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Executive Summary 

Data coding techniques have been used in wired and wireless data transmission areas for 

many years. These techniques involve heavy mathematic computing operations. Usually, byte 

streams are used in traditional data transmission and normally embedded processors are used to 

handle efficient byte stream data coding processes. The “software data coding” method was not 

used in very large scale storage systems until five years ago. This is due to the fact that, back then 

the CPU computing power could not efficiently handle software coding processes. Today we see 

that advanced multicore computing systems are commonly used in many commercial and scientific 

applications. Improving the Energy Efficiency of Software Systems for Multi-Core Architectures 

is an important research topic. Energy efficient based green computing attracts a lot of attention 

these days. Power and energy efficiency are important challenges for the High-Performance 

Computing (HPC) community.  This year I am focusing on the study of “Green Computing” and 

investigating how to utilize parallel processing to improve the energy efficiency of multicore 

computing systems.  

In this project, I enhanced and implemented a parallel encoding software called PARC.  

The PARC software is an enhancement of my project from last year PAR-EC. I conducted various 

workload tests on a single compute node and studied the relation of parallel processing and power 

consumption.  I demonstrated the advantage of using parallel processing on multicore computing 

systems. The PARC software showed significant reductions in total encoding time and energy 

cost.  Furthermore, my results showed that I can obtain almost linear-scaling bandwidth on a single 

multicore machine in terms of processing time reduction and bandwidth improvement.  Lastly, the 

energy cost savings provides strong proof of the benefit of adapting parallel programming in 

general applications such as storage systems. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1.     Introduction – Investigating the Problem and Motivation  

1.1    Investigating the Problem: Multicore programming and data encoding 

challenges in big data computing environments 

Today, multicore processors (Intel or ARM based) are used in numerous commercial 

products such as smartphones, tablets, laptops, desktops, workstations, and servers.  Almost all 

computers now are parallel computers. It is often heard that people ask “Why can’t my applications 

run on multiple CPU cores?” In order to take advantage of multicore chips, applications and 

systems should be re-designed to fully utilize potential parallelism in applications and parallel 

computing capabilities [1]. Furthermore, to capitalize fully on the power of multicore systems, we 

need to adopt parallel programming models, parallel algorithms, and parallel programming 

libraries that are appropriate for these multicore computing systems.  

Data coding techniques have been used in wired and wireless data transmission areas for 

many years. These techniques involve heavy mathematic computing operations. Usually, byte 

streams are used in traditional data transmission and normally embedded processors are used to 

handle efficient byte stream data coding processes. The “software data coding” method was not 

used in very large scale storage systems until ten or twenty years ago. This is due to the fact that, 

back then the CPU computing power could not efficiently handle software coding processes. 

Generally, the hardware-based technologies are used to support coding solutions, such as RAID 

(originally redundant array of inexpensive disks, now commonly redundant array of independent 

disks). RAID technologies were proposed, designed and have been used in storage systems since 

1990 [2]. As hard disk capacity gets increasingly larger, the data rebuilding time gets dangerously 

long when a disk fails.  It also increases the chance that another disk will fail before the rebuilding 

process is completed.  Hardware based RAID technologies are running into limitation and cannot 

handle very large storage systems [2].   

Software coding processes have become increasingly popular in recent years. Today with 

advanced hardware (HW) design technologies, such as multicore CPU and advanced vectoring 

processing techniques (SIMD: Single Instruction and Multiple Data), individuals and corporations 

can effectively apply software coding techniques on storage systems. Data storage systems can 

greatly benefit from software coding techniques due to improved reliability of the storage media 

[3][4][10][11][12].    

 

1.2    Motivation 

My main motivation behind this project was to answer the question of “How to efficiently 

utilize multicore computing systems in regard to the data coding problem?”  By definition, a multi-

core processor is a single computing component with two or more independent actual processing 

units called "cores". Cores are the units that read and execute program instructions. The 

improvement in performance gained by the use of a multi-core processor depends on the software 

algorithms used as well as their implementation. In particular, possible gains are limited by the 

portion of the software that can be run in parallel simultaneously on multiple cores. The challenge 



 

 

of programming multi-core processors is legitimate with tangible applications. In this case, there 

is little or no hidden, parallelism to be found. Parallelism should be exposed to and managed by 

software. Concurrent computing and parallel computing are the two most common approaches to 

utilize multicore computing systems.  

The current data coding software approach is done with a single process approach 

[3][10][11]. This approach cannot fully utilize a multicore computing system. Most applications 

are still using single CPU computing models. To improve this situation and to capitalize fully on 

the power of multicore systems, we need to adopt programming models, parallel algorithms, and 

programming languages that are appropriate for the multicore world. Furthermore, we need to 

integrate these ideas and tools into the courses that educate the next generation of computer 

scientists. 

In this project, I investigated the potential task parallelism features of the data encoding 

problem on shared and non-shared data objects.  I leveraged the open source erasure code software 

library, applied the MPI parallel programming library [6][7], and implemented a parallel erasure 

coding software (PARC) on multicore computing systems. The original parZFEC software [17] is 

implemented using the zfec open source python encoding function [10]. The PARC software, uses 

the open source Jerasure 1.2’s C library’s encoding function (mainly the reed_sol_vandermonde 

encoder) [18]. In this project, I chose the concurrent computing approach with the implementation 

of parallel coding software. The focus of this project was to study the impact of concurrent coding 

processes on multicore computing systems. This was modeled using concurrent data encoding 

software using MPI on multicore computing systems [8][9]. The results were evaluated by 

examining the parallel coding software in terms of coding bandwidth improvement and energy 

cost savings. I then drew conclusions based on the data collected. 

2.     Introduction of Data Encoding Problem and Encoding Mathematical 

Calculation,  

In information theory, an erasure code is a forward error correction (FEC) code for the 

binary erasure channel, which transforms a message of N symbols into a longer message (code 

word) with n symbols such that the original message can be recovered from a subset of the M 

symbols. The fraction r = N/M is called the code rate. Reed–Solomon codes are a group of error-

correcting codes that were introduced by Irving S. Reed and Gustave Solomon in 1960.  In coding 

theory, the Reed–Solomon code belongs to the class of non-binary cyclic error-correcting codes. 

The Reed–Solomon code is based on univariate polynomials over finite fields. The Reed-Solomon 

codes are block-based error correcting codes with numerous applications in digital communication 

and storage. In Reed and Solomon code we normally use a pair (N, M) to illustrate the coding 

scheme. It can take a message, break it into N “data” pieces, add M “parity” pieces, and then 

reconstruct the original from N of the (N+M) pieces.  

The Reed-Solomon algorithm creates a coding matrix in which you multiply your data 

matrix to create the coded data. The examples below (Figure-1A and Figure-1B) use a “9+3” 

coding system, where the original file is broken into 9 “data” pieces (D1 to D9), and then 3 “parity” 

pieces (C1, C2, C3) are added. The matrix is set up so that the first nine rows of the result are the 



 

 

same as the first nine rows of the input. This means that the data is left intact, and all it is really 

doing is computing the parity [3]. We have the entire storage set be resilient up to three failures.  

 

Figure-1A: A (9,3) or “9+3” Erasure Coding Example 



 

 

 

Figure-1B: A (9,3) or “9+3” Erasure Coding Encoding Mathematic Calculation 

 

Here is a brief description of the basic encoding mathematical calculation (Figure-1C). 

Both Reed-Solomon encoding and decoding processes involve heavy array, matrix, and table look-

up procedures [4]. They require powerful computing systems to handle these computing 

procedures. Here I provide a simplified description of the coding arithmetic operations. Matrix A, 

matrix E, data matrix D, matrix F, and identity matrix are defined here as: 

A =      I           E  =    Data              D = the source data  

 F                    Code  



 

 

I =    

F is used as the checksum calculation matrix.  F is defined as   

F =   or  

If   fi,j  = ji-1 

A simplified encoding process can be viewed as A * D = E  

I applied the encoding process on the source data D, generated encoded data chunks and 

code chunks, and stored the generated chunks on storage devices.  

{Data chunks}  =  Identity Matrix * D 

{Code chunks} =   F * D  

   

Figure-1C: A brief matrix calculation using Reed-Solomon encoding 
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3.     The Proposed Software Architecture and Implementation (PARC) 

The PARC can handle two data encoding process types: multiple no-shared object 

encoding (N-to-M parallel I/O model) and single shared-object encoding process for very large 

files (1-to-N parallel I/O model). I have designed four different MPI process types in parEC: Main 

Process (MPI process Rank 0), SourceDataExplorer Process (MPI process Rank 1), FinalReport 

Process (MPI process Rank 2), and PARC Process (MPI processes Rank 3 to N-1). The proposed 

PARC software system is shown in the Figure-2. The function of each type of MPI process is 

described as follows:  

 Manager:  This function of this process is to coordinate the other three MPI process 

types and handle the overall administration jobs. First, it sends the “INIT” message 

to all other MPI processes and starts the initialization process. It asks the 

SourceDataExplorer process to discover how many sources objects as passed to the 

PARC program and waiting to be processed.  Then it checks the incoming message 

queue and determines which PARC process is asking for a source object.  

Furthermore, it also inspects the receiving message from a PARC process and 

updates the encoding result for each processed object data. It then picks an 

unprocessed source object data from the source data queue, packs the source data 

object’s information into a message, and sends it back to the PARC process. A 

demand based workload assignment protocol is maintained between the Manager 

Process and parEC processes.  When all source data objects are processed by PARC 

processes, the main manager process will issue an “ENDTAG” message to all 

PARC processes and finalize the encoding process.  

 SourceDataExplorer: The SourcedataExplorer process is the READDIR/file tree 

walk function on “source object data” location. It explores each individual source 

object data. It records each object information. This includes: filename/objectname, 

object ID, size, encoding scheme ratio (K, M), and destination location.  All source 

data objects will be put into a dataQueue for further workload assignment.  The 

SourceDataExplorer process also handles multi- part-object data partitioning. If a 

file size is too big, the DataExplorer process invokes a partitioning process (called 

single shared object 1-to-N parallel I/O chunking process), dividing this file into N 

sub-chunks, and inserting information of each sub-chunk into the data queue.  

 Finalreport: After all the source object data is encoded, the mainManager process 

will ask the FinalReport to prepare a final report.  The final report incudes:  

 Each PARC process:  number data assigned, each assigned data’s 

starting encoding time and finished encoding time, the first assigned 

data’s starting processing time, the last assigned data finished time, total 

encoding time, total encoding data size, average assigned data size, the 

minimal data size of assigned data objects, the maximal data size of 

assigned data, and encoding bandwidth 

 Accumulated encoding bandwidth from PARC processes 

 Parallel encoding time calculation from PARC processes 



 

 

 PARC MPI encoding process: After receiving the “INIT” message from the main 

manager process, each PARC process sends a “WORKLOAD” tag message and 

asks for the next object data to be encoded. If a PARC process has finished the 

encoding process on an assigned data object, the PARC process stores the encoding 

results, such as starting time, finished time, and PARC process Rank information 

in a message.  The PARC process is the core computing procedure to realize the 

coding task.  In this project, I intend to take the task parallelism feature of a 

multicore computing system and study the benefit of applying parallel 

programming on multicore computing systems.  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure-2:  PARC parallel software system diagram 
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 Jerasure 1.2 release [10]:  Jerasure 1.2 encoding sample program is running as a single 

process program. Jerasure 1.2 is a C library released in 2007 that supports a wide variety 

of erasure codes, including Reed-Solomon (RS) coding, Cauchy-RS coding, general 

Generator matrix and bit-matrix coding, and Minimal Density RAID-6 coding [10].  Reed-

Solomon coding may be based on Vandermonde or Cauchy matrices, and word-size  may 

be 8, 16 or 32 bitwise. I adapted and converted the Jerasure’s Reed-Sol-Van encoding 

process into a library function and applied it in the PARC software.   

 

4.2    Hardware used in this project 

Two HPZ620 workstations are used for performance testing and power studies.  

 Computing node: One HP-Z620  workstation:  Single Six-Core CPU/12 threads, 64 GB 

DDR3 memory,  two Micro 2TB PCI-E NVMe Flash cards (installed BTRFS Raid-0, 

2.2GB/sec write bandwidth) 

PARC MPI processes are launched on this compute nodes. 

 Power measurement node: One HP-Z620  workstation:  Single Six-Core CPU/12 

threads, 64 GB DDR3 memory,  two Micro 2TB NVMe Flash  

 A WattsUP/.net power meter [16]: Features of this power meter are listed here:  Simply 

plug any device into Watts Up and the meter instantaneously displays the wattage 

(power) being used, as well as the cost in dollars and cents. Watts Up provides lots of 

information yet it is simple to use. Only 6 values are displayed in the main modes. The 

other information is available in the detail mode. Clear English wording (not 

abbreviations) on the LCD is used to describe what is displayed. WattsUp/.net 

incorporates sophisticated digital electronics that enable precise and accurate 

measurements. State-of-the-art digital microprocessor design utilizes high-frequency 

sampling of both voltage and current measurements for true power. Power factor is 

captured so even phase-shifted loads such as motors are accurately measured. Fast, 

intuitive and easy-to-use, WattsUp/.net meter quickly and accurately measures any 120V 

AC appliance. This Watts Up Standard Monitor will provide the following information: 

current watts, minimum watts, maximum watts, power factor, cumulative watt hours, 

average monthly kilowatt hours, tier 2 kilowatt hour threshold (used to calculate 

secondary kWh rates), elapsed time, cumulative cost, average monthly cost, line volts, 

minimum volts, maximum volts, current amps, minimum amps, and maximum amps. 

The WattsUp/.net has memory and comes with Windows reporting software and 

communications cable to chart results and also logs a few more parameters than the 

standard. 

In the Figure-3, the testing environment setup and electric power wiring diagram are shown. 



 

 

 

 

Figure-3: Testing Machines and WattsUp/.net Power Meter Setup 



 

 

5        Performance Testing and Power Consumption Evaluation 

I choose both strong scaling and weak scaling testing cases in this project.  

 Weak Scaling Testing Cases: In the weak scaling case the problem size (workload) 

assigned to each PARC encoding stays constant and additional elements are used to 

solve a larger total problem.  Therefore, this type of measurement is justification for 

programs that take a lot of memory or other system resources (CPU core). In the case of 

weak scaling, linear scaling is achieved if the run time stays constant while the workload 

is increased in direct proportion to the number of processors [19]. 

 Strong Scaling Testing Cases: In the case the problem size stays fixed but the number of 

processing elements are increased. This is used as justification for programs that take a 

long time to run (something that is cpu-bound). The goal in this case is to find a "sweet 

spot" that allows the computation to finish in a reasonable amount of time, but not waste 

too many cycles due to parallel overhead [19]. 

 

5.1    Encoding Bandwidth Evaluation  

This illustrates the weak scaling test case. Each PARC process is handling a 34GB data 

set.  I measured the processing time and calculated the encoding bandwidth for (1,2,3,4,5 and 6) 

parallel encoding test cases.    

 

Figure 4A:  Processing time for one to six parallelism tests (weak scaling) 
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Figure 4B:  Encoding bandwidth for one to six parallelism tests (weak scaling) 

The bandwidth improvement trend line in Figure-4C shows an almost near linear scaling. 

 

Figure 4C:  Normalized encoding bandwidth for one to six parallelism tests (weak scaling) 
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5.2 Power Consumption Measurement and Energy Efficiency comparison  

Energy consumption is a major concern with high-performance multicore systems. I also 

conducted power consumption tests on the proposed PARC software. I intended to study the 

energy consumption and performance (processing time) characteristics of parallel 

implementations of data encoding process vs. serial implementation of data encoding process.   

Measuring the energy consumption of software components is a major building block for 

generating models that allow for energy-aware scheduling, accounting and budgeting. Current 

measurement techniques focus on coarse-grained measurements of application or system events. 

However, fine-grain adjustments in particular in the operating-system kernel and in application-

level servers require power profiles at the level of a single software function. 

Energy consumption constraints on computing systems are more important than ever. 

Maintenance costs for high performance systems are limiting the applicability of processing 

devices with large dissipation power. New solutions are needed to increase both the computation 

capability and the power efficiency. Moreover, energy efficient applications should balance 

performance vs. consumption. Therefore power data readings of components are important. This 

work presents the most remarkable alternatives to measure the power consumption of different 

types of computing systems, describing the advantages and limitations of available power 

measurement systems. Finally, a methodology is proposed to select the right power consumption 

measurement system taking into account precision of the measure, scalability and controllability 

of the acquisition system. 

One “WattsUp/.net” [16] power meter equipment was used to collect power consumption 

sample during the erasure coding process. The “Watts Up/.net” power meter provides useful power 

consumption information such as current watts, minimum watts, maximum watts, power factor, 

cumulative watt hours, average monthly kilowatt hours, tier 2 kilowatt hour threshold, elapsed 

time, cumulative energy cost, average monthly cost, line volts, minimum volts, maximum volts, 

current amps, minimum amps, and maximum amps. 

5.2.1    Power Consumption Measurement and Energy Efficiency Comparison 

of Strong Scaling Case 

Table-1 shows the power consumption measuring items collected from the WattsUp meter.  

The Watts information and processing time is shown in Figure-5.  I used the measuring results 

from the Table-1 and defined the performance metrics in Figure-6.  I usde one 48GB file and six 

8GB files on sequential and parallel encoding tests respectively.  Parallel Read operation was used 

to support concurrent input when parallel encoding processing was applied.  

 

 

 

 



 

 

Item 

Name 

Item Description Comment 

Wi Watts consumption on System Idle state  

Ws Watts consumption on Sequential 

encoding 

 

Wp Watts consumption on Parallel encoding  

T0 Starting time for encoding process  

Ts Finishing time for sequential encoding 

process  

Encoding a 48 GB file using one 

sequential encoding process 

Tp Finishing time for parallel encoding 

process 

Encoding a 6X8GB file set using 6 

concurrent PARC process 

Table-1: Power Consumption Metrics from the WattsUp power meter  
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Figure-5: Power Measurement (Watts and processing time) for Sequential and Parallel Encoding 

 

 

 

 

 

 

 

 

 

Wi: Watts on Idle state 
Ws: Watts on Sequential encoding 
WP: Watts on Parallel encoding 
T0:  start encoding time 
Ts: Sequential encoding finished time 
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Data:  encoding data size / 48GB data object  

T: fixed processing time,  one hour 

Dataseq: total size of data processed by sequential encoding during the fixed processing time T 

Datapar: total size of data processed by parallel encoding during the fixed processing time T   

Energy cost calculation: total energy cost, kWh, baseline assumption is $0.01/kWh 

                      Energypar = Wp * (Tp – T0) 

  Energyseq = Ws * (Ts – T0)   

  Energyidle/par = Wi * (Tp – T0) 

  Energyidle/seq = Wi * (Ts – T0) 

 Energy Cost: encoding only cost (sequential encoding and parallel encoding)  

  EnergyDiffseq/idle = (Ws - Wi) * (Ts – T0)  

                      EnergyDiffpar/idle = (Wp - Wi) * (Tp – T0) 

 Energy reduction ratio: 

  EnergyReductionratio = (Energyseq) / (Energypar) 

 Idle State Energy ratio on Sequential and Parallel encoding  

  IdleEnergyratio/seq = (Energyidle) / (Energyseq) 

  IdleEnergyratio/par = (Energyidle) / (Energypar) 

 Encoding Unit Cost : baseline assumption is $0.01/kWh 

  Costseq =  (Energyseq) /Data 

  Costpar = (Energypar) /Data 

 Encoding bandwidth calculation 

  BandWidthseq = Data / (Ts – T0) 

  BandWidthpar = Data / (Tp – T0) 

  Dataseq = T * BandWidthseq 

  Datapar = T * BandWidthpar 

 

Figure-6:  Performance metric definition 

Table-2 shows the energy efficiency comparison for sequential and parallel encoding 

processes. The PARC parallel encoding approach can significantly reduce about 81% energy cost 

when processing the same size of data. The PARC also can handle more data encoding workload 

during a fixed period of processing time. From encoding performance and energy efficiency 

studies, I strongly demonstrate the benefit of exploring potential task paralleling in data encoding 

problems and efficiently applying a parallel programming model on data encoding problem. 

 

 



 

 

 Sequential 

Encoding 

Parallel Encoding Normalized 

Ratio 

Energy consumption:   

48GB data set 

98.84 16.02 6.17: 1 

Energy cost: 48 GB data set 0.9884 cents 0.1602 cents 6.17:1 

Encoding Unit Cost: based on 48GB 

data 

0.020591cents/GB 0.003337cents/GB 6.17:1  

T=one hour, total encoded data size 297.22 GB 1803.60 GB 1: 6.07 

Table-2:  Energy cost and efficiency comparison – sequential vs. parallel encoding 

5.2.2    Power Consumption Measurement and Energy Efficiency Comparison  

(One to Six Parallel Encoding Cases)  

I then measured the weak scaling cases. For each N-way parallel coding test, I let each 

individual coding processes to handle 34GB of data. Figure-7 shows an example of Watts/Sec and 

time sequence information for 1,2,3,4,5, and 6 parallel coding test cases.  

 

  

Figure-7: Graph of Watts Power Consumption vs. Time Sequence ((1,2,3,4,5,6) Parallel 

Encoding Processes) 



 

 

I used the spread sheet data log from the WattsUP/.net power meter to create graphs displaying  

watts/sec and processing time sequence for each testing case (Figure-8a, Figure-8b, Figure-8c, 

Figure-8d, Figure-8e, Figure-8f).  

 

Figure-8a: 1 Way PARC Power Measurement 

 

Figure-8b: 2 Way PARC Power Measurement 
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Figure-8c: 3 Way PARC Power Measurement 

 

Figure-8d: 4 Way PARC Power Measurement 
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Figure-8e: 5 Way PARC Power Measurement 

 

Figure-8f: 6 Way PARC Power Measurement 
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The power consumption trend line is shown for all graphs above. 

 Definition of a Trend Line: A trend line, often referred to as a line of best fit, is a line that 

is used to represent the behavior of a set of data to determine if there is a certain pattern.   

Using the Linear Trim line power consumption function for 1-way, 2-way, 3-way, 4-way, 

5-way, and 6-way parallel stream encoding:  

F1-way(X) = 0.0109X + 157.75 

F2-way(X) = 0.0002X + 171.41 

F3-way(X) = 0.0297X + 182.27 

F4-way(X) = 0.0299X + 186.7 

F5-way(X) = 0.0326X + 187.28 

F6-way(X) = 0.0189X + 194.42 

 

I used electricity consumption and energy bill calculation formula to calculate energy cost: 

 

 Energy consumption calculation 

The energy E in kilowatt-hours (kWh) per day is equal to the power P in watts (W) time 

number of usage hours per day t divided by 1000 watts per kilowatt: 

E(kWh/day) = P(W) × t(h/day) / 1000(W/kW) 

 Electricity cost calculation 

The electricity cost per day in dollars is equal to the energy consumption E in kWh per day 

times the energy cost of 1 kWh in cents/kWh divided by 100 cents per dollar: 

Cost($/day) = E(kWh/day) × Cost(cent/kWh) / 100(cent/$) 

In my testing cases, the WattsUP/.net meter generates power measurement data every 

second. There are two different ways to calculate energy consumption. 

 

 Discrete event calculation: applied the measured watts/sec value for time t (Fm(t), m-way 

coding) 

EnergyConsumptiondiscrete/m-way =∑ 𝐹𝑚(𝑡𝑖𝑚𝑒(𝑖)) ∗ 𝑡𝑖𝑚𝑒(𝑖)𝑖=𝑡𝑛−1
𝑖=𝑡0   , the time(i) is set to 

one second. This is the minimal time result when using the Watts/.net power meter. 

Fm(t) is the measured power consumption (from WattsUP/.net meter) at time t. 

 Continuous event calculation: applied the trend line function (Ft) 



 

 

EnergyConsumptioncontinue/x-way = ∫ 𝐹𝑡(𝑡)𝑑𝑡
𝑡𝑛−1

𝑡0
 

EnergyConsumptioncontinue/1-way = X/20000 * (109X + 3155000) 

EnergyConsumptioncontinue/2-way = X/10000 *(X + 1714100) 

EnergyConsumptioncontinue/3-way = 11X/20000 * (27X + 331400) 

EnergyConsumptioncontinue/4-way = X/20000 * (299X +3734000) 

EnergyConsumptioncontinue/5-way = X/10000 * (163X + 1872800) 

EnergyConsumptioncontinue/6-way = X/20000 * (189X + 3888400) 

 

Here I use 1-way, 2-way, 3-way, and 6-way coding test cases and compare the power 

consumption. The LCM of the number data sets for 1,2,3,6 way parallel coding is 6.  I assume that 

I apply six “34GB” data sets on each coding approach.    

Figure-9a, Figure9b, and Figure-9c show the Watts/sec vs time sequence data for the cases 

of “1-way vs. 2way”, 1-way vs. 3-way” and 1-way vs. 6-way” respectively. The results have shown 

that parallel coding can significantly reduce the total processing time.  

 

 

Figure-9a: Power consumption for processing six “34 GB” data sets -1-way vs. 2 way parallel 

coding  
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Figure-9b: Power consumption for processing six “34 GB” data sets -1 vs. 3 way parallel coding 

  

Figure-9c: Power consumption for processing six “34 GB” data sets -1 vs. 6 way parallel coding  
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Figure-10a shows the processing time for each coding method.   Figure-10b shows the total 

power consumption for each coding method when using the continuous Energy Consumption 

formula and the discrete Energy Consumption formula.  The results have shown that parallel 

coding can significantly reduce the total power consumption. 

Three performance metrics are defined here. The base value is 1-Way coding’s power 

consumption: 

 ERI : Energy reduction index     =  Base/NWay 

 ERP : Energy reduction %     =  1 – (NWay/Base) 

 PW = MB coding/Watts, performance per watts index [20] 

Figure-10c shows the normalized Energy Prediction Index for each coding method. Figure-

10d shows the normalized Energy Reduction Percentage for each coding method. EPI and ERP 

performance values have further demonstrated the benefit and advantage of applying parallel data 

processing multicore computing systems.  Table-3 lists values of processing time, power 

consumption values, and ERI, and ERP performance values. 

 

 

Figure-10a: Processing time comparison 
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Figure-10b: Power consumption comparison 

 

Figure-10c: EIR Energy Reduction Index Comparison 
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Figure-10d: ERP Energy Reduction Percentage Comparison 

 

  

 

Figure-10e: PW Performance per watt comparison (MB/watt) 
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Power consumption 

(total watts) 

Continuous normalized Discrete normalized 

EnergyConsumption1-way  X/20000 * (109X + 3155000) ERI=1 

ERP=0% 

PW=0.574 

P=334785.0 ERI=1 

ERP=0% 

PW=0.609 

X=2100, P=355309.5 

EnergyConsumption2-way  X/10000 *(X + 1714100) ERI=3.27 

ERP=69.42% 

PW=1.876 

P=108488.3 ERI=3.09 

ERP=67.59% 

PW=1.880 

X=634,  P= 108714.1 

EnergyConsumption3-way  11X/20000 * (27X + 331400) ERI=4.41 

ERP=77.32% 

PW=2.533 

P=79130.5 ERI=4.23 

ERP=76.36% 

PW=2.578 

X=427, P= 80536.8 

EnergyConsumption6-way  X/20000 * (189X + 3888400) ERI=8.74 

ERP=88.56% 

PW=5.018 

P=40650.6 ERI=8.24 

ERP=87.86% 

PW=5.018 

X=207, P= 40649.8 

Table-3:  

 

6     Conclusion and Future works 

Multicore computing systems dominate the current commercial marketplace such as 

personal computers, enterprise computers, and supercomputers. Almost all computers have 

various parallel processing capabilities. To take maximum advantage of multicore chips, 

applications and systems should take advantage of built-in embedded parallelism.  In this project, 

I studied parallel programming on multicore computing systems and investigated potential parallel 

processing capabilities using data encoding procedures. I implemented a parallel erasure coding 

software called PARC.  I then conducted various workload tests on a single multicore compute 

node.  I demonstrated the advantage of using parallel processing on multicore computing systems.  

The PARC software showed significant reductions in total encoding process time. Furthermore 

my results show that we can obtain almost linear-scaling bandwidth on single multicore machines 

and multiple multicore cluster based machines.  I also demonstrated that the data coding problem 

on storage systems could be solved efficiently and effectively by task parallelism on multicore 

computing systems. My research project has shown that efficiently utilizing parallel computing 

capability of multicore system can improve performance per watts, reducing processing time, 

reduce poser consumption, and reduce energy cost. My performance testing cases have 

characterized the energy use of data encoding systems. This is the first step toward identifying 

opportunities for improvement. 
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