

Using Artificial Neural Networks to Play the Game of Strategic Tic Tac Toe

New Mexico Supercomputing Challenge

Final Report

Portales High School Team 1

Nick Brown and Christopher Leap

Portales High School Team 1

Table of Contents

Executive Summary 2

1. Introduction 3

1.1. Artificial Neural Networks 3

1.2. Strategic Tic Tac Toe 4

2. Methods 6

2.1. Making the Tic Tac Toe Game 6

2.2. Structure of the Artificial Neural Network 7

2.3. Getting the Network to Play a Game 8

2.4. Training the Artificial Neural Network 8

3. Results 12

4. Conclusions 13

1

Portales High School Team 1

Executive Summary

Artificial neural networks are at the cutting edge of artificial intelligence. However, these

networks require training. So, to effectively utilize artificial neural networks, we must learn how

to quickly and effectively train these networks. Through our experimentation, we discovered that

certain training methods work better than others throughout different stages of training and

development. We plan to continue developing and refining the training process of artificial

neural networks to allow them to further solve the world’s problems.

2

Portales High School Team 1

1. Introduction

Artificial neural networks (ANNs) are at the

forefront of computing due to their

flexibility in problem solving complex

problems through pattern recognition.

Because ANNs have earned importance in

the world of computing, the methods

required to create neural networks and train

them to perform specific tasks is

consequently important. We have

experimented with training ANNs to play a

game, Strategic Tic Tac Toe, due to its

simple rules, strategically deep gameplay,

and lack of hidden information or chance.

1.1 Artificial Neural Networks

Artificial neural networks are modeled off of

the brain and its naturally occurring

biological neural networks. They are a 1

collection of nodes connected with varying

strengths to each other. Each node can send

signals to nodes connected to them, but due

to the varying strength of connections, some

nodes are more effective at influencing

others. ANN act in the same way as a human

brain, allowing them to recognise patterns

1 Chris Stergiou, “What is a Neural Network?”,
https://www.doc.ic.ac.uk/~nd/
surprise_96/journal/vol1/cs11/
Article1.html (March 28, 2017)

and robustly make decisions. Instead of 2

needing to explicitly tell the computer to

give which output when given which input,

ANNs can learn to recognize when a pattern

emerges by training against data sets or

through other various training methods.

Deepmind’s AlphaGo team utilized an ANN

to build a computer to play against a

professional Go player. Go used to be

infamous for being the ultimate challenge

for artificial intelligence. The game allowed

for billions of possible moves, making

recursive tree searches near impossible. That

is, the amount of possible moves that could

be made, the amount of possible moves that

could be made after that, and so on added up

to too large of a number for a modern

supercomputer to be able to sift through.

So, using minimax or other brute force

methods would not work. The team could

not feasibly program specific strategies into

the computer either, though. Doing so would

require the team to develop superior

strategies to whichever opponent they

planned to beat (eventually the Go master

2 Chris Woodford, “How Neural Networks
Work - And Introduction” (2017),
http://www.explainthatstuff.com/
Introduction-to-neural-networks.html
(March 28, 2017)

3

Portales High School Team 1

Lee Sodol), which is unlikely. In addition,

strategies shift and change throughout time,

so any static strategy would not work for

long until the team would need to reprogram

another strategy.

However, by using ANNs, the AlphaGo

team trained their computer to recognize the

patterns of expert players, mimicking the

patterns, and later using that knowledge to

beat Lee Sedol, the world’s top Go player. 3

The ANN was able to learn and shift in its

strategies alongside the expert players,

allowing it to later beat them.

Being able to train ANNs is relevant

because they can learn to automate tasks that

could seem difficult to solve through

programming with other methods.. Knowing

the best training techniques for ANNs is

therefore important.

1.2 Strategic Tic Tac Toe

Strategic Tic Tac Toe is a variation on the

game of, as one may guess, Tic Tac Toe. We

originally found this game on the website

Coolmath-Games. The game consists of 4

nine Tic Tac Toe boards, each placed

3 DeepMind, “AlphaGo” https://deepmind.com/
research/alphago/ (March 28, 2017)

4 Cool Math Games, http://www.coolmath-
games.com/0-strategic-tic-tac-toe

throughout the nine spaces in a larger Tic

Tac Toe board. (See Figure 1.2a)

Figure 1.2a An empty board for Ultimate Tic Tac Toe

The game is played, with both players taking

turns, by placing pieces in the smaller

boards. The space on which each player

places their piece determines which smaller

board their opponent will have to place on in

the subsequent turn. For example, if a player

places in the middle space of one of the

smaller boards, their opponent will be forced

to place their piece on the middle board.

(See Figure 1.2b)

4

Portales High School Team 1

Figure 1.2b The first player made their move in the middle

of the upper-left board, so their opponent must place on the

middle board

The only exception to this rule occurs on the

first turn, since no player has made any

moves yet, or when the board corresponding

to the previous player’s move has already

been won or tied. In these situations, the

player will be able to choose which board

they want to place their piece on. Normal

Tic Tac Toe rules apply; to win a board,

either a diagonal or straight line of length

three must be occupied by only one player.

To win a game of Strategic Tic Tac Toe, one

player must win three small boards in a

diagonal or straight line.

We chose this game for two reasons: it is

strategically complex while still being

relatively simple, and it is easy for new

players to learn. Many people are familiar

with Tic Tac Toe and have played it

multiple times. However, after a certain

number of games, Tic Tac Toe becomes too

easy to play; most games end in ties when

two moderately competent players go

head-to-head. Strategic Tic Tac Toe adds

complexity to the game and widens the skill

gap. While being complex, Strategic Tic Tac

Toe remains accessible to new players and

has simple rules. Since many people are

familiar with Tic Tac Toe, they can easily

pick up the few additions to the rules and

start playing quickly.

This is useful when testing the strength of

the ANN against normal people. The simple

rules are useful when programming the

actual game and prevents the ANN from

having to pick between different types of

moves, different objects to move, and the

implications of those actions. Taking these

types of choices away from the ANN further

simplifies the game provided for the ANN.

We wish not to use the ANN to play a

complex game. We plan to study the

methods to train the ANN to play a game.

So, we plan to develop the methods on a

smaller scale so that we can later scale up

the methods so they will work on larger

scale, more complex games. As Abraham

5

Portales High School Team 1

Lincoln once said, “given five minutes to

chop down the biggest tree… ...I would

spend three of those five minutes sharpening

the axe.” So, we plan to sharpen the axe 5

with which one may chop down larger trees.

2. Methods

2.1 Making the Tic Tac Toe Game

The game of Strategic Tic Tac Toe mainly

consists of a board and the rules and

restrictions imposed upon moves that

players make.

A board has to have spaces where pieces are

placed, allow players to place those pieces,

and allow players to view information about

the board, such as the moves that can be

made, the player currently controlling the

board, and the pieces placed on each tile of

the board. With all of these properties the

board is able to properly function. All of this

allows for a small three-by-three board to be

formed, but a larger board is unable to be

formed, since each board can only contain

tiles, not other boards. To create a larger

board that contains other boards, ten boards

are created. Nine of these boards are

contained in a list and when a move is made

5 Retrieved from http://quoteinvestigator.com/
2014/03/29/sharp-axe/

in the game, that move is made on the

corresponding board in the game. This

allows the boards to be stored and moves

made on them. To handle the properties of

the overall board, whenever a smaller board

is won in the list of boards, the same move

is made on the larger board not in the list.

This allows both the individual boards’

qualities to be preserved but to also have use

of the larger board.

To enforce the rules of the game, most of the

restrictions are imposed at the time that the

player tries to make moves. This allows the

game to prevent the player from placing

their piece in a non-empty space or on a

board that is either already won or cannot be

placed upon due to the opponent's previous

move. Other rules are imposed after moves

have been made to check, for example, if the

game has been won and if so prevent the

game from continuing, but overwhelmingly

most of the rules are imposed to prevent

players from making illegal moves.

These two parts combine to create a game

that can be played without players having to

enforce rules. This allows the game to deny

players from trying to cheat and generally

6

Portales High School Team 1

preventing ANNs that make illegal moves

from working.

2.2 Structure of the Artificial Neural

Network

The Artificial Network can be broken down

into two main components: nodes and

connections. A node needs to be able to do

three tasks: collect input, process the input,

and output the result. The connection is the

pathway by which the nodes send input and

output. These two components form the

structure of the network (see Figure 2.2a),

allow for data to pass through it, and make

the network trainable.

Figure 2.2a An example of a neural network with three

input nodes, one hidden layer with two nodes, and one

output node

The networks used in our program arrange

nodes into layers, and the connections only

link nodes in adjacent layers. These layers

are categorized as either input layers, hidden

layers, or output layers.

The input layers are the first layer that

receives the input data for the network. After

collecting and processing the data, each

node in the input layer sends the processed

data to each node in the next layer.

Next, the first hidden layer collects the data

from the input layer, process it, and either

sends the data to the next hidden layer, if

there is one, or sends the data to the output

layer. The number of hidden layers depends

on the network, and the data keeps getting

passed on from one to the next until each

one has processed the data. After this, the

data gets sent to the output layer.

The output layer collects input from the

previous layer, processes it, and then

displays the processed data.

Each connection between nodes carries a

weight. That is, the output from one node to

another may not have as much impact on the

input as the output from another node. If the

weights are adjusted, the way in which the

network processes inputs is changed. By

taking control of the weight adjustment, the

7

Portales High School Team 1

network can be trained to handle specific

problems.

2.3 Getting the Network to Play a Game

ANN are designed to take inputs and

produce outputs. So, to make an ANN play

Strategic Tic Tac Toe, the inputs and outputs

have to be tailored to work with Strategic

Tic Tac Toe.

The ANNs’ input is the state of each tile on

the Tic Tac Toe boards after one of the

possible moves is made; the ANN processes

its inputs and outputs the score of that board,

using the trained weights of each connection

to calculate it. The score of the move is then

compared to the score of the next move,

until all moves have been scored, compared,

and the ANN has found the best move that it

thinks it should make, given its training.

2.4 Training the Artificial Neural Network

Two components of the training of ANNs

are important: the opponents that the ANNs

train against and the way that the ANNs’

performances are assessed. We have

determined multiple types of opponents at

different stages in an ANN’s development

that may be the most effective at training the

ANN. These opponents may include

humans, artificial intelligence developed to

play the game, minimax, artificial

intelligence that randomly chooses moves,

and other ANNs.

Humans are able to easily adapt their play

styles and competitiveness to better train the

ANNs. However, humans are very variable

in their skill level in any given game; do not

quickly process board states at the speed

required and make moves; and unless

extremely talented at playing the particular

game, cannot adjust their skill level to

almost any level. Using humans to train the

ANNs also presents the problem of creating

a scoring system for the ANNs. Since

humans cannot play multiple games in mere

seconds, more weight is given to each game

that the human plays. A smaller sample size

of games coupled with human’s high

variability makes scoring for ANNs less

objective and more variable. This variability

can cause training ANNs to take longer and

yield worse results, since not every point of

data collected is as accurate and there are

less points overall. However, humans

periodically playing against the ANNs can

allow the people trying to train the ANNs to

8

Portales High School Team 1

record results of training and tailor the gene

pool of the ANNs.

Using an artificial intelligence that uses

minimax to train the ANNs would be a good

way to train ANNs since minimax is a

strategy that relies upon perfect information,

each player knows exactly what each other

player can do and what each of those actions

will result in. That is, there is no hidden

information or chance involved in the game.

Minimax works by looking at the moves that

its opponent can take, then the moves it can

take, then the moves that its opponent can

take ad nauseum, or until told to stop, then

determines which move will have the least

detrimental or most positive effect on its

chance of winning, by scoring the board’s

state found at the end of the process.

Strategic Tic Tac Toe is a game of perfect

information. This allows a minimax AI to

play almost perfectly or play at a low skill

level. This controlled variance of skill levels

allows a smaller number of games to be

played between the AI and ANNs. This

allows results to be quickly generated.

However, minimax AIs plateau in skill at a

certain point since, once the AI looks into

the future a couple of turns, the number of

moves seen is restrictively large, slowing

down the AI greatly. In addition, if the game

which the ANN is being trained to play has

a game tree as large as Go, or even half of it,

a minimax-oriented AI will not be of as

much use to the ANN.

An algorithm that randomly chooses moves

has high variance in its skill level. Because

of this, it tends to be very bad at games, as it

has no discernible strategy. A random AI,

however, is very fast at choosing moves; it

only has to perform a random calculation.

This may make the AI very good for training

the early iterations of ANNs, when the

ANNs are very bad at the game, but need to

have a large number of iterations before they

can advance to a higher skill level.

Training ANNs against each other allows

the ANNs’ opponents to have a similar skill

level as them, quickly play a game, and even

doubles up on games played by ANNs,

instead of one ANN playing in a game, two

play in one game. However, the ANNs can

deviate, from randomness introduced in the

creation of new ANNs, from the task at

hand, partially or completely destroying the

advances they have made. Since there is no

standard that the ANNs have to base their

performance on, except for one another,

9

Portales High School Team 1

these deviations from the course can be

extensive. Pitting ANNs against each other

also creates a much less black and white

rating system, where a ANN either wins

against their opponent, ties with their

opponent, or loses to their opponent.

Instead, since each ANN plays against a

large number of ANNs, a relative ranking

system can be created.

If ANNs play against each other, a system or

tournament structure must be created so that

the ANNs can obtain a relative ranking

system to each other. Tournament structures

that are slower and in which more games are

played will have the best player be

victorious more often than faster tournament

structures with fewer games. Several

tournament structures exist: swiss,

elimination, round-robin, and several other

more complex structures with few merits. In

elimination tournaments, after a player loses

a certain number of times, they are kicked

from the tournament. In single elimination

tournaments, players are allowed only one

loss; in double elimination players are

allowed two losses; and so on and so forth. 6

This tournament structure has high

6 Print Your Brackets
http://www.printyourbrackets.com/singleeliminati
on.html

variability, since a good player could cluster

their losses at the beginning of a tournament,

while a bad player could cluster all of their

losses to the end of the tournament, but the

bad player would seem to be a better player

than the good player and rank higher.

Elimination is however very fast since the

brackets quickly shrink, allowing the

tournament to quickly finish.

Figure 2.4a An example of a single elimination tournament

structure. 7

Round-robin tournaments, on the other

hand, see each player playing each other

player, then determines a ranking for each

player by the number of wins and losses

they have accrued. This tournament

structure is slower than elimination

7 Retrieved fromhttps://www.printyourbrackets
com/single-elimination-tournament-brac
kets.html

10

Portales High School Team 1

tournaments, and since round-robin pits each

player against each other player , the 8

number of games played grows

exponentially with the number of players.

This tournament structure is much less

variable than the elimination structure.

However, with just 8 players the number of

games played is 28, climbing to 120 games

with just 16 players.

Figure 2.4b An example of a round robin tournament

structure with dots representing players and connections

representing games. 9

The swiss tournament structure plays less

games than the round-robin structure while

having less variability than the elimination

structure. Swiss works by playing all

opponents with the same record against each

other, in each round. If the number of people

with a certain record does not allow for

8 Print Your Brackets. Retrieved from
http://www.printyourbrackets.com/
roundrobin.html

9 Retrieved from https://commowikimedia.org/
wiki/File:Cross_graph_8_Nodes_
highlighted.svgns.

perfect matchmaking, the players with the

two closest records will play against each

other. This tournament structure prefers to 10

have its number of players be a power of

two, since the tournament ends when a

sufficient number of rounds has been played

to determine who is the best player, the

power that two is raised to to get closest to

the number of players participating in the

tournament. This allows for one player to

have no losses, assuming no one ties, which

determines a clear winner, then each player

is ranked by how many wins they have, then

how well they did against their opponents,

then the skill level of the opponents that they

faced. All of this generates a tournament

structure where each match played is

tailored so that the a large amount of

possible information is gained, and so that

the tournament is not extremely long. Swiss

gives the best of both the elimination

structure and the round robin structure, and

so it is what we have decided to use.

These training methods are utilized in a

generation-ranking system. Multiple ANNs

are randomly generated in what is called a

generation. The members of this generation

10 The Spruce
https://www.thespruce.com/the-swiss-system-61
1537

11

Portales High School Team 1

compete in the training methods mentioned

above, such as a head-to-head tournament,

playing matches against a

random-move-selecting opponent, or

playing against a developed AI. After

training the generation, the members of the

generation are ranked. A new generation is

then generated from the members of the

previous, ranked generation. The top

quartile of the previous generation are put

into the next generation, and the remaining

slots are filled by “breeding” the higher

ranked members of the previous generation.

Breeding two ANNs involves combining the

weights of their connections with some level

of randomness and variability. For each

weight in the “child” network, there is a

40% chance that the child will inherit the

weight from one parent, 40% chance that the

child will inherit the weight from the other

parent, and 20% chance the child will

mutate and gain a completely random

weight. In this way, the new generation will

include the best members of the previous

generation and some new, “evolved”

members that are possibly better than the

previously best. By doing this, each

generation seeks to improve on the previous

generation.

3. Results

In the early stages of training the ANNs

against each other, the ANNs were unable to

win while playing if they played first. This

invalidates the training, since the ANN that

is selected as the best and who subsequent

generations are modeled after is picked

semi-randomly. The games that the ANNs

play in this situation are identical. The ANN

takes the first move suggested. This is all

caused by an algorithm for choosing the best

move The first move suggested is first set as

the best move, then the subsequent moves

are compared against it, and only when a

move is better than the best move is that

move called the new best. This introduces a

minimal preference to the first move

suggested to the computer. However, if

chance was introduced to the decision when

the scores were equal, this preference to the

first move suggested would be eliminated. If

a coin is flipped to determine whether or not

a new move, with equivalent score to the old

move, will replace the old move, the chosen

move will tend to be the last suggested

move, since the last move has to only win

one coin flip, while the first has to win a

coin flip for every suggested move. This

makes the chosen moves tend to be the last

12

Portales High School Team 1

suggested move, but since probability is

introduced, the degree by which the last

move is favored is much less than that of the

previous method.

Moves:
Second

→
First

↓

ANN
VS.

ANN

ANN
VS.

Random

Half-and
-Half

ANN
VS.

ANN

TIE

Half-and
-Half

ANN
VS.

Random

ANN
VS.

ANN

 ANN
VS.

Random

Half-and
-Half

Half-and
-Half

ANN
VS.

Random

Table 3a. A representation of how well each training

procedure compares to the others when trained for six

generations.

The different training methods were

compared by training ANNs with a certain

method, then training other ANNs with a

different training method, until all training

methods had been used, then playing the

resulting ANNs against each other. This

should, in theory provide a clear training

method that trains the ANNs most quickly

and effectively. Instead of a clear winner

emerging, the ANNs trained with different

training methods beat each other in a

rock-paper-scissors fashion, as seen in table

3a.

4. Conclusions and Future Plans

The slight bias produced by the way that the

program selected its moves suggests that the

ANN is very weak at playing the game in

the beginning, and each network plays with

the same strategy. We hypothesize that the

weights are not yet tuned to each other at

this stage, so each one reaches the same

strategy, similar to many people learning to

do a backflip; each person may be doing

completely different things with their

muscles, but until they learn to use their

muscles in harmony, each person ends up on

the ground.

The negative effect of each player utilizing

the exact same strategy, is that each game is

identical. This prevents generations from

advancing because no number of

generations can get the ANN out of the early

stages of development. This is obviously

negative, since the ANN will never learn

and training it is therefore useless.

By making the choosing technique more

random, the ANNs can overcome the second

13

Portales High School Team 1

player advantage and add diversity to each

player’s strategy.

We will also improve upon the program's

handling of moves with similar scores. If for

instance, the list of moves that we are giving

to the ANN were first shuffled, this would

eliminate the issue of favoring moves that

either come first or last in the list of

suggested moves.

The rock-paper-scissors matchups of the

different training techniques may either be

luck, this may be due to the slightly random

nature of the ANNs, or these matchups may

be caused by a deeper more telling reason.

However, the consistency with which the

same matchups were won by the same

people, except when second player

advantage caused the two ANNs to tie,

suggests that the matchups between the

ANNs trained in the various ways are fairly

consistent. Sufficient investigation into the

reasons behind the way that the matchups

play out has not been performed, but will be

carried out in the future.

In the future we will optimize the program

so that it runs more quickly. This will allow

us to add more layers of nodes in the ANNs,

making their decisions more complex, play

more tournaments to train the ANNs, and

create more sophisticated AIs for the ANNs

to play against. All of this will allow us to

further explore how to best train the ANNs.

14

