
;Evacuation Efficency (v.1.6.3 LAMBDA)
;Team SFHS-2 by Micah Sulich, Daniel Onstott, Luke Shankin, Lileigh
Thomas, and Marisa Tedori
;Made in netlogo v6.0

globals [escaped alex_escaped audrey_escaped reg_escaped injured]
;the more agressive agent set
breed [alex alexes]
;the more submissive agent set
breed [audrey audreys]
;the middle of the two
breed [andy andys]
to clear
 clear-all
end
to setup
 ifelse sprout? = true
 [
 ;reset graph
 set escaped 0
 set alex_escaped 0
 set audrey_escaped 0
 set reg_escaped 0
 set injured 0
 clear-turtles
 ;finds patches that are within the building to spawn from
 ask n-of numb (patches with ([pcolor != red and pcolor != green and
pxcor > -13 and pxcor < 15]))
 [
 ;coinflip for regular andy
 ifelse (random (2)) = 0
 [
 sprout 1
 [set color yellow
 set breed andy
 set shape "square"]
][
 ;further coinflip o divide remaining andy
 ifelse (random (2)) = 0 [
 sprout 1
 [set color blue
 if color_toggle = false
 [
 set color yellow
]
 set breed alex
 set shape "square"]
][

 sprout 1
 [set color orange
 if color_toggle = false
 [
 set color yellow
]

 set breed audrey
 set shape "square"]
]
]
]

]
 ;---sprout off------------
 [
 set escaped 0
 set alex_escaped 0
 set audrey_escaped 0
 clear-turtles
 if andy_on = true
 [
 create-andy numb
 [

 setxy (((-12) + 2) + random (26)) (((-12) + (-2)) + random
(29))
 set color yellow

]
]

 if alex_on = true
 [
 create-alex numb_alex
 [

 setxy (((-12) + 2) + random (26)) (((-12) + (-2)) + random (29))
 set color blue

]
]

if audrey_on = true
 [
 create-audrey numb_audrey
 [

 setxy (((-12) + 2) + random (26)) (((-12) + (-2)) + random (29))
 set color orange

]
]
]
 reset-ticks
 setup-plots
end

to bounce_alex
 ;The bounce function is the dictates how the agents interact with
eachother.
; determines if the agent goes up or down
 if [pcolor] of patch-at dx 1 = red
 [
 if ycor > (-1 * box)[set heading (180)]
 if ycor < (-1 * box)[set heading (90)]
]
if not any? other audrey-on patch-ahead 1 = false
 [

 set heading (heading - 180)
 fd 1.2
 set heading (heading + 79)
 set heading (heading - 259)

]

end

to bounce_audrey
 ;The bounce function is the dictates how the agents interact with
each other.
 ; In the case of this breed, if a red wall blocks its path, it will
turn towards the door and try to move closer to it until it can move
around the obstacle.
 ;When coming into contact with another agent, It will turn around to
find a clear path before trying to go towards the door again.
 ;In this sense the agent “waits” and “pushes” its way around other
agents.

 let flip (random 2)
; determines if the agent goes up or down
 if [pcolor] of patch-at dx 1 = red

 [
 if ycor > (-1 * box)[set heading (180)]
 if ycor < (-1 * box)[set heading (90)]
]

 if not any? other alex-on patch-ahead 1 = false
 [
 if flip = 1
 [

 set heading (heading - 180)
 fd .5
 set heading (heading + 85)
 set heading (heading - 259)

]

 if flip = 2
 [

 set heading (heading + 180)
 fd .5
 set heading (heading - 85)
 set heading (heading + 259)

]

]

 if not any? other andy-on patch-ahead 1 = false
 [
 if flip = 1
 [

 set heading (heading - 180)
 fd .75
 set heading (heading + 85)
 set heading (heading - 259)

]

 if flip = 2
 [

 set heading (heading + 180)
 fd .75
 set heading (heading - 85)
 set heading (heading + 259)

]

]

 if not any? other audrey-on patch-ahead 1 = false
 [
 if flip = 1
 [

 set heading (heading - 180)
 fd .9
 set heading (heading + 85)
 set heading (heading - 259)

]

 if flip = 2
 [

 set heading (heading + 180)
 fd .9
 set heading (heading - 85)
 set heading (heading + 259)

]

]

end

to bounce_andy
 ;The bounce function is the dictates how the agents interact with
eachother
 let flip (random 2)
; determines if the agent goes up or down
 if [pcolor] of patch-at dx 1 = red
 [
 if ycor > (-1 * box)[set heading (180)]
 if ycor < (-1 * box)[set heading (90)]
]

 if not any? other turtles-on patch-ahead 1 = false
 [
 if flip = 1
 [

 set heading (heading - 180)

 fd 1
 set heading (heading + 85)
 set heading (heading - 259)

]

 if flip = 2
 [

 set heading (heading + 180)
 fd 1
 set heading (heading - 85)
 set heading (heading + 259)

]

]

end
to makebox

 ;made by Micah
 ;SETTING UP THE SCHOOL and classroom enviroment
 clear-patches

 ;origin points
 let origin_x (-12)
 let origin_y (box)

 ;top room vars
 let top_room_1 (1 + box)
 let top_room_2 (1 + box)
 let top_room_3 (1 + box)

 ;hallway length vars
 let hall_leng_1 (-12)
 let hall_leng_2 (-12)
 let hall_leng_3 (-12)
 let hall_leng_4 (-12)

 ;bottom room vars
 let bt_room_1 (1 + box)
 let bt_room_2 (1 + box)
 let bt_room_3 (1 + box)

 ;back wall
 let bk_wall_1 (16)
 let bk_wall_2 (-16)

 let bk_wall_3 (-16)

 ;making the front door/building edge
 ask (patch (origin_x) (-1))
 [
 set pcolor green
]
 ask (patch (origin_x) (0))
 [
 set pcolor green
] ask (patch (origin_x) (1))
 [
 set pcolor green
]

 ask (patch (origin_x) (-2))
 [
 set pcolor red
]
 ask (patch (origin_x) (-3))
 [
 set pcolor red
]
 ask (patch (origin_x) (-4))
 [
 set pcolor red
]

 ask (patch (origin_x) (2))
 [
 set pcolor red
]
 ask (patch (origin_x) (3))
 [
 set pcolor red
]
 ask (patch (origin_x) (4))
 [
 set pcolor red
]

 ;TOP HALLWAY WALLs and doors
 while [hall_leng_1 < (17)]
 [
 ask (patch (hall_leng_1) (origin_y))
 [
 set pcolor red

]

 set hall_leng_1 (hall_leng_1 + 1)
]
 while [hall_leng_3 < (17)]
 [
 ask (patch (hall_leng_3) (16))
 [
 set pcolor red
]
 set hall_leng_3 (hall_leng_3 + 1)
]

 ;Making the upper hallway door gaps
 ask (patch (0) (origin_y))
 [
 set pcolor black
]
 ask (patch (-1) (origin_y))
 [
 set pcolor black
]

 ask (patch (-11) (origin_y))
 [
 set pcolor black
]
 ask (patch (-10) (origin_y))
 [
 set pcolor black
]
 ask (patch (9) (origin_y))
 [
 set pcolor black
]
 ask (patch (10) (origin_y))
 [
 set pcolor black
]

 ;LOWER HALLWAY WALL
 while [hall_leng_2 < (17)]
 [
 ask (patch (hall_leng_2) (-1 * origin_y))
 [
 set pcolor red
]
 set hall_leng_2 (hall_leng_2 + 1)

]
 while [hall_leng_4 < (17)]
 [
 ask (patch (hall_leng_4) (-16))
 [
 set pcolor red
]
 set hall_leng_4 (hall_leng_4 + 1)
]
 ;Making the lower hallway door gaps
 ask (patch (-3) (-1 * origin_y))
 [
 set pcolor black
]
 ask (patch (-4) (-1 * origin_y))
 [
 set pcolor black
]
 ask (patch (6) (-1 * origin_y))
 [
 set pcolor black
]
 ask (patch (7) (-1 * origin_y))
 [
 set pcolor black
]
 ask (patch (15) (-1 * origin_y))
 [
 set pcolor black
]
 ask (patch (14) (-1 * origin_y))
 [
 set pcolor black
]

;THIS CODE MAKES the top rooms
 while [top_room_1 < (17)]
 [
 ask (patch (origin_x) (top_room_1))
 [
 set pcolor red
]
 set top_room_1 (top_room_1 + 1)
]

 while [top_room_3 < (17)]
 [
 ask (patch (origin_x + 10) (top_room_3))

 [
 set pcolor red
]
 set top_room_3 (top_room_3 + 1)
]

 while [top_room_2 < (17)]
 [
 ask (patch (origin_x + 20) (top_room_2))
 [
 set pcolor red
]
 set top_room_2 (top_room_2 + 1)
]

 ;this code makes the bottom rooms
 while [bt_room_1 < (17)]
 [
 ask (patch (origin_x) (-1 * bt_room_1))
 [
 set pcolor red
]
 set bt_room_1 (bt_room_1 + 1)
]
 while [bt_room_3 < (17)]
 [
 ask (patch (origin_x + 10) (-1 * bt_room_3))
 [
 set pcolor red
]
 set bt_room_3 (bt_room_3 + 1)
]
 while [bt_room_2 < (17)]
 [
 ask (patch (origin_x + 20) (-1 * bt_room_2))
 [
 set pcolor red
]
 set bt_room_2 (bt_room_2 + 1)
]

 while [bk_wall_1 > (0)]
 [
 ask patch (16) (bk_wall_1)
 [
 set pcolor red
]
 set bk_wall_1 (bk_wall_1 - 1)

]
 while [bk_wall_2 < (0)]
 [
 ask patch (16) (bk_wall_2)
 [
 set pcolor red
]
 set bk_wall_2 (bk_wall_2 + 1)
]
 ask (patch (16) (0))
 [
 set pcolor red
]
 while [bt_room_1 < (17)]
 [
 ask (patch (origin_x) (-1 * bt_room_1))
 [
 set pcolor red
]
 set bt_room_1 (bt_room_1 + 1)
]

;this code inpart prevents the backwall bug
let bugfix1 (-16)
while [bugfix1 < (17)]
[
ask (patch (17) (bugfix1))
 [
 set pcolor red
]
set bugfix1 (bugfix1 + 1)
]

end
to fix_error_alex
 ;These following "fix error" procedures fix an error that resulted
in the turtles going too far into the wall and the program crashing.
 ask alex
 [
 if xcor > 17
 [
 set heading (180)
 fd 1
]
]

end

to fix_error_audrey
 ask audrey
 [
 if xcor > 17
 [
 set heading (180)
 fd 1
]
]

end
to fix_error_andy
 ask andy
 [
 if xcor > 17
 [
 set heading (180)
 fd 1
]
]

end

to go
 reset-timer

 ;origin points
 let origin_x (-12)
 let origin_y (box)
 ;the likeleyhood of an alex injuring the orther agents
 let injury_chance_alex1 (numb * .06)
 let injury_chance_alex2 (numb * .03)
 let injury_chance_alex3 (numb * .01)

ask alex
 [
 if injurys = true
 [
 ;audrey 6%
 if injury_chance_alex1 > random (numb)
 [
 ask audrey-here [set color 27]
]
 ;andy 3%
 if injury_chance_alex2 > random (numb)

 [
 ask andy-here [set color 47]
]
 ;alex 1%
 if injury_chance_alex3 > random (numb)
 [
 ask alex-here [set color 95]
]

]
 set heading towards patch (origin_x) ((0) + 1)
 bounce_alex
 fix_error_alex
 ifelse color != 27
 ;This set of commands dictates the movement of the healthy
Alexes while the second one dictates how they move when injured
 [
 fd 1.5
 ; this algorithm makes the Alex disaper as they go through the
end door, simulating their escape.
 if xcor <= (origin_x) + .5
 [
 if xcor >= (origin_x) - .5
 [
 if ycor <= ((0) + 1.5)
 [
 if ycor >= ((0) + .5)
 [
 set escaped (escaped + 1)
 set alex_escaped (alex_escaped + 1)
 die
]
]
]
]
]
 ;if the Alexes are injured, they go 50% of their movement
speed.
 [
 fd .7
 ; this algorithm makes the andy disaper as they go through the
end door, simulating their escape.
 if xcor <= (origin_x) + .5
 [
 if xcor >= (origin_x) - .5
 [
 if ycor <= ((0) + 1.5)
 [

 if ycor >= ((0) + .5)
 [
 set escaped (escaped + 1)
 set alex_escaped (alex_escaped + 1)
 set injured (injured + 1)
 die
]
]
]
]
]
]

ask audrey
 [

 set heading towards patch (origin_x) ((0) + 1)
 bounce_audrey
 fix_error_audrey
 ifelse color != 27
 ;This set of commands dictates the movement of the healthy
Audreyes while the second one dictates how they move when injured
 [
 fd .9
 ; this algorithm makes the audrey disaper as they go through
the end door, simulating their escape.
 if xcor <= (origin_x) + .5
 [
 if xcor >= (origin_x) - .5
 [
 if ycor <= ((0) + 1.5)
 [
 if ycor >= ((0) + .5)
 [
 set escaped (escaped + 1)
 set audrey_escaped (audrey_escaped + 1)
 die
]
]
]
]
]
 ;if the Audreys are injured, they go 50% of their movement
speed.
 [
 fd .4
 ; this algorithm makes the andy disaper as they go through the
end door, simulating their escape.

 if xcor <= (origin_x) + .5
 [
 if xcor >= (origin_x) - .5
 [
 if ycor <= ((0) + 1.5)
 [
 if ycor >= ((0) + .5)
 [
 set escaped (escaped + 1)
 set audrey_escaped (audrey_escaped + 1)
 set injured (injured + 1)
 die
]
]
]
]
]
]

 ask andy
 [

 set heading towards patch (origin_x) ((0) + 1)
 bounce_andy
 fix_error_andy
 ifelse color != 47
 ;This set of commands dictates the movement of the healthy
andys, while the second one dictates how they move when injured
 [
 fd 1
 ; this algorithm makes the Andy disaper as they go through the
end door, simulating their escape.
 if xcor <= (origin_x) + .5
 [
 if xcor >= (origin_x) - .5
 [
 if ycor <= ((0) + 1.5)
 [
 if ycor >= ((0) + .5)
 [
 set escaped (escaped + 1)
 set reg_escaped (reg_escaped + 1)
 die
]
]
]
]

]
 ;if the andys are injured, they go 50% of their movement speed.
 [
 fd .5
 ; this algorithm makes the andy disaper as they go through the
end door, simulating their escape.
 if xcor <= (origin_x) + .5
 [
 if xcor >= (origin_x) - .5
 [
 if ycor <= ((0) + 1.5)
 [
 if ycor >= ((0) + .5)
 [
 set escaped (escaped + 1)
 set reg_escaped (reg_escaped + 1)
 set injured (injured + 1)
 die
]
]
]
]
]

]

 tick
end

