
Parameter Fitting with PSO 

 
New Mexico 

Supercomputing Challenge 
Final Report 

February 25, 2017 
LAHS-4 

Los Alamos High School 
 

Team Members 
Alex Ionkov 
Phillip Martin 

 
Teacher 

Adam Drew 
 
Project Mentors 

Latchesar Ionkov 
Bill Hlavacek 

  

 



 

EXECUTIVE SUMMARY 2 

INTRODUCTION 3 

DESCRIPTION 3 
Problem Statement 3 
Considered Methods 4 
BioNetGen Structure 4 
BioNetFit Structure 5 
Code Structure for BioNetFit2 5 

RESULTS 6 

CONCLUSIONS 6 

RECOMMENDATIONS 7 

ACKNOWLEDGEMENTS 7 

REFERENCES 7 

 

  

1  



EXECUTIVE SUMMARY 

Models are developed in order to simulate problems. They are considered useful for 
understanding complex processes and phenomena. However models have no basis if they are not 
fit to experimental data. Fitting algorithms can be used to search the parameter space of the 
model to make it match the experimental results. In this project we focus on biological modeling. 
BioNetGen Language (BNGL) is a programming language specifically designed for 
development of chemical kinetic models of cell signaling systems. BioNetFit is a fitting 
application made to automate the process of fitting a BNGL model to experimental data. 
Managing complex models in terms of computation time and speed is problematic for many 
reasons. There is no support for CPU and GPU scaling which results in slow runtime. The most 
commonly used solution is to lower the volume at which the simulation is run however this may 
cut out certain components of the system. In this project, we offer a better solution. Often when 
simulating large models, specifically in biochemical systems, the sample size or volume is 
lowered. The issue with this is that, for example, in a cell there may be five copies of a protein A, 
and when a tenth of the cell is simulated, protein A will not interact with any other proteins 
because it has been cut out of the model through downsizing. Therefore, a balance must be found 
between running the entire volume of a cell and one small fraction. We chose to write a function 
that would enable volume scaling while the chosen algorithm is fitting the model. The program 
checks if the parameters are "fit" every time a process completes, if they are "fit" BNF scales the 
simulation size up and this continues until the maximum volume is met (ie 1). 

 

 

  

2  



INTRODUCTION 

Models are developed in order to simulate problems. They are considered useful for 
understanding complex processes and phenomena. However, models have no basis if they are 
not fit to experimental data. Applications are made to automate the process of fitting models to 
experimental data. 

In this project we focus on biological modeling. BioNetGen Language (BNGL) is a 
programming language specifically designed for development of chemical kinetic models of cell 
signaling systems. BioNetFit is a fitting application made to automate the process of fitting a 
BNGL model to experimental data. Managing complex models in terms of computation time and 
speed is problematic for many reasons. There is no support for CPU and GPU scaling which 
results in slow runtime. The most commonly used solution is to lower the volume at which the 
simulation is run. However, this may cut out certain components of the system. In this project, 
we offer a better solution. 

DESCRIPTION 

Problem Statement 

Often when simulating large models, specifically in cellular signaling, the sample size is 
lowered. Below is an code excerpt from a model. 

begin model 

begin parameters 

# fraction of a cell to consider in a simulation 

f 1  

# Avogadro constant 

NA 6.02214e23 # molecules per mol 

The fraction f of the cell is defined as “1”.  This means the model is simulating an entire cell. For 
complex models, simulating an entire cell is very computationally expensive. Many scientists 
simulate at lower fractions of a cell (i.e. 0.1) in order to receive data faster. The issue with this is 

3  



that, for example, in a cell there may be five copies of a protein A, and when a tenth of the cell is 
simulated, protein A will not interact with any other proteins because it has been cut out of the 
model through downsizing. Therefore, a balance must be found between running the entire 
volume of a cell and one small fraction. 

Considered Methods 

Models are made to simulate lower population sizes to save time however the results are 
sometimes skewed because of this. This problem is widely recognized and researched. Many 
methods have been defined, but few have been implemented. Those considered include rewriting 
the simulator to support GPUs, adding support for scaling across multiple CPUs (and/or GPUs), 
or editing BioNetFit to allow model scaling during the fitting process. 

The simulator (NFsim) currently does not support GPU usage or scaling. Parallelizing, especially 
for GPUs, would require rewriting both NFsim and BioNetFit, resulting in entirely new 
simulators. Due to time constraints and complexity, this is not a viable option. 

Thus, we chose to write a function that would enable volume scaling while the chosen algorithm 
is fitting the model. The program checks if the parameters are "fit" every time a process 
completes, if they are "fit" BNF scales the simulation size up and this continues until the 
maximum volume is met (ie 1). 

BioNetGen Structure 

BNGL is a rule-based programming language which entails specification of necessary and 
sufficient conditions for a reaction to occur, as well as parameters governing the rates of the 
reactions. 

Figure 1: Visual representation of BioNetGen rules. 

4  



BioNetFit Structure 

BioNetFit (BNF) offers many algorithms for fitting: genetic algorithm, differential evolution, 
and particle swarm optimization. An analysis of the algorithms offered is shown in Figure 2. 

 

Figure 2: Table comparing different BioNetFit algorithms. 

Depending on the chosen algorithm, the user can choose the amount of generations and 
permutations. There are a certain number of permutations in each generation. BNF then parses 
the the model file and searches for "free" variables with the definition of  

variablename__FREE__ 

Next, the algorithm that was chosen runs for the amount of generations and permutations. After 
every generation, BNF picks the best fit parameters and starts the next generation until it reaches 
Generation X where X is the amount of generations defined. Once Generation X is completed 
BNF provides you with the model file with the best fit parameters. 

Code Structure for BioNetFit2 

To run said algorithms, BioNetFit2 employs eight key C++ program files: 
Config.cpp 
BioNetFit requires a configuration file to be made specifying various parameters including the 
algorithm. The Config.cpp file parses this configuration file. 
Data.cpp 
Data.cpp provides functionality for manipulating data. It has functions that you can call to 
perform basic functions on the data. 
FreeParam.cpp 

5  



Models have free parameters that are “free” or have no default value. By fitting the model, 
BioNetFit determines the parameters that give the best fit. FreeParam.cpp defines free 
parameters and how they are handled. 
Model.cpp 
BioNetFit parses the model file and replaces free parameters with generated ones. Model.cpp 
does the parsing and replacing as well as read the model for the volume for our function. 
Particle.cpp 
Particle.cpp defines the four types of algorithms used by BioNetFit. It defines particles, the 
particle swarm optimization, genetic, differential evolution, and simulated annealing algorithms, 
and calculates fitting. It also produces smoothing permutations to smooth the output. 
Pheromones.cpp 
Pheromones.cpp is specific to particle swarm optimization. It defines the attraction of particles to 
the “best” or center particle. 
Swarm.cpp 
Swarm.cpp defines variables for the swarm in particle swarm optimization and mutations in all 
algorithms. It also calculates the parameters for the following permutations. 
Utils.cpp 
Utils.cpp provides functionality for file i/o more specifically writing and reading the model files. 
 
The preceding analysis was done because in order to write a function that works with the original 
code, one must understand the original code.  

RESULTS 

We modified the Particle class and added our function. Our function scales the volume up by an 
interval the user specifies after the simulation is determined to be reasonably fit at the current 
volume. During our tests we uncovered multiple bugs unrelated to our code and submitted fixes 
to BioNetFit2 maintainers. Unfortunately, we could not complete our tests because of bugs that 
have not been fixed yet. The major bug found was BioNetFit2 crashing after the first generation 
of simulations, which wouldn’t allow our function to occur. 

CONCLUSIONS 

We worked on improving the lives of biologists by reducing the time it takes to fit their models 
to experimental results. We learned about various fitting algorithms and their advantages and 
disadvantages, primarily focusing on particle swarm optimization. In addition, we contributed to 
an open source project that is in active development by multiple academic institutions. We were 

6  



unable to get concrete results to test the effectiveness of our added functionality because of bugs 
in the BioNetFit code that we were unable to patch in the short amount of time we had to work 
on our project. 

RECOMMENDATIONS 

First and foremost, we must fix all the bugs in the BioNetFit code that prevented us from testing 
our function. As stated before, our method improves the parameter fitting workflow by reducing 
the time it takes to complete. However, a more complete fix would be parallelizing NFsim and 
BioNetFit. The benefits of parallelization, especially on GPUs, would quite literally blow our 
function out of the figurative water. We could not accomplish this this year because of time and 
the steep learning curve of parallelization specifically CUDA. 

ACKNOWLEDGEMENTS 

We would like to thank Dr. Bill Hlavacek, and  Dr. Ryan Suderman for help and inspiration for 
this project. We would also like to thank Latchesar Ionkov for help with the many technical 
difficulties that befell us. 

REFERENCES 
A.M. Smith, W. Xu, Y. Sun, J.R. Faeder, G.E. Marai, RuleBender: Integrated Modeling, 

Simulation and Visualization for Rule-Based Intracellular Biochemistry, BMC Journal of 
Bioinformatics, 13, (2012), 1-16. 

Chylek, L. A., Harris, L. A., Tung, C.-S., Faeder, J. R., Lopez, C. F. and Hlavacek, W. S., 
Rule-based modeling: a computational approach for studying biomolecular site dynamics 
in cell signaling systems. WIREs Syst Biol Med, 6, (2014), 13–36. 

Chylek LA, Holowka DA, Baird BA and Hlavacek WS, An interaction library for the FcεRI 
signaling network. Front. Immunol. 5, (2014), 172. 

J. R. Faeder, M. L. Blinov, and W. S. Hlavacek, Rule-based modeling of biochemical systems 
with BioNetGen. Methods Mol. Biol., 500, (2009), 113–67. 

Kaur, Jaspreet, et al. “Parallel Implementation of PSO Algorithm Using GPGPU.” 2016 Second 
International Conference on Computational Intelligence & Communication Technology 
(CICT), 2016, doi:10.1109/cict.2016.38. 

M. W. Sneddon, J. R. Faeder, and T. Emonet, Efficient modeling, simulation and coarse-graining 

7  



of biological complexity with NFsim. Nat. Methods, 8, (2011), 177-183. 
Nedjah, Nadia, et al. “Parallel Implementations of the Cooperative Particle Swarm Optimization 

on Many-Core and Multi-Core Architectures.” International Journal of Parallel 
Programming, vol. 44, no. 6, May 2015, pp. 1173–1199., 
doi:10.1007/s10766-015-0368-3. 

Tan, Ying, and Ke Ding. “Gpu-Based Parallel Implementation of Swarm Intelligence 
Algorithms.” Transactions on Cybernetics, vol. 46, no. 9, Sept. 2016, pp. 2028–2041., 
doi:10.1016/c2015-0-02468-6. 

Ting, Tiew On, et al. “Multicores and GPU Utilization in Parallel Swarm Algorithm for 
Parameter Estimation of Photovoltaic Cell Model.” Applied Soft Computing, vol. 40, 
2016, pp. 58–63., doi:10.1016/j.asoc.2015.10.054. 

8  


