;Evacuation Efficency (v.1.6.3 LAMBDA)

;Team SFHS-2 by Micah Sulich, Daniel Onstott, Luke Shankin, Lileigh
Thomas, and Marisa Tedori

;Made in netlogo v6.0

globals [escaped alex escaped audrey escaped reg escaped injured]
;the more agressive agent set
breed [alex alexes]
;the more submissive agent set
breed [audrey audreys]
;the middle of the two
breed [andy andys]
to clear
clear-all
end
to setup
ifelse sprout? = true
[
;reset graph
set escaped O
set alex escaped 0
set audrey escaped 0
set reg escaped 0
set injured O
clear-turtles
;finds patches that are within the building to spawn from
ask n-of numb (patches with ([pcolor != red and pcolor != green and
pxcor > -13 and pxcor < 15]))
[
;coinflip for regular andy
ifelse (random(2)) = 0
[
sprout 1
[set color yellow
set breed andy
set shape "square"]
Il
;further coinflip o divide remaining andy
ifelse (random(2)) = 0 [
sprout 1
[set color blue
if color toggle = false
[
set color yellow
]
set breed alex
set shape "square"]

N

sprout 1

[set color orange
if color toggle = false
(

set color yellow

set breed audrey
set shape "square"]
]

]

]

;-—--sprout off-----------—-
[
set escaped 0
set alex escaped 0
set audrey escaped 0
clear-turtles
if andy on = true
[
create-andy numb

(

setxy (((-12) + 2) + random (26)) (((-12) + (-2)) + random
(29))
set color yellow
]
]
if alex on = true

[

create-alex numb_ alex

(

setxy (((-12) + 2) + random (26)) (((-12) + (-2)) + random (29))
set color blue

if audrey on = true

[

create-audrey numb_ audrey

[

setxy (((-12) + 2) + random (26)) (((-12) + (-2)) + random (29))
set color orange

]

]

]

reset-ticks

setup-plots
end

to bounce alex
; The bounce function is the dictates how the agents interact with
eachother.
; determines if the agent goes up or down
if [pcolor] of patch-at dx 1 = red
[
if ycor > (-1 * box) [set heading (180)]
if ycor < (-1 * box)[set heading (90)]
]
if not any? other audrey-on patch-ahead 1 = false

[

set heading (heading - 180)
fd 1.2

set heading (heading + 79)
set heading (heading - 259)

end

to bounce audrey
; The bounce function is the dictates how the agents interact with
each other.

; In the case of this breed, if a red wall blocks its path, it will
turn towards the door and try to move closer to it until it can move
around the obstacle.

;When coming into contact with another agent, It will turn around to
find a clear path before trying to go towards the door again.

;In this sense the agent “waits” and “pushes” its way around other
agents.

let flip (random 2)
; determines if the agent goes up or down
if [pcolor] of patch-at dx 1 = red

if ycor > (-1 * box) [set heading (180)]
if ycor < (-1 * box)[set heading (90)]

if not any? other alex-on patch-ahead 1 = false
[

if flip =1

(

set heading (heading - 180)
fd .5

set heading(heading + 85)
set heading (heading - 259)

if flip = 2
[

set heading (heading + 180)
fd .5

set heading (heading - 85)
set heading (heading + 259)

if not any? other andy-on patch-ahead 1 = false
[

if flip =1

[

set heading (heading - 180)
fd .75

set heading(heading + 85)
set heading (heading - 259)

if flip = 2
[

set heading (heading + 180)
fd .75

set heading (heading - 85)
set heading (heading + 259)

if not any? other audrey-on patch-ahead 1 false

[
if flip = 1
[

set heading (heading - 180)
fd .9

set heading(heading + 85)
set heading (heading - 259)

if flip = 2
[

set heading (heading + 180)
fd .9

set heading (heading - 85)
set heading (heading + 259)

end

to bounce andy
; The bounce function is the dictates how the agents interact with
eachother
let flip (random 2)
; determines if the agent goes up or down
if [pcolor] of patch-at dx 1 = red
[
if ycor > (-1 * box) [set heading (180)]
if ycor < (-1 * box) [set heading (90)]

if not any? other turtles-on patch-ahead 1 = false

[
if flip = 1
[

set heading (heading - 180)

fd 1
set heading (heading + 85)
set heading (heading - 259)

if flip = 2
[

set heading (heading + 180)
fd 1

set heading (heading - 85)
set heading(heading + 259)

end
to makebox

;made by Micah
;SETTING UP THE SCHOOL and classroom enviroment
clear-patches

;origin points
let origin x (-12)
let origin y (box)

;top room vars

let top room 1 (1 + box)
let top room 2 (1 + box)
let top room 3 (1 + box)

;hallway length wvars
let hall leng 1 (-12)
let hall leng 2 (-12)
let hall leng 3 (-12)
let hall leng 4 (-12)
;bottom room vars

let bt room 1 (1 + box)
let bt room 2 (1 + box)
let bt room 3 (1 + box)

;back wall
let bk wall 1 (16)
let bk wall 2 (-16)

let bk wall 3

(=16)

;making the front door/building edge
ask (p

(

atch (origin x)

set pcolor green

]

ask (p

(

atch (origin x)

set pcolor green
(origin x) (1)

lask
[

(patch

set pcolor green

]

ask

set

ask

set

ask

set

ask

[

set

]

ask

[

set

]

ask

[

set

]

(patch

pcolor

(patch

pcolor

(patch

pcolor

(patch

pcolor

(patch

pcolor

(patch

pcolor

(=1))

(0))

(origin x) (-2)

red

(origin x) (-3)

red

(origin x) (-4)

red

(origin_x) (2)

red

(origin_x) (3)

red

(origin_x) (4)

red

; TOP HALLWAY WALLs and doors

while

[

ask

[

[hall leng 1 <

(patch

(17)]

(hall leng 1)

set pcolor red

(origin_y)

)

set hall leng 1 (hall leng 1 + 1)
]
while [hall leng 3 < (17)]
[

ask (patch (hall leng 3) (16))

[

set pcolor red

]
set hall leng 3 (hall leng 3 + 1)

;Making the upper hallway door gaps
ask (patch (0) (origin y))
[
set pcolor black
]
ask (patch (-1) (origin y))
[
set pcolor black
]

ask (patch (-11) (origin y))
éet pcolor black

alk (patch (-10) (origin y))
éet pcolor black

alk (patch (9) (origin y))
éet pcolor black

alk (patch (10) (origin y))
éet pcolor black
]

; LOWER HALLWAY WALL

while [hall leng 2 < (17)]

[
ask (patch (hall leng 2) (-1 * origin y))
[
set pcolor red

]
set hall leng 2 (hall leng 2 + 1)

]

while [hall leng 4 < (17)]

[
ask (patch (hall leng 4) (-16))
[

set pcolor red

]
set hall leng 4 (hall leng 4 + 1)

;Making the lower hallway door gaps
ask (patch (-3) (-1 * origin y))
[
set pcolor black
]
ask (patch (-4) (-1 * origin y))
[
set pcolor black
]
ask (patch (6) (-1 * origin y))
[
set pcolor black
]
ask (patch (7) (-1 * origin y))
[
set pcolor black
]
ask (patch (15) (-1 * origin y))
[
set pcolor black
]
ask (patch (14) (-1 * origin y))
[
set pcolor black
]

;THIS CODE MAKES the top rooms
while [top room 1 < (17)]
[
ask (patch (origin x) (top room 1))
[

set pcolor red

]

set top room 1 (top room 1 + 1)

while [top room 3 < (17)]
[

ask (patch (origin x + 10) (top room 3))

(

set pcolor red

]

set top room 3 (top room 3 + 1)

while [top room 2 < (17)]
[
ask (patch (origin x + 20) (top room 2))
[

set pcolor red

]

set top room 2 (top room 2 + 1)

;this code makes the bottom rooms
while [bt room 1 < (17)]
[
ask (patch (origin x) (-1 * bt room 1))
[
set pcolor red
]
set bt room 1 (bt room 1 + 1)
]
while [bt room 3 < (17)]
[
ask (patch (origin x + 10) (-1 * bt room 3))
[
set pcolor red
]
set bt room 3 (bt room 3 + 1)
]
while [bt room 2 < (17)]
[
ask (patch (origin x + 20) (-1 * bt room 2))
[
set pcolor red

]
set bt room 2 (bt room 2 + 1)

while [bk wall 1 > (0)]

[
ask patch (16) (bk wall 1)
[

set pcolor red

]
set bk wall 1 (bk wall 1 - 1)

]
while [bk wall 2 < (0)]
[
ask patch (16) (bk wall 2)
[
set pcolor red
]
set bk wall 2 (bk wall 2 + 1)
]
ask (patch (16) (0))
[
set pcolor red
]
while [bt room 1 < (17)]
[
ask (patch (origin x) (-1 * bt room 1))
[
set pcolor red
]
set bt room 1 (bt room 1 + 1)
]

;this code inpart prevents the backwall bug
let bugfixl (-16)
while [bugfixl < (17)]
[
ask (patch (17) (bugfixl))
[
set pcolor red

]
set bugfixl (bugfixl + 1)

end
to fix error alex
;These following "fix error" procedures fix an error that resulted
in the turtles going too far into the wall and the program crashing.
ask alex
[
if xcor > 17
[
set heading (180)
fd 1

end

to fix error audrey
ask audrey
[
if xcor > 17
(
set heading (180)
fd 1

end
to fix error andy
ask andy
[
if xcor > 17
[
set heading (180)
fd 1

end

to go
reset-timer

;origin points

let origin x (-12)

let origin y (box)

;the likeleyhood of an alex injuring the orther agents

let injury chance alexl (numb * .06)
let injury chance alex2 (numb * .03)
let injury chance alex3 (numb * .01)
ask alex
[
if injurys = true

(
;audrey 6%
if injury chance alexl > random (numb)

[

ask audrey-here [set color 27]
]
;andy 3%
if injury chance alex2 > random (numb)

ask andy-here [set color 47]
]
;alex 1%
if injury chance alex3 > random (numb)

[

ask alex-here [set color 95]

set heading towards patch (origin x) ((0) + 1)
bounce alex
fix error alex
ifelse color != 27
;This set of commands dictates the movement of the healthy
Alexes while the second one dictates how they move when injured
[
fd 1.5
; this algorithm makes the Alex disaper as they go through the
end door, simulating their escape.

if xcor <= (origin x) + .5
[
if xcor >= (origin x) - .5
[
if ycor <= ((0) + 1.5)
[
if ycor >= ((0) + .5)

[
set escaped (escaped + 1)
set alex escaped (alex escaped + 1)
die

;1f the Alexes are injured, they go 50% of their movement

speed.
[
fd .7
; this algorithm makes the andy disaper as they go through the
end door, simulating their escape.
if xcor <= (origin x) + .5
[
if xcor >= (origin x) - .5
[
if ycor <= ((0) + 1.5)
[

if ycor >= ((0) + .5)
[
set escaped (escaped + 1)
set alex escaped (alex escaped + 1)
set injured (injured + 1)
die

ask audrey

[

set heading towards patch (origin x) ((0) + 1)
bounce audrey
fix error audrey
ifelse color != 27
;This set of commands dictates the movement of the healthy
Audreyes while the second one dictates how they move when injured
[
fd .9
; this algorithm makes the audrey disaper as they go through
the end door, simulating their escape.

if xcor <= (origin x) + .5
[
if xcor >= (origin x) - .5
[
if ycor <= ((0) + 1.5)
[
if ycor >= ((0) + .5)

[
set escaped (escaped + 1)
set audrey escaped (audrey escaped + 1)
die

;if the Audreys are injured, they go 50% of their movement
speed.

[

fd .4

; this algorithm makes the andy disaper as they go through the
end door, simulating their escape.

if xcor <= (origin x) + .5

[

if xcor >= (origin x) - .5
[
if ycor <= ((0) + 1.5)
[
if ycor >= ((0) + .5)

[
set escaped (escaped + 1)
set audrey escaped (audrey escaped + 1)
set injured (injured + 1)
die

ask andy
[

set heading towards patch (origin x) ((0) + 1)
bounce andy
fix error andy
ifelse color != 47
;This set of commands dictates the movement of the healthy
andys, while the second one dictates how they move when injured
[
fd 1
; this algorithm makes the Andy disaper as they go through the
end door, simulating their escape.

if xcor <= (origin x) + .5
[if xcor >= (origin x) - .5

[if ycor <= ((0) + 1.5)

[if ycor >= ((0) + .5)

[
set escaped (escaped + 1)
set reg escaped (reg escaped + 1)
die

]

;i1f the andys are injured, they go 50% of their movement speed.

[

fd .5

; this algorithm makes the andy disaper as they go through the
end door, simulating their escape.

if xcor <= (origin x) + .5
[
if xcor >= (origin x) - .5
[
if ycor <= ((0) + 1.5)
[
if ycor >= ((0) + .5)

[
set escaped (escaped + 1)
set reg escaped (reg escaped + 1)
set injured (injured + 1)
die

tick
end

