
Solving Sudoku

Team #: 34

Team Members:

Andy Corliss (7th grade)

Max Corliss (8th grade)

Phillip Ionkov (7th grade)

Ming Lo (6th grade)

Team Mentor:

Li-Ta Lo

Latchesar Ionkov

School: Los Alamos Middle School/Aspen Elementary School

Area of Science: Game Theory

Computer Language: Python

Executive Summary:

The purpose of this project was to create a program that could solve any

given Sudoku puzzle. Our solver can solve and graphically present any 4x4 or 9x9

Sudoku puzzle, and could theoretically solve larger puzzles, such as 16x16 or

25x25 puzzles, however, these puzzles were too large to complete within a

reasonable timeframe with our code. Sudoku is a logic puzzle where each row,

column, and box is filled with non-repeating numbers. It is set on a board with

NxN squares where N is a number with a whole-number square root (4x4, 9x9,

etc.) “Well-formed” Sudoku puzzles can only have one solution. Our solver uses a

backtracking method in which possible solutions for each square are tested and

removed if they are found to be incorrect later in the puzzle. This year, we have

created a program that can solve puzzles manually entered or read from a text file,

hence achieving our goal of creating a Sudoku solver that can solve any Sudoku

puzzle.

1

Introduction:

Sudoku is a logic based puzzle in which you have to fill each square with

numbers so that there are no numbers repeating in each

box, row and column.

Row

Column

Box

Sudoku is normally played on a 9x9 board, but 4x4,

16x16, 25x25, and much larger boards exist. The puzzle is set up with several

numbers already entered into the puzzle, and then you solve from there. The first

variants of these types of puzzles appeared in 1895 in French newspapers, and the

first form of Sudoku we solve today was introduced in a Dell magazine in the

1970s.

Description:

The first step in order to solve the puzzle is to

make a board. Our board is a 2D array, and each

element in the list is either an empty space or a

number. We wrote a function, printboard , that

2

creates the board using lines and dashes, producing a graphical representation. This

function helped us visualize the problem and how to solve it. We then used several

other functions (notOnRow , notOnCol , and notInSquare) that check to see

what numbers could be placed in a certain square and are able to fit in the

applicable rows, columns and boxes. A function called findEmpty searches each

row and checks to see if any squares are vacant.

We then used a method called backtracking to solve the Sudoku puzzles.

Backtracking algorithms iterate through possible solutions. For each empty square

found by findEmpty , solutions are eliminated if they do not fit. Once the

function finds a solution for the current square, it will move on to the next square

and try other possibilities. It will repeat this until there is no solution for the next

empty square. If this happens, the program will go back and remove previous

squares to attempt a new potential solution. This will continue until the puzzle is

solved, or when no empty squares remain.

Now that we had a method to solve the puzzle, we could start using

downloaded text files to test the code and analyze the results. To do this, we had to

make the program read each line of the text file that we chose. We ‘‘decoded’’ the

line into the board for the program to solve.

3

We wanted to see how long it would take for our program to solve the

puzzles, so we imported the time module and timed the computer. We then

compared the times by finding the averages and steps of backtracking.

Results:

We downloaded the Sudoku puzzles as text files from:

http://www.printable-sudoku-puzzles.com/wfiles/. Each text file contains 10,000

puzzles. There are 36 empty spaces in the first text file, 41 in the second, 46 in the

third, and 51 in the fourth. These puzzles were tested on a MacBook Air in Python

3, and results could vary depending on the type of computer and conditions. The

graphs below are very similar, showing that the amount of blank squares strongly

with the difficulty of the puzzles as shown by average trials, time, and fails. The

graphs also show that the amount of time to solve a puzzle with differ

exponentially with the number of empty squares.

4

http://www.printable-sudoku-puzzles.com/wfiles/

5

Conclusion:

This year, we have created a program that will solve a Sudoku puzzle. We

can now manually input a puzzle into our program and solve it with the click of a

button. We completed a major step that enables us to take numbers from text files

that we downloaded from the internet, form Sudoku puzzles from them, and solve

them. We have created a program that will show how the computer solves the

Sudoku puzzle by using backtracking, and have made a counter for how many

times it uses backtracking. We have learned much more about recursion,

backtracking and the Python programming language. We have also learned more

about Sudoku, game theory, and how to solve complex puzzles.

Acknowledgements:

We have had so much support during this Supercomputing season. First, we

have to thank our mentor, Li-Ta Lo, for frequently helping us with all of our work,

especially when we had obstacles to overcome and problems to solve. We also

thank our parents for investing their time to bring us to meetings and encouraging

us to improve our project. We also would like to express gratitude towards our

Interim Report judges, who gave us expert and professional insight to help us to

continue and improve our project to reach our goals.

6

Appendix:

Timer Code:

import math
import random
import time
import matplotlib.pyplot as plt
import numpy as np

d = 9
sqrd = int(math.sqrt(d))

board = [[' ' for i in range(d)] for i in range(d)]

def filedecode():
 global sudokuFile
 currentnum = 0
 for i in range(d):
 for j in range(d):
 if sudokuFile[currentnum] == '0':
 board[i][j] = ' '
 elif sudokuFile[currentnum].isdigit():
 board[i][j] = int(sudokuFile[currentnum])
 currentnum = currentnum + 1

def notOnRow(row, num):
 for i in range(d):
 if board[row][i] == num:
 return False
 return True

def notOnCol(col, num):
 for i in range(d):
 if board[i][col] == num:
 return False
 return True

def notInSquare(row, col, num):
 row = row - (row % sqrd)
 col = col - (col % sqrd)

7

 for i in range(sqrd):
 for j in range(sqrd):
 if board[row + i][col + j] == num:
 return False
 return True

def isPossible(row, col, num):
 if notOnRow(row, num) and notOnCol(col, num) and notInSquare(row, col, num):
 return True
 else:
 return False

def findEmpty():
 for row in range(d):
 for col in range(d):
 if board[row][col] == " ":
 return (row, col)
 return (-1, -1)

ncalls = 0
ntrials = 0
nfails = 0

total_ncalls = []
total_ntrials = []
total_nfails = []

def solve():
 global ncalls, ntrials, nfails
 ncalls = ncalls + 1
 (row, col) = findEmpty()
 if (row, col) == (-1, -1):
 return True
 for i in range(1, d + 1):
 ntrials = ntrials + 1
 if isPossible(row, col, i):
 board[row][col] = i
 if solve():
 return True
 else:

8

 board[row][col] = " "
 nfails = nfails + 1
 return False

times = []

def timeit(num):
 global times, ntrials, total_ntrials, ncalls, total_ncalls, nfails, total_nfails

 times = []
 total_ntrials = []
 total_nfails = []
 total_ncalls = []
 ntrials = 0
 nfails = 0
 ncalls = 0

 global sudokuFile

 for i in open('/Users/ming/Downloads/' + str(num) + '.txt', 'r'):
 sudokuFile = i
 filedecode()
 #printboard()
 start = time.time()
 solve()
 end = time.time()
 #printboard()
 time1 = end - start
 #print(time1)

 times.append(time1)
 total_ntrials.append(ntrials)
 total_nfails.append(nfails)
 total_ncalls.append(ncalls)

 print("The total time was : " + str(sum(times)) + " seconds")
 print("The max time for each puzzle was %f" % max(times))
 print("The average time for each puzzle was " + str(sum(times) /len(times)) + " seconds")
 print("Average number of trials " + str(np.mean(total_ntrials)))
 print("Average number of fails " + str(np.mean(total_nfails)))
 print("Average number of calls " + str(np.mean(total_ncalls)))
 #plt.hist(times, bins=10)

9

 #plt.show()

 #times.sort(reverse=True)
 #print(times[0:10])

if __name__ == '__main__':
 #timeit(1)
 for i in [0, 1, 2, 3, 5]:
 timeit(i)

Sudoku Visual Representation:
import math
import turtle
t = turtle.Turtle()
t.speed(0)
t.penup()
t.goto(-200, -200)
t.pendown()
y = 0
recursions = 0
d = 9
sqrd = int(math.sqrt(d))

def write_square(row, col, num):
 t.goto(-200 + (400 / 9) * col + (400 / 30), 200 - (400 / 230) - (400 / 9) * (row + 1))
 t.color("black")
 t.write(num , align = "left", font = ("Arial", 25, "normal"))

def erase_square(row, col, num):
 t.goto(-200 + (400 / 9) * col + (400 / 30), 200 - (400 / 230) - (400 / 9) * (row + 1))
 t.color("white")
 t.write(num , align = "left", font = ("Arial", 25, "bold"))

def notOnRow(row, num):
 for i in range(d):
 if board[row][i] == num:
 return False
 return True

def notOnCol(col, num):
 for i in range(d):
 if board[i][col] == num:
 return False

10

 return True

def notInSquare(row, col, num):
 row = row - (row % sqrd)
 col = col - (col % sqrd)
 for i in range(sqrd):
 for j in range(sqrd):
 if board[row + i][col + j] == num:
 return False
 return True

def findEmpty():
 for row in range(d):
 for col in range(d):
 if board[row][col] == " ":
 return (row, col)
 return (-1, -1)

def isPossible(row, col, num):
 if notOnRow(row, num) and notOnCol(col, num) and notInSquare(row, col, num):
 return True
 else:
 return False

def solve():
 global y
 y = y + 1
 (row, col) = findEmpty()
 if (row, col) == (-1, -1):
 return True
 for i in range(1, d + 1):
 global recursions
 recursions = recursions + 1
 if isPossible(row, col, i):
 board[row][col] = i
 write_square(row, col, i)
 if solve():
 return True
 else:
 board[row][col] = " "
 erase_square(row, col, i)
 return False

11

board = [[' ' for i in range(d)] for i in range(d)]
def customsetup():
 board[1][0] = 7
 board[3][0] = 1
 board[4][0] = 5
 board[7][0] = 6
 board[8][0] = 8

 board[0][1] = 5
 board[2][1] = 8
 board[5][1] = 7

 board[1][2] = 2
 board[4][2] = 4
 board[8][2] = 3

 board[7][3] = 1
 board[8][3] = 9

 board[1][4] = 3
 board[2][4] = 6
 board[5][4] = 1
 board[6][4] = 4
 board[7][4] = 7

 board[0][5] = 7
 board[3][5] = 5
 board[4][5] = 9
 board[7][5] = 8

 board[1][6] = 4
 board[2][6] = 5

 board[1][7] = 9
 board[3][7] = 3
 board[4][7] = 2
 board[5][7] = 8
 board[8][7] = 1

 board[6][8] = 2
 board[7][8] = 9
 board[8][8] = 6

12

def drawboard(size, dim):
 for i in range(4):
 t.forward(size)
 t.left(90)
 for i in range(int(dim / 2)):
 t.forward((size / dim))
 t.left(90)
 t.forward(size)
 t.right(90)
 t.forward(size/dim)
 t.right(90)
 t.forward(size)
 t.left(90)
 t.penup()
 t.goto(-200 + size, -200)
 t.pendown()
 t.left(90)
 for i in range(int(dim / 2)):
 t.forward((size / dim))
 t.left(90)
 t.forward(size)
 t.right(90)
 t.forward(size/dim)
 t.right(90)
 t.forward(size)
 t.left(90)

drawboard(400, 9)
customsetup()
t.pencolor("blue")
t.penup()
t.goto(-200, 200)
t.seth(0)
for i in range(9):
 t.penup()
 t.goto(-200 + 400 / 30, 200 - (400 / 9) * (i + 1) - 400 / 230)
 for j in range(9):
 t.write(board[i][j] , align = "left", font = ("Arial", 25, "normal"))
 t.forward(400 / 9)
solve()
t.pencolor("black")
t.seth(0)

13

References:

1. https://en.wikipedia.org/wiki/Sudoku

2. https://en.wikipedia.org/wiki/Sudoku_solving_algorithms

3. https://en.wikipedia.org/wiki/Recursion

4. https://en.wikipedia.org/wiki/Backtracking

5. https://web.stanford.edu/class/cs209/lectures/CS209-Lecture-02-Recursion.p

df

6. https://www.python.org/

7. https://repl.it/

8. http://www.printable-sudoku-puzzles.com/wfiles/

14

http://www.printable-sudoku-puzzles.com/wfiles/
https://en.wikipedia.org/wiki/Backtracking
https://en.wikipedia.org/wiki/Sudoku
https://en.wikipedia.org/wiki/Sudoku_solving_algorithms
https://web.stanford.edu/class/cs209/lectures/CS209-Lecture-02-Recursion.pdf
https://en.wikipedia.org/wiki/Recursion
https://repl.it/
https://web.stanford.edu/class/cs209/lectures/CS209-Lecture-02-Recursion.pdf
https://www.python.org/

