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ABSTRACT

A statistical model was created to predict yields out to year
2100 for three crops: corn, soybeans, and rice, and applied
to future climate scenarios. The model is based on corre-
lations and linear regressions between historical crop yields
and daily weather observations since 1970 for every county
in the U.S. Many counties show significant correlations (64%
of corn counties) and highly significant correlations (41%).
Linear regressions for each county demonstrates the crops’
sensitivity to heat extremes. In the southern region of the
growing counties, the slope is very negative, but in the north
it is slightly positive, implying that crops will grow better
farther north in the future. Future temperature means and
extremes were computed for each county from daily high-
resolution climate model data, for high and low emissions
scenarios to 2100. The model shows that climate change
will have a strong influence on corn and soy yields, and less
on rice. For the high emissions scenario, crop yields are pre-
dicted to decrease by 3.8% per decade for corn, 2.4% for
soy, and 0.83% for rice, if there are no compensating im-
provements in agricultural technology. Decreases in crop
yields for the low emissions scenario are about half as much.
This compares with an average increase in yields of 24%,
18%, and 17% per decade since 1970 due to improvements
in plant breeds and farming practices. Climate change re-
sults in a loss of $22 billion per year by 2100 for corn for
the high emissions scenario, in today’s prices. This study
highlights the importance of accounting for future costs of
climate change when choosing today’s energy policies, and
motivates continued improvements in agricultural technol-
ogy to compensate for warming temperatures.

1. INTRODUCTION

The U.S. is the world’s top producer of maize and soy-
beans (Novak et al., 2016; GlobalSoybeanProduction.com,
2016). In 2015, the U.S. produced 13.6 billion bushels of
maize. At a price of $ 3.60 per acre, this amounts to $ 49
billion of maize crop value in 2015 (Novak et al. 2016). Not
only is maize a huge source of food, it also has a massive
impact on the economy. One of the most uncertain aspects
of climate change is the risk to crops. With more heat waves
and higher summer temperatures, yields could decrease and
the results could be catastrophic.

There are two ways to model the impacts of climate change
on yields. Statistical models, including this study, use his-
torical correlations from observations to develop empirical
relationships between yields and weather. Process models
are based on the mechanisms of an individual plant’s bio-

Figure 1: The maize yield over time for an example
county. Data is from the USDA (USDA 2016). All
plots created by author.

chemistry and then are scaled up to large domains. There
are many past studies that have analyzed yields using both
methods (table 1). This study is one of the few that projects
future yields out to the year 2100, as well as analyzing
multiple crops over the U.S. It is most similar to Lobell
and Tebaldi (2014); however, they analyze maize and wheat
and compute probability distributions for the next 20 years,
while this study projects maize, soy, and rice yields to 2100.

2. METHODS

A model was created using python code to read in his-
torical weather and crop data, compute a statistical model,
and project crop yields to 2100 based on two future climate
model scenarios with analysis of the impact of improving
agricultural technology. The computer program was com-
pletely written by the author, contains 3500 lines of python
code and used 207 gigabytes of data. First, annual data of
crop yields was downloaded for every county for years 1970
through 2015 from the USDA (Hamer et al., 2017). The
start date was chosen as 1970 because before then the yields
were more variable and the farming practices were not as
standardized (irrigation, pesticides, herbicides, fertilizers).
Three different crops were examined: maize, soybeans, and
rice. Next, daily weather station data was downloaded for
all weather stations in the U.S. with data since 1970. The
data included maximum and minimum daily temperatures



Reference Model Crops Location | Future | Measurement Period

This Study statistical | maize, soy, rice U.S. yes temp 1970-2100
Anderson et al. (2015) both maize U.s. no soil moisture 1980-2012
Butler and Huybers (2013) statistical | maize U.S. yes temp 1981-2008
Butler and Huybers (2015) statistical | maize U.s. no temp 1981-2012
Gornott and Wechsung (2016) | statistical | maize, wheat Germany | no temp, rad., precip 1991-2010
Lobell and Tebaldi (2014) statistical | maize, wheat global yes temp, precip 1980-2050
Ray et al. (2015) statistical | maize, rice, wht, soy | global no temp, precip 1979-2012
Tao et al. (2016) statistical | maize China no temp, radiation 1981-2009
Tebaldi and Lobell (2008) statistical | maize, wheat, barley | global yes temp, precip, CO2 1950-2100
Ummenhofer et al. (2015) process maize, wheat TA, Aust. | yes precip 1900-2100
Wang et al. (2014) statistical | rice China yes temp (GDD,KDD) | 1980-2050
Wang et al. (2016) process irrigated rice China no extreme temp stress | 1980-2010
Zhang et al. (2015) statistical | maize China no temp 1961-2005

Table 1: Overview of past papers written on this topic.

C.

Figure 2: Maize yield plotted against summer av-
erage temperature (a), heat waves (b), and killing
degree days (c) for an example county. All correla-
tions for this county are highly significant

and was downloaded from the Daily Global Historical Cli-
matology Network (Menne et al., 2012).

Once the data was read in, weather stations were chosen
to represent each county. To improve the accuracy in the
weather station data, the model was designed to average to-
gether the two closest stations to the center of every county.
If one station was missing some data, the other station’s
data was used. Next, 10 different means and extremes were
found for each county. Most of the extremes were calcu-
lated using percentiles. Percentiles were found by comput-
ing a histogram of that variable from the daily data from the
years 1970 to 1990. Once the 90th and 10th percentiles for

temperature were found for every county, extremes could be
computed. The definitions for these measures come from the
Intergovernmental Panel on Climate Change (IPCC, Hart-
mann et al. (2013), Box 2.4 pg. 221). The three means and
extremes with the highest correlations to yields are shown
in table 2. These were the temperature measurements used
to predict future yields.

Crop yields have increased significantly since 1970 due to
improvements in irrigation, pesticides, herbicides, fertilizers,
and plant breeding. Linear regressions and correlations were
computed between crop yields and each temperature mea-
surement for every county. This was done by first taking
out the trend line in the yield data due to technology in-
crease. After removing this trend, the correlations between
crop yields and temperature extremes can be examined. The
three temperature measurements with the highest correla-
tion to crop yields were the summer average temperature,
heat waves, and killing degree days. These correlations to
crop yields were used to create a statistical model designed
to predict future yields.

Future climate model data was downloaded from a Cli-
mate Model Intercomparison Project Version 5 (CMIP5)
dataset for two IPCC scenarios: a high emissions future
with a Representative Concentration Pathway (RCP) that
induces an extra 8.5 W/m2 of radiative forcing and a low
emissions scenario with RCP of 4.5 W/m2. The data was
from the Community Earth System Model (CESM, Feng
(2016)) and had high resolution in space (one tenth of a
degree) and time (daily). Once the closest model grid to
the center of each county was found, future yields could be
predicted.

First, summer average temperature, heat waves, and killing
degree days were found for each county for every year un-
til 2100. Next, yields were predicted using the statistical
model created from the correlations between past yields and
the weather measurements. Finally, the prediction for the
three temperature measures were averaged to get a better
prediction because each measurement predicted the yields
slightly differently. National averages of crop yields were
computed by only averaging the counties that grew at least
10% as much as the top county.

In order to predict yields in this manner, some assump-
tions had to be made. One of the assumptions is that the
linear trend between yields and temperature measurements
extends to higher temperatures. Crop yield is correlated



Measurement | Definition

| Units

Summer Average Temperature | Avg of all daily max temps over months June, July, and August | F

Heat Waves
Killing Degree Days

Frequency of 3 daily high temps in a row >90th percentile
Number of degrees the average daily temperature is above 68F,

# /year

degrees*days

summed over the growing season

Table 2: Temperature Measures Computed with a high correlation to yields.

with many things, only one of which is temperature. For
example, crops are also correlated with precipitation and
soil conditions. Also in 1970, more marginal land was used
for farming. Now, less marginal land is used and farming is
much more intensive and technology-based. An assumption
was made that the correlation with temperature is higher
than the correlation with these other things (except tech-
nology) and that these other conditions will stay about the
same.

This model does not include the effects of carbon dioxide
fertilization, which refers to higher plant growth rates due to
higher concentrations of carbon dioxide. In future climates,
plants will experience a combination of higher temperatures,
droughts, and increased carbon dioxide. In order to include
the results of carbon dioxide fertilization, one must use pro-
cess models. However, past studies using process models
have found that once all of the factors are added in, future
yields are even lower than predicted by statistical models
alone (Field et al., 2014, Figure 7.2b).

3. RESULTS

Results are presented for an example county of Washte-
naw, IL, and then for all counties for past correlations and
future predictions. Washtenaw County, IL. was chosen as
an example because it is one of the highest maize produc-
ing counties in the U.S. Like most counties, its maize yield
has been increasing on average since 1970 (fig. 1). Results
are presented of the correlations between Washtenaw’s de-
trended maize yield (the impact of technology removed) and
three different statistics: summer average temperature, heat
waves, and killing degree days (table 2).

Summer average temperature and heat waves both have a
correlation of -0.71 with maize yields for Washtenaw County
(fig. 2b). As summer average temperature increases and
there are more heat waves, yields decrease. The correlation
between maize yields and killing degree days is slightly less
at -0.67 (fig. 2a, 2c). A correlation is considered signifi-
cant if there is less than one in 20 chance that the correla-
tion happened through a random process and is considered
highly significant if there is less than one in 100 chance. For
46 years of data, the correlations are significant if they are
above 0.49 (or below -0.49) and highly significant if the cor-
relations are above 0.59 (or below -0.59, Crow et al. (1960),
p-241). All correlations for Washtenaw, IL, are highly sig-
nificant.

These correlations between all temperature measurements
and all three crops were collected for every county and pre-
sented on maps of the U.S. Only counties that either con-
sistently grew their crop over the past 10 years or grew at
least 10% as much as the top county are shown. Correlations
are now presented for maize. On average, heat waves have
the highest correlation with a mean of -0.46 (fig. 3b). 64%
of the counties have a significant correlation and 41% have
a highly significant correlation. Summer average tempera-

ture has a mean correlation of -0.44 with maize, and killing
degree days has a mean of -0.41 (figs. 3a, 3c).

The slopes of the best fit lines were computed for every
county and every statistic and presented on maps of the U.S
(fig. 4). Almost all of the slopes are negative, meaning that
when there are higher temperatures, the yields are lower.
For maize, the slopes in the south-eastern growing region
such as in Missouri, southern Illinois, and Indiana are large
negative values. This means that the yield is extremely sen-
sitive to more heat extremes and the yield greatly decreases
in hotter temperatures. Farther north, in states such as
Minnesota and South Dakota, the slope is either about zero
or in some places even slightly positive. This means that
the yields are not affected by heat extremes. The same gen-
eral results were found for soy and rice. Because of this,
the places where crops are grown will most likely shift north
over time where average temperatures are cooler.

For all three crops, heat waves have the highest correla-
tions. Thus, the correlations of heat waves are presented
for all three crops (fig. 3b, 5). When averaged across crop-
growing counties, soybeans have a correlation of -0.37. 47%
of the counties have a significant correlation and 27% have
a highly significant correlation. Rice has an average correla-
tion -0.22 with heat waves and has no counties with signifi-
cant correlations.

Next, the correlations were used to predict crops into the
future for two different scenarios: RCP 8.5 (high emissions)
and RCP 4.5 (low emissions). Histograms of the tempera-
ture measurements are shown for three different times and
scenarios: 1970-1980, 2090-2100 low emissions, and 2090-
2100 high emissions (fig. 6). These have an average summer
temperature of 85°F, 91°F and 97°F, respectively. The his-
tograms only show temperatures for counties within a box
in the midwestern U.S.

Plots are shown for for two conditions: A) if technology
stopped improving today (figs. 7a, 8a, 9a) and B) yield as-
suming that technology will continue to improve at the same
rate as it has since 1970 (figs. 7b, 8b, 9b). Because maize
has the highest correlations, it is affected the most by the
warming climate. Yields between 1970 and 2015 improved
from 80 bushels/acre in 1970 to 170 bushels/acre. If technol-
ogy no longer continues to improve, the yield is predicted to
drop back down to 100 bushels/acre for high emissions and
140 bushels/acre for low emissions by 2100 (fig. 7a). If tech-
nology continues to improve at the same rate, the yield will
reach 250 bushels/acre by 2100 for high emissions and 280
bushels/acre for low emissions (fig. 7b). This translates to
a 3.8% decrease in maize yields per decade for a high emis-
sions scenario, 1.8% decrease for a low emissions scenario.
This compares to a historical 23.7% increase in yields per
decade due to agricultural technology improvements (table
3).



C.

Figure 3: The correlations between maize yield and
summer average temperature (a), heat waves (b),
and killing degree days (c) for every county in the
U.S.

Figure 4: The slopes of the best fit lines between
maize yield and heat waves for every county in the
U.S. (bushels/acre/number of heat waves)

b.

Figure 5: The correlations between soybean (a) and
rice (b) yields and heat waves for every county in
the U.S.

Figure 6: Summer average temperature (°F) for
three different times and scenarios. Results are only
for U.S. maize growing region. Model data from
Climate Model Intercomparison Project Version 5
(Feng, 2016).

| maize | Soybeans | Rice

Historical 23.7 17.7 | 17.40

Future: high emissions -3.8 -2.4 ] -0.83

Future: low emissions -1.8 -1.2 | -0.37
Table 3: Percent yield change per decade. His-

torical is due to technology changes since 1970 and
future is due to climate change, but without future
technology increases
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Figure 7: Projected U.S. maize yields to 2100. (a)
shows the future with no further agricultural tech-
nology increase and (b) shows the scenario when
technology continues technology improvement.

Even with the optimistic conditions of continuous tech-
nology improvement, there is a huge loss in yields below the
current trend line. This translates into a loss of about $14.5
billion per year by year 2100 for a low emissions scenario,
and $22 billion for a high emissions scenario. This was cal-
culated using today’s money and the current cost of maize
and comparing to a trend line with no climate change.

Soybeans are affected by temperature extremes less than
maize, but more than rice. Soybean yield has improved from
25 bushels/acre in 1970 to 50 bushels/acre today. If tech-
nology no longer improves, yield will decrease to about 35
bushels/acre for high emissions and 43 bushels/acre for low
emissions by 2100 (fig. 8).

Rice is the least sensitive to temperature extremes. In
1970, the yield was 4500 pounds/acre and it is now 7500
pound/acre. The yield will decrease to 6750 pounds/acre
by 2100 for high emissions and 7200 pounds/acre for low
emissions with no more technology improvements (fig. 9,
table 2).

4. CONCLUSIONS

This project predicts yields out to year 2100 for three dif-
ferent crops: maize, soybeans, and rice, and two different
climate scenarios: RCP 8.5 (high emissions) and RCP 4.5
(low emissions) while taking into account the importance of
technology trends. Maize is affected the most by the weather

b.

Figure 8: Same as figure 7, but for soybeans.

and its yields are predicted to decrease the most in the fu-
ture. Soybeans are affected slightly less, and rice is affected
the least. The differences in these correlations are caused by
the differences in the plant’s biological structure. Maize and
soybeans are C3 plants and rice is a C4 plant. C4 plants
minimize photorespiration, making them less susceptible to
heat extremes (Bear and Rintoul, 2016). This is why rice
has a much lower correlation than maize and soybeans.
The yields of all three crops have been improving since
1970 due to improvements in technology such as irrigation,
pesticides, herbicides, fertilizers, and plant breeding. The
biggest unknown in this project is whether agricultural tech-
nology will continue to improve at its current rate or whether
crop yields will hit a limit. This project is not able to predict
this. Therefore, given the historical data, there is a best case
and a worst case scenario. The best case is that the tech-
nology will continue to improve at the same rate. However
even with this scenario, the improvements in yields will slow
down over time. For example, the improvements in maize
yield from 1980 to 2000 are about three times as much as
the improvements from 2180 to 2100 for high emissions (fig.
7b). The worst case scenario is that technology stops im-
proving. If this happened, the results could be catastrophic
for the world’s food production capacity. The most likely
scenario is somewhere between these two extremes. Tech-
nology will most likely continue to improve, but the rate at
which it improves will probably slow down. In order to pre-
pare for climate change, we should develop farming practices
and crop breeds that are resistant to stronger and more fre-



Figure 9: Same as figure 7, but for rice.

quent heat extremes. The location of where crops are grown
will also most likely move north to naturally colder climates.

Studies that predict future costs of climate change in a
dollar amount, such as a 22 billion dollar loss per year for
maize, provide a convincing argument to reduce fossil fuel
usage today. The total of these future costs should be com-
pared to the cost of reducing to lower emissions through
energy efficiency and renewable energy sources.
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