencies for each consecutive year. 

frequencies.push_back((double)data.occurrences / 

(double)totals[data.year].matches); 

The most recent count and most recent total are also saved, for estimating the standard deviation later. 

This optimization compresses the data massively, for example the “A” file compressed by a factor of 

almost 50x, going from 1.67 gigabytes to just 33.7 megabytes.  

A large factor in the computation time for this data is the reading of the file into memory and 

parsing it. The following code is used to read in a file: 

inputData data; 
std::ifstream fIn(PATH + FILEPREF + letterScan); 
while (fIn >> data.name >> data.year >> data. occurrences >> data.volcount) { 
 ... 
} 

And the inputData structure is defined as: 

struct inputData { 
 std::string name; 
 int year; 
 double occurrences; 
 unsigned long long volcount; 
}; 

This cannot be optimized very much. Even the C++ Boost Library does not provide much of a boost to 

the speed. This is mainly because of parsing the numbers. Precompiling the data into a smaller format 

circumvents this problem, by only requiring the intensive parsing to only be run once, allowing for easier 

tweaking of other parts of the code later on. The total size of all the Google data is almost 30 gigabytes, 

while the compiled data is just a mere 450 megabytes. The N-gram data for “0'9” is 168 lines, but with 

precompiling it is compressed down to just one line, as shown in Figure 3. 

 

0'9 7.48321e-09 43 19482936409 
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Figure 3 

I had a small bug early in the writing of the code, where I accidentally weighed the frequencies in the 

wrong direction, weighing ancient frequencies much more than today’s frequencies, which yielded some 

interesting results. While words like “The”, “God”, and “It” remained much the same in terms of 

frequency, some other words were reported as much more common. Examples are words like 

“Presbyters”, “Michelangelo”, and “Vasari” (See Appendix D). A lot of words you might find in 17th and 

18th century texts appear at the top of the list like “Committee”, “Lord”, “Parliament”, “Medals”, and 

“Viator” also appeared near the top due to the incorrect weights.  

 The most significant optimization is allowing the program to utilize almost all of the CPU by 

multithreading the application. Since the bottleneck is caused by the parsing of each row of data itself, 

this optimization also allows more of the available hard drive read/write speed to be used. My computer 

has an Intel 6th generation core i7 processor, with 4 physical cores and 8 virtual cores. When 

multithreading the application, the program will only use 7 threads, one for each virtual core, leaving 1 

core for the system and other processes on my computer, as follows: 

// assignment lock 
std::mutex Lock; 
// Number of processing threads 
const int NUMTHREADS = 7; 
// Keep track of threads 
std::vector<std::thread> threads(NUMTHREADS); 
// ... 
void Preprocess(std::string name, int delay) { 
 // Avoid coordination issues by staggering 
 Sleep(delay * 1); 
 // Create a bank of data which we will output to the preprocess file 
 std::vector<worddata> localWordBank; 
 // Until we have processed every file, get a new one an process it 
 while (true) { 
  // ... Read each file line by line and process it 
 } 
 std::cout << name << " ending - no more assignments" << std::endl; 
} 
// ... 
int main() 
{ 
 // ...  
 for (int i = 0; i < NUMTHREADS; i++) { 
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  threads[i] = std::thread(Preprocess, "T" + std::to_string(i), i); 
 } 
} 

And of course, the threads have to be coordinated, so each thread processes a new N-gram file: 

class threadCoordinator { 
public: 
 static char getAssignment() { 
  if (FileIndex == FileIndex _len) { 

// We have reached the end, finally. Tell the threads to die 
quietly. 

   return '-'; 
  } 

// Return next data file in queue, and increment afterwards so that 
a new file is queued  

  return FileIndexes[FileIndex++]; 
 } 
}; 

After precompiling, the data can now be worked with much more easily, making the process of 

analyzing the code more straightforward to work with. Processing the data to find out the frequency of 

N-grams is one thing, but verifying that the N-grams are words is a completely different story. One 

method which I explored was verifying if an N-gram was a word based off the vowel-to-consonant ratio. 

That method is reasonable and filters out many non-words. However, it is not even close to 100% 

accurate, and it does not account for the odd word in another language or semi-random strings of 

characters that could be caused by Optical Character Recognition (OCR) error. The optimal solution is to 

use an English wordlist, and check if each N-gram is present in the wordlist. This is a much better 

solution because at least every N-gram in the output file will be a word. The only potential error with a 

wordlist would be caused by missing words in the wordlist; however, this is fairly unlikely. I am using an 

alphabetized wordlist that I compiled a year or two ago as a side project, which contains over 293,000 

words. Since the wordlist is alphabetized, the process of checking if N-grams are words can be optimized 

significantly by using a binary search algorithm. The binary search algorithm places a cursor at the 

middle of the dictionary, checks if the N-gram should be above or below it, then repeats with the 

smaller chunk. A standard search algorithm would have to go through the dictionary one item at a time 

and check for equality, with a worst-case scenario of 𝑂𝑂(𝑁𝑁), where 𝑁𝑁is the total number of items in the 
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array. A binary search algorithm, on the other hand has a worst-case scenario of 𝑂𝑂(⌊𝑙𝑙𝑙𝑙𝑙𝑙2𝑁𝑁⌋ + 1), 

meaning that the worst-case scenario for a wordlist of 293,000 is only 19 comparisons. About 50% of the 

1-grams that are words will take 19 comparisons to verify, however that is still significantly better than 

searching every word in the wordlist.  

The processor program works much the same as the preprocessor program, with 7 threads 

working simultaneously to process each file. One difference is that the processor only processes a 

fraction of the data, using the precompiled data. Another difference is that it first identifies N-grams 

that are words, and then only processes those N-grams. The program finishes by sorting the words in 

order of least frequent to most frequent, then writes that data to a file, in a consistent format as shown 

in Figure 4.  

 

Bogarted 1.91368e-10 1 19482936409 

Shtupping 1.9677e-10 4 19482936409 

Strawweight 2.1138e-10 1 19482936409 

Cannibalising 2.1536e-10 1 19482936409 

Ivermectins 2.17086e-10 1 19482936409 

Malfeasant 2.179e-10 1 19482936409 

Archaeobotanist 2.19215e-10 4 19482936409 

Countersue 2.19712e-10 3 19482936409 

Bandmate 2.2011e-10 7 19482936409 

Hematal 2.22227e-10 1 19482936409 

Stealthed 2.22556e-10 4 19482936409 

 

Figure 4 

The frequency data has produced interesting results. R is used to graph the data, using the 

following code: 
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plot(x, freq, type="p", main="Literature Word frequency", xlab="Word", 
ylab="Frequency", pch=20) 
 

The result is a seemingly exponential distribution, as shown in Figure 5. 

 

Figure 5 

The distribution appears to be completely flat for the majority of the data points, up until the very end, 

where it shoots up vertically. There are two data points at the top. Those are “I” and “The”. These words 

are very common and irreplaceable in English, so it makes sense that they would be so much more 

common than all other words. This also tells us that in literature nearly 1% of all N-grams are either “I” 

or “The”. After these words, there is a severe drop-off, going from a frequency of nearly 0.5% to just a 

little over 0.1%. That 3rd most frequent word is “And”, which again, is a word in English that, while hard 

to replace, is easier to replace than “I” or “The”, which may explain the drop-off to a certain extent. This 

distribution is interesting, but more detail is needed to see what is going on in the rest of the graph, not 
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just the top few words. We can achieve this by taking the plotting the log (𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑛𝑛𝐹𝐹𝐹𝐹), using the 

following code: 

logfreq = log(freq) 
plot(x, logfreq, type="p", main="Log Literature Word frequency", xlab="Word", 
ylab="Log(Frequency)", pch=20) 
 

The resulting distribution is shown in Figure 6. 

 

Figure 6 

This display provides even more insight than the first. Mainly, if word frequency were exponential, this 

would be a linear distribution; however, it is not. At the left tail, an exponential graph would 

overestimate, and at the right tail, it would underestimate. However, in the middle, from about the 

1,000th word to the 175,000th word, it is relatively linear. Of course, that means that it would be an 

exponential distribution within this interval. 
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 The raw count for the most recent year and total for that year are written to the precompiled 

file, and up until now they haven’t been used. Each year a count is stored out of a total; that count is a 

proportion. The reason the raw count is written to the file is for estimating the standard deviation of the 

proportion, using the following formula: 

𝑆𝑆𝑆𝑆�𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹�� = �𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 ∗ (1 − 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹)
𝑛𝑛

 

Where 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹�  is the sample proportion, and 𝑛𝑛 is the total count for that year. The following code is used 

to compute the estimated standard deviation and graph the standard deviation: 

counts <- as.vector(processed[["V3"]]) 
totals <- as.vector(processed[["V4"]]) 
recentfrequencies <- counts / totals 
standarddeviation <- sqrt((recentfrequencies * (1 - recentfrequencies)) / totals) 
plot(x, standarddeviation, type="p", main="Recent Standard Deviation in Literature 
Word frequency", xlab="Word", ylab="SD(freq)", pch=".") 
 

Which produces a plot similar to the literature distribution plot, as shown in Figure 7: 
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Figure 7 

This plot follows much the same pattern as the distribution plot, appearing to be exponential. The main 

difference is towards the right-hand side, the plot thickens. This is most likely caused by tiny fluctuations 

in the data. Like with the distribution plot, it can be good to observe the log plot as well, which is 

graphed using the following code: 

plot(x, log(standarddeviation), type="p", main="Log Recent Standard Deviation in 
Literature Word frequency", xlab="Word", ylab="Log(SD(freq))", pch=".") 
par(new=T) 
plot(x, log(frequency), type="p", xlab="", ylab="", axes=F, pch=".", col="red") 
 

This code both graphs the log (𝑆𝑆𝑆𝑆�𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹��) and graphs the log (𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹) plot from before on top of it, in 

red, for comparison, as displayed in Figure 8. Note: the red is drawn over the log plot, not using the 

same y-min and y-max values for rendering, so the graph is a little miss-leading. The red data is there to 

compare the form of the data. 
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Figure 8 

This distribution is quite intriguing. It does follow the log plot the same way it follows the regular 

distribution plot, however it is very noisy. Again, the noise is probably caused by small fluctuations in the 

data. But there is one curious aspect, which is that there are bands at the bottom of the plot, which 

seems to start abruptly. I think they are caused by numbers being too small for a computer to calculate 

accurately, leading to rounding which causes bands to form.  

Another graph to look at, is the relative standard deviation. This can be done by taking 

𝑆𝑆𝑆𝑆�𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹��/𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹, as shown in Figure 9. 
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Figure 9 

I could create a 95% confidence interval around a word with the following formula: 

𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 ± 1.64 ∗ 𝑆𝑆𝑆𝑆�𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹�� 

Where the number 1.64 comes from the critical Z-value. Figure 9 shows that even though the words 

with higher frequencies have a higher standard deviation, they have a smaller relative standard 

deviation. On the contrary, words with lower frequency and lower standard deviation also have higher 

relative standard deviation. 
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Twitter 

The second part of the project is to look at the frequency of words used in social media. I used 

Twitter as my data source, mainly because Twitter is the only social media I have experience with, and it 

has an Application Program Interface (API), which allows me to get the data I need. N-gram data isn’t 

available for Twitter the same way it is for literature, so I also had to count the N-grams (specifically 1-

grams) myself. The first part is getting a sufficiently large sample of tweets. Thankfully, the Twitter 

streaming API is extensively documented, and thus straightforward to access. I specifically used the 

“GET statuses/sample” API, which returns a random sample of all tweets in real time. I wrote the 

program to collect this data in C#, because it has a good library for working with the Twitter API, 

specifically the open source library, Tweet Invi (https://github.com/linvi/tweetinvi). The implementation 

is as follows: 

// Initiate Stream 
var stream = Tweetinvi.Stream.CreateSampleStream(); // Have to call 
Tweetinvi.Stream explicitly because `Stream` interferes with System.IO 
stream.StallWarnings = true; 
stream.TweetReceived += (sender, args) => 
{ 
 

// ... 
} 

Inside the brackets is code keeping track of statistics such as which language each tweet is in or the 

length of the tweet (see Appendix E). If the language of the tweet is English, then it is added to an array 

of tweets. I experimented with using a custom algorithm to identify the language of a tweet. Ultimately, 

I decided that the language tagging that Twitter does is most accurate, since the Twitter developers 

have put substantial time into language identification. To conserve on RAM, the tweets are flushed 

every 1,000 tweets, putting those one thousand tweets from the array onto the hard drive, then clearing 

the array. The application writes the data to a file, and to keep one tweet per line, the newlines are 

replaced with \uE032, which is a Unicode character in of the special use planes, meaning it is safe to 

https://github.com/linvi/tweetinvi
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assume that it will never appear in a tweet. Therefore, they make a great solution for compressing a 

multi-line tweet into one line in a file without losing data. 

This API feature is rate limited, so it takes a substantial amount of time to get a large sample of 

Tweets. An average of 40 Tweets per second is streamed to my client; of that, only about 12 tweets are 

usable. At this rate, it takes about a day to get a sample of 800,000 Tweets. I considered ignoring the re-

tweets that are streamed; however, they should not cause any interference with duplicate Tweets, and 

would just cause it take longer to get a reasonable sample size. I also considered the fact that a lot of 

Twitter users misspell words in their tweets; however, trying to predict what word they meant risks 

errors which would hurt the accuracy of the frequencies. Unfortunately, using two streams does not half 

the time required, because the same tweets are streamed to each client. I am using a sample size of 

800,000 tweets, which is smaller than I would like; however, it provides a large amount of insight. The 

algorithm for analyzing the Twitter data is straightforward. Since I am only concerned with N-grams 

which are words, I can create vector with counts for N-grams based off the dictionary, which I use to 

verify if an N-gram is a word. If I were interested in N-grams which were not words, then I would have to 

assemble the N-gram database while processing the tweets. That would increase the computation time 

massively because first I would have to search the database to see if the N-gram already exists, then add 

to its count; otherwise I would have to write another algorithm to place it alphabetically in the database. 

Again, alphabetizing is important because it allows me to use a binary search algorithm for finding words 

within the database, then adding to their counts. Building the database based off the dictionary is also 

more efficient because it is already alphabetized. I am using the following algorithm to process the raw 

data: 

while (std::getline(fileIn, row)) 
{ 

// Replace \uE032 with a space, so that the words on either side of it are 
counted as 1-grams 

 std::replace(row.begin(), row.end(), '\uE032', ' '); 
 // Split the Tweet into 1-Grams 
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 std::vector<std::string> words = split(row, ' '); 
 std::string word; 
 for (int i = 0, l = words.size(); i < l; i++) { 
  word = words[i]; 

// Transform the N-gram to lowercase. That way “The” and “the” are 
both counted 

  std::transform(word.begin(), word.end(), word.begin(), ::tolower); 
// Find the index of this N-gram in the dictionary. A custom binary 
search algorithm is used because the binary search algorithm in the 
STL returns a binary value 

  auto it = binary_find(dictionary.begin(), dictionary.end(), word); 
// Check to make sure the N-gram is in the dictionary. 
dictionary.cend() is returned if the N-gram could not be found 

  if (it != dictionary.cend()) { 
// Determine the index in the dictionary 

   int index = std::distance(dictionary.begin(), it); 
// Add to the count 

   counts[index]++; 
// This could also be gotten from summing the counts vector at 
the end, however this is more efficient 

   totalWords++; 
  } 
 } 
} 

This counts all the 1-grams that are words. Putting each 1-gram into lowercase is very important to get 

an accurate frequency. It accounts for the both uppercase and lowercase words, like “The” and “the”, as 

well as counting the people who tweet in all caps like “THE” or the typos like “THe”. Originally, I was just 

counting the 1-grams that were in the same form as the dictionary, which meant only uppercase words 

were counted, and that yielded a frequency of 0.50% for the 1-gram, “What”. However, once I 

implemented the case changes, the frequency of “What” dropped down to 0.37%. Of course, not all 

words in the dictionary are used on Twitter, so a lot of 1-grams in my database show up as having 0% 

frequency. That is irrelevant to my sample, and they are disregarded. On top of that, any words which 

haven’t appeared at least 5 times are ignored (the same way Google excluded N-grams with a frequency 

less than 40) since there is not enough data to accurately estimate the frequency. The frequencies are 

calculated after the N-gram database is assembled: 

std::vector<worddata> words; 
for (int i = 0, l = dictionary.size(); i < l; i++) { 
 if (counts[i] < 5) 
  continue; 
 dictionary[i][0] = toupper(dictionary[i][0]); 
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worddata wdata = {dictionary[i], (double)counts[i] / (double)totalWords, 
counts[i]}; 

 words.push_back(wdata); 
} 
SORT(words); 

The same sort algorithm is used for sorting the data that is used in the Literature code. R is used again to 

graph the distribution, using much the same code as for the literature graphs: 

plot(x, freq, type="p", main="Twitter Word frequency", xlab="Word", 
ylab="Frequency", pch=20) 
 

The resulting frequency distribution is similar to the literature data, as shown in Figure 10. 

 

Figure 10 

The first thing to notice is that it is remarkably similar to the distribution of words in literature, in the 

sense that it appears to be exponential, with most words being infrequent. However, with the literature 

data, there are over 200,000 1-grams which are words. In the Twitter data, however, there is only a 
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vocabulary of just over 26,000 words. This is partially due to my lack of data, but also because a lot of 

words that are used in literature are outside of the vocabulary used by most Twitter users. Again, it is 

better to look at the log graph of the data, which is produced with the following code: 

logfreq = log(freq) 
plot(x, logfreq, type="p", main="Log Literature Word frequency", xlab="Word", 
ylab="Log(Frequency)", pch=20) 
 

The resulting distribution, however, is different than the literature data, refer to figure 11. 

 

Figure 11 

This distribution is significantly different than the literature data. Again, however, the data is roughly 

linearly distributed for most of the graph (of course a linear distribution on a log plot means that the 

data is exponentially distributed), but it curves up steeply at the right edge of the graph. One thing to 

notice about the log plot is that there are clear bumps (steps if you will) on left edge of the graph, which 

does not happen on the literature data plot. This is caused because there are numerous words that have 
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appeared 5 times (anything less than 5 was disregarded), and thus have the same frequency, causing a 

flat section on the graph. This could be helped with more data. In the case of the literature data, the 

frequencies are derived from the moving average over multiple years, making it almost impossible for 

two words in the literature data to have the same frequency. Something else to notice about the two 

distributions is that the Twitter log graph looks a lot like the right half of the literature log graph. Figure 

12 shows the two side by side for comparison. 

 

Figure 12 

If more data was readily available, the 𝐿𝐿𝑙𝑙𝑙𝑙(𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑛𝑛𝐹𝐹𝐹𝐹) for the Twitter data might match that of the 

literature data more at the left tail.  

The program for compiling the Twitter data also has outputted the raw counts. Again, that can 

be used to estimate the standard deviation, 𝑆𝑆𝑆𝑆�𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹�� = �𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓∗(1−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)
𝑛𝑛

. The following code is used to 

compute and graph the standard deviation, with the frequency plot drawn on top of it in blue for 

comparison: 

plot(x, sqrt((v * (1 - v)) / total), type="p", main="Twitter Word Frequency 
Standard Deviation", xlab="Word", ylab="SD(Frequency)", pch=".") 
par(new=T) 
plot(x, v, type="p", xlab="", ylab="", axes=F, pch=".", col="Blue") 
 



23 
 

The standard deviation plot produces a plot very similar to the frequency plot, as shown in Figure 13. 

Note again, that the frequency in blue is not at the same scale as the standard deviation data, and is 

only there for comparison. 

 

Figure 13 

Like the literature data, the 𝑆𝑆𝑆𝑆�𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹�� plot seems to follow an exponential curve. The main difference, is 

that it appears to be much less noisy. I attribute this to having less data. The standard deviation plot also 

follows a similar form to that of the frequency plot. This of course means that when it comes to 

estimating the true frequencies, it is more accurate with the less frequent words. However, since the 

less frequent words also have smaller frequencies, it is important to again look at the relative 

frequencies. The following code is used to generate the relative frequency graph. 

plot(x, sqrt((v * (1 - v)) / total) / v, type="p", main="Relative Frequency", 

ylab="SD(frequency) / frequency", xlab="Word", pch=".") 
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The relative frequency graph for Twitter, however, is much different than the relative standard 

deviation plot for Literature, appearing to be almost linear, as shown in Figure 14. 

 

Figure 14 

This shows how the standard deviation of the less common words is up to about 40% of the frequency 

of that word. It also shows that more frequent words, while having higher frequencies, have lower 

relative frequency. 

Another difference between the literature and Twitter data sets is which words are most 

common. In literature, the most common words in descending order are: “I”, “The”, “And”, “But”, and 

“God”. However, on Twitter, the most common words in descending order are: “The”, “To”, “A”, “I”, and 

“You”. “And”, while being the third most common word in literature, is the sixth most common on 

Twitter. On Twitter, “God” is the 186th most common word. Again, this makes sense because there is a 

lot of sacred writing in literature. Conversely, on Twitter, religion is not nearly as common a theme. 
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Instead of religion, a very common topic on Twitter is politics. “Trump” is the 90th most common 1-gram 

on Twitter. 
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Conclusion 

I began by processing the N-gram data for literature provided by Google. I sorted through 

that data, discarding non-words and computing an overall frequency from multiple years into one 

frequency value. Then I used that data to find out which words are more common than others. I 

also analyzed the distribution of the frequencies in depth. On top of that, I also computed the 

standard deviation of the proportions, providing insight into how far off the true frequency of a 

word is from the predicted frequency.  

From my analyses of the literature data, I found that a small handful of words are much 

more common than the rest of the words. This makes sense, because some words in English are 

hard to replace. Also, in the case of literature especially, an effort is made to use more varied 

vocabulary. But literature is only one place where English is used. Analyzing word frequencies on 

Twitter provides an important window onto contemporary everyday use of language. Since N-gram 

data for Twitter is not available, I had to write a program from scratch to collect a large sample of 

tweets. I then compiled the tweets, counting up the 1-grams and excluding the non-words. I used 

the same processes to evaluate the Twitter data that I did with the literature data, analyzing the 

frequency distribution, and computing the standard deviation for the sample. The major difference 

between word usage on Twitter and in literature is that there are more high frequency words on 

Twitter as opposed to literature, in which there are more low frequency words. The sample from 

Twitter also has a much smaller vocabulary of words. This confirms what English teachers claim, 

that everyday language, such as that used on Twitter, tends to rely on a smaller range of 

vocabulary. Furthermore, the tweet-length constraint most likely compels people to use shorter 

words and, therefore, fewer different words.  
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I have developed specialized methods for working with the massive amount of data 

required for linguistic analysis. I was able to apply these techniques to two very different data sets, 

one of which I innovated methods for gathering. I explored a range of approaches, from 

multithreading to RAM conservation to developing more efficient algorithms for searching. With 

these techniques, I was able to answer my original questions, carry out the purpose of this project, 

and answer questions that came up along the way. I hope some of the techniques I have developed 

may be of use to others pursuing similar research. 

I plan to continue my work on this project. One major issue which I would like to address is 

the sample size discrepancy. The Google N-gram data counts over 19 billion 1-grams in 2008 alone, 

and has N-gram data going back centuries. However, for the Twitter data, I only have 7 million 1-

grams, from a 1-day sample. The Twitter data set provided a starting place for comparison but 

difference in sample sizes led to some complications with the data. Although processing Twitter 

data sets is time-consuming, I plan to continue increasing my Twitter sample size, so that I can 

further analyze and compare these two data sets.    
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Appendices 

Appendix A: 

 The Google N-grams project focused on analyzing the trends of N-grams over time. One 

of my favorite examples is graphing the trends in the frequency of “Great War” (blue), “World War I” 

(red), and “World War II” (green), as shown in Figure A1. 

 

Figure A1 

This really exemplifies how no one thought another massive war would happen, until about 1939, when 

authors really started referring to word wars with numbers. 

Appendix B: 

 Google used OCR to digitize about 15 million books from about 40 university libraries. Of this 15-

million-book sample, five million were selected to create the N-grams database, based off of OCR 

quality.  

Appendix C: 
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 While it works to download the N-grams data by hand, this is a computational challenge, and 

automation is always the way to go. I wrote the following shell script to download the data: 

#!/bin/sh 
LETTERS=(0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z 
other pos punctuation) 
CORPUS=eng-all 
VERSION=20120701 
cd ../data/ 
for i in "${LETTERS[@]}" 
do  

URL="http://storage.googleapis.com/books/ngrams/books/googlebooks-$CORPUS-
1gram-$VERSION-${i}.gz" 

 echo "Downloading $URL" 
 curl -O $URL 
done 
echo "Unziping..." 
gunzip *.gz 
URL="http://storage.googleapis.com/books/ngrams/books/googlebooks-$CORPUS-
totalcounts-$VERSION.txt" 
echo "Downloading $URL" 
curl -O $URL 
echo "Done" 

 
Appendix D: 

Some words appear more common with a weighted average in one direction, but appear as 

virtually non-existent when weighed from the other direction. One example is “Presbyters”, which was 

common a few centuries ago, however is rarely used today. The historical data is plotted in Figure A2.
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Figure A2 

As is clear, this word would benefit greatly from being weighed with older data as more relevant. 

Appendix E: 

 Twitter is susceptible to time zones. Sometimes English is the most common language on 

Twitter, however at night for us, Japanese becomes the most common language on Twitter. A pie chart 

with the number of tweets for each language is shown in Figure A3: 

 

Figure A3 

This is the result from a sample I took in the early morning mountain time, and English is clearly the 

most common. The slice labeled “UN_NotReferenced” corresponds to tweets which are not long enough 

to be accurately tagged as a language. While English is the most common language in this sample, Figure 

A4 shows the results of a sample taken over night our time. 
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Figure A4 

In this sample, Japanese is the most common. Interesting however, “UN_NotReferenced” is still about as 

common. 
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Code 

Unfortunately, my code is too large to include in the end of this paper, and if I did, it would be hard to 

look though and comprehend. Instead, I have up loaded my code to GitHub: 

https://github.com/FelisPhasma/FrequencyAnalysisOfNgrams 

 

https://github.com/FelisPhasma/FrequencyAnalysisOfNgrams

