
Sudoku Solver

Team Number:​ 34

Team Members:

Andy Corliss

Max Corliss

Phillip Ionkov

Ming-Yuan Lo

Team Mentor:

Li-Ta Lo

Latchesar Ionkov

Problem Definition:

Sudoku is a logic-based puzzle that is solved by placing numbers in a grid. For each row,

column, and box, all numbers in a range must be placed only once. For example, an original 9x9

grid (the most common form, found in newspapers and books) has 9 rows, 9 columns and 9

boxes, and the numbers 1 to 9 are used. Each box is a square root of the total board size (for

example, a 9x9 grid has nine 3x3 boxes, and a 16x16 grid has sixteen 4x4 boxes). We want to be

able to make the computer solve Sudoku puzzles of any size, especially puzzles that humans can

not solve easily. We will also investigate the relationship between board size and computer’s

speed in solving the puzzle.

Problem Solution:

We will solve this problem by creating a program in Python​[1]
(using the repl.it​[2] ​

web-based

programming environment) that will systematically try different number combinations using a

technique called “backtracking” ​[3, 4]​
. In this technique, the computer tries a potential partial

solution and checks to see if it works. If the partial solution works, the computer will try to add

another number to the solution. If the solution does not work, it will go back and try an

alternative potential solution. Recursion ​[4]
is a computing technique in which a function

repeatedly calls itself, and is used to impleme ​nt backtracking.

Our Progress:

We began this year by learning some very basic Python coding. We made simple programs such

as drawing graphics in Python with the Turtle library. Because Python is a new coding language

for most of us, we needed to get a grasp on Python’s syntax. We have been looking into

recursion through drawing Sierpinski’s Triangle ​[5]
and other fractals. More recently, we started

working on some more relevant codes, such as the “N Queen Puzzle”​[6]
where the solver attempts

to place ‘n’ queens on a chessboard of ‘n’ x ‘n’ size without any of the queens threatening each

other. To solve the N Queen problem, we used backtracking. Both of these methods will be used

for our Sudoku solver.

What we expect:

We expect to make a Sudoku solver that can solve any Sudoku puzzle. We will start with

relatively simple puzzles, such as 4x4 and 9x9 Sudokus with increasing difficulty. Then, we will

continue to the harder and more complicated puzzles, including 16x16, 25x25, and greater.

Additionally, we expect our solver to generate Sudoku puzzles and determine if a puzzle has one

or multiple solutions.

Citations:

1. The Python programming language, ​https://www.python.org/

2. The ​repl.it​ web-based python programming environment, ​https://repl.it/

3. Wikipedia page on algorithms for solving Sudoku,

https://en.wikipedia.org/wiki/Sudoku_solving_algorithms

4. Lecture note from Stanford on backtracking and recursion, the algorithm to solve some

"searching" problems

https://see.stanford.edu/materials/icspacs106b/H19-RecBacktrackExamples.pdf

5. Sierpinski triangle, the motivating exercise for us to understand recursion better,

https://en.wikipedia.org/wiki/Sierpinski_triangle

6. NQueen problem, where we actually put "backtracking" into solving a puzzle.

https://en.wikipedia.org/wiki/Eight_queens_puzzle

Appendix:

Sierpinski Triangle Code by Phillip Ionkov:
import​ ​turtle
import​ ​math

t = turtle.Turtle()

t.speed(​0​)

def​ ​draw_triangle​(size, x,
y):

 t.penup()

 t.goto(x, y)

 t.pendown()

 ​for​ i ​in​ ​range ​(​3​):
 t.forward(size)

 t.left(​120​)

def​ ​draw_spks​(size, x, y,
level):

https://www.python.org/
http://repl.it/
https://repl.it/
https://en.wikipedia.org/wiki/Sudoku_solving_algorithms
https://see.stanford.edu/materials/icspacs106b/H19-RecBacktrackExamples.pdf
https://en.wikipedia.org/wiki/Sierpinski_triangle
https://en.wikipedia.org/wiki/Eight_queens_puzzle

 ​if​ (level >= ​0​):
 draw_triangle(size/ ​2​, x + size/ ​2​, y)
 draw_spks(size/ ​2​, x, y, level - ​1​)
 draw_spks(size/ ​2​, x + size/ ​2​, y, level - ​1​)
 draw_spks(size/ ​2​, x + size/ ​4​, y + size*math.sqrt(​3​)/ ​4​,
level - ​1​)

draw_triangle(​400​, - ​200​, - ​200​)
t.left(​60​)
draw_spks(​400​, - ​200​, - ​200​, ​4​)
t.ht()

Triangle Generator by Max Corliss
import​ ​turtle

t = turtle.Turtle()

t.speed(​3 ​)

def​ ​chill ​(s,l,n):
 ​for​ i ​in ​ ​range ​(n):

t.forward(​2 ​*s)
t.left(l)

def​ ​tri ​(a,b):
 t.left(​180 ​ - a)
 t.forward(​60 ​)
 t.left(​180 ​ - b)
 t.forward(​60 ​)
 t.goto(​0 ​, ​0 ​)

def​ ​test ​(s):
 t.right(s)

 t.left(s)

def​ ​triangle ​(a,b):
 ​if​(a > b):

t.forward(​30 ​)
t.goto(​0 ​, ​0 ​)
t.left(a)

t.forward(​500 ​)
t.penup()

t.goto(​30 ​, ​0 ​)
t.pendown()

t.left(​180 ​ - a)
t.right(b)

t.forward(​500 ​)
 ​else​:

t.forward(​30 ​)
t.goto(​0 ​, ​0 ​)
t.left(b)

t.forward(​500 ​)
t.penup()

t.goto(​30 ​, ​0 ​)
t.pendown()

t.left(​180 ​ - b)
t.right(a)

t.forward(​500 ​)

triangle(​70 ​, ​40 ​)

N Queen Solver By Ming-Yuan Lo:

N = ​4

board = [[​' ' ​ ​for​ i ​in​ ​range ​(N)] ​for​ i ​in​ ​range ​(N)]

def​ ​printboard​():
 ​for​ i ​in​ board:
 ​print​(​'-' ​ * (N * ​3​ + ​1​))
 ​print​(​'|' ​, end= ​"" ​)
 ​for​ j ​in​ i:
 ​print​(j, ​'|' ​, end= ​"" ​)
 ​print​(​"" ​)
 ​print​(​'-' ​ * (N * ​3​ + ​1​))

def​ ​notOnRow​(row):
 ​for​ i ​in​ ​range ​(N):
 ​if​ board[row][i] == ​"Q" ​:
 ​return​ ​False
 ​return​ ​True

def​ ​notOnCol​(col):
 ​for​ i ​in​ ​range ​(N):
 ​if​ board[i][col] == ​"Q" ​:
 ​return​ ​False
 ​return​ ​True

def​ ​notOnDiagonal​(row, col):
 ​for​ i ​in​ ​range ​(N):
 ​for​ j ​in​ ​range ​(N):
 ​if​ board[i][j] == ​'Q' ​ ​and​ ​abs ​(row-i) == ​abs ​(col-j):
 ​return​ ​False
 ​return​ ​True

def​ ​isSafe​(row, col):
 ​if​ notOnRow(row) ​and​ notOnCol(col) ​and
notOnDiagonal(row, col):

 ​return​ ​True
 ​return​ ​False

def​ ​NQueen​(row):
 ​if​ row == N:
 ​return​ ​True
 ​for​ col ​in​ ​range ​(N):
 ​if​ isSafe(row, col):
 board[row][col] = ​"Q"
 ​if​ NQueen(row + ​1​):
 ​return​ ​True
 ​else​:
 board[row][col] = ​" "
 ​return​ ​False

NQueen(​0​)
printboard()

Output:

Square in a Square by Andy Corliss:

import​ ​turtle
import​ ​math

t = turtle.Turtle()

t.speed(​0​)
def​ ​square​(size):
 ​for​ i ​in​ ​range​(​4​):
 t.forward(size)

 t.left(​90​)

def​ ​sqrthing​(size,reps):
 t.penup()

 t.goto(-​200​,-​200​)
 t.pendown()

 ​for​ i ​in​ ​range​(reps):
 square(size)

 t.forward(size/​2​)
 t.left(​45​)
 size = math.sqrt(​2​)*size/​2
sqrthing(​400​, ​15​)
t.ht()

