
 

 

 

Fluctuations of Rainfall and its Effect on an Agricultural 
Environment 

New Mexico 

Supercomputing challenge 

Final Report 

April 6, 2011 

 

Team 118 

Volcano Vista High School 

 

Team members 

Joseph Miera 

Joe Fosse 

Teacher 

Janet 
Penevolpe



 

1 

 

Table of Contents 

 

Executive Summary .............................................. 2-3 

Introduction .......................................................... 4 

Description (method) ........................................... 5-6 

Results and Conclusions ....................................... 7 

Acknowledgements .............................................. 8 

Works Cited .......................................................... 8 

Appendix A: Code ................................................ 9-44 

Appendix B: Graphs ............................................. 45 

 



 

2 

 

Advances in science in the field of agriculture have brought many useful things that have 

improved yield and quality of crops: high-tech machinery to help grow and harvest better, 

fertilizers to increase yield and a healthy crop, crop dusters and pesticides to rid the field of 

invasive intruders.  A problem remains: How much can a few simple fluctuations of rainfall 

effect an agricultural environment and those making their living off of it?  According to the 

studies of this project, it appears it does have a greatly significant effect.  The project is based 

off of captured data from a simulation of a wheat farm.  All the significant variables are 

recorded as the simulation plays out, including the irrigated water usage of the farmer, rainfall, 

amount of [wheat] bushel return, profit, revenue (gross profit, no costs deducted), and costs.  

The simulation loops through the days of a season, mimicking the basic events and conditions 

that go into a day.  It takes into account several simulated conditions including: a range of 

possible chances of rain, a range of possible rainfall amounts, cost of irrigated water, field size, 

grain price, and amount the farmer waters weekly (if they need to water).  These variables can 

be user-defined as of the final edits to the program.  Patterns and trends can be noted as 

conditions are changed, trends such as the probable outcomes of a year with less rain than 

normal.  In other words, the user can define specific conditions and the program will predict the 

possible outcome(s) of that season.  It can also do predictions spanning over many seasons, or 

it can re-simulate one season over and over.  And if the user does not define conditions, the 

program can randomly generate conditions and run with those.  The power of the project is 

immense, even though this is only its first year of being.  Many things have been and can be 

noticed from the data generated by the program, including trends relating to field size and 

revenue (and thus profit), trends relating to rainfall and water usage and costs (and thus profit), 



 

3 

 

and other minor trends.  The power of the program is immense, and our plans for it in the 

future will even more greatly increase the scope and power of it.  In the future, for the next 

challenges, we plan to make the program be able to access online databases and thus suggest 

the likely conditions for the specified year.  We plan to make the program not be solely 

dependent on wheat and be able to use any crop specified.  Also, we plan to make the program 

suggest the crop that would do best in specific years.  But, if one is focusing on the present, it is 

still an amazingly powerful program, because even though the default conditions are based off 

an area here in New Mexico, it is adaptable to any area.  This means one could apply 

predictions and ranges of possible data to themselves even if they do not live in New Mexico.  

With this tool, it could potentially help farmers maximize their yields, communities maximize 

their farming industry, and thus help the economy and help individuals with the abundance of 

things we need.  We see this as a probable tool that doesn’t alter nature, but allows us to 

maximize its potential.  Maybe farmers can’t change the rainfall, but with this program they can 

take all the data and information available to make the best decision, and can make the most of 

what they get.



 

4 

 

Introduction: 

This project is based on the problem of fluctuations of rainfall affecting an agricultural 

environment.  This really translates to be: a lot of simulating and researching.  The simulation 

created was, in turn, based off of the research of conditions and trends of wheat, and, for 

default conditions, the Lower Mesilla Valley here in New Mexico.  It loops through the days of a 

season continuously, with the user set or preset conditions.  With these conditions, it mocks 

the actual major events and happenings in a day.  These events include rainfall, irrigation, and, 

at the end of the season, tally of revenue, costs, profit, and bushels gained are calculated.  With 

this simulation, it outputs data that is a prediction of what may happen based on the 

conditions.  If one approximately knows the current conditions (such as how much they water 

their farm each week, about how much the range of rain amounts are, and such), the program 

will predict their final income and how much their costs might be and how much their revenue 

might be.  This problem is significant to me and to everyone else, because if we know there is 

going to be a drought based on patterns, we can approximate how much it would hurt 

individual farmers.  This would affect the market in which I buy my food.  Thus, if we can 

approximate how much farmers would get hurt, one could probably approximate the change in 

food prices.  This is important to me, because it would be nice to know if I am going to have to 

pay twice as much for bread next year, so I can prepare the finances needed to pay for my own 

costs when the time comes.  Most people probably agree with that.  With something as big as 

agriculture, it affects the entire world.  



 

5 

 

Method: 

The program takes certain conditions, and runs through a simulated season with them, and 

returns an outcome that may be similar to what would happen in real life.  It will loop again and 

again, and depending on your settings, will predict an outcome over many seasons, or the many 

possible outcomes of one season. 

The process of the project: 

1. If it is the first day of the “season” all graphs and variables are established.  If it is the 

first day of the first season, or the user has clicked the “reset each season” box, 

permanent graphs and variables are established. 

2. Then it loops through each day: 

a. Starts by checking the chance of raining.  A value in between the max. and min. 

of percent chance of rain is randomly generated.  That becomes the percent 

chance of rain that day. 

b. It then randomly generates an integer between 0 and 100, and if the value is less 

than or equal to the percent chance of rain, it rains. 

c. If it rains, a randomly generated number between the min. and max. possible 

amount of rain becomes the amount of rain in inches. 

d. If it has rained more than the amount the farmer waters each week, the farmer 

does not water.  If it has not rained enough, the farmer will water. 

e. If the farmer waters, he puts the same amount of water (in inches) in the field as 

he does every week.  It never differs in that respect. 



 

6 

 

3. It loops through half a years worth of days, then reaches the season’s end. 

4. At the season’s end, water used determines the cost of that season, and the predicted 

amount of bushels is returned.  The amount of bushels and bushel price determine 

revenue.  Profit is calculated by the difference of revenue and cost. 

5. If told to do so, the graphs save their data to the local folder. 

6. It then loops through another season. 

As of this year, conditions can be randomly generated, or manually inputted.  The program 

cannot retrieve predicted conditions (i.e. the range of percent chance of rain that is possible to 

have each day, the minimum and maximum that is possible to rain each day, etc.) on its own 

from the internet, but as of this year can only retrieve conditions manually.  We plan to remedy 

this for next year’s competition.  The project uses wheat as a basis, and uses its water needs, 

and bushel price in the calculations.  But also by next year we plan to have the project be able 

to use other plants as a basis, and be able to return a recommended crop for specific 

conditions. 



 

7 

 

Results and Conclusions: 

There are several things that can be found from the data generated from our project.  For 

example, our team found that when it rains less, the revenue and profit gained are significantly 

less.  This is most likely because of several reasons.  First of all, when it rains less, the farmer 

has to water more.  If the farmer has to water more himself, and there is less that comes 

naturally (and for free), the overall costs are greater in the end.  Also, when there’s less water 

in the field overall, less bushels of wheat can be produced and sold.  This means there would 

also be a drop in revenue.  Another thing that can be pulled from the data is that field size 

affects revenue and cost greatly.  If one of the field’s attributes is that it is only one acre, the 

profit will only compile by increments in the hundreds range, but if the size attribute of the field 

is fifty acres, then the farmer’s profit will accumulate by the thousands (in either the positive or 

negative direction).  In other words, the larger the field, the greater possibility of attaining an 

enormous profit, but it is also a greater risk of going into an enormous amount of debt.  Other 

trends that can be noted include minor ones such as the fact that the amount the farmer 

waters overall can help determine how severe the drought is (e.g. If they water a lot, it was a 

severe drought with little rain.) 

See Appendix B for graphic representations 



 

8 

 

Acknowledgements: 

Thanks to our wonderful teacher Miss Penevolpe, who has guided and helped us in Volcano 

Vista’s first year of Supercomputing.  Thanks to everyone involved and for parent support.  We 

could not have done it with out all the help we have received from all these great people. 

Works Cited: 

Kowalski, Chuck. "Wheat - Planting and Harvest Seasons for Wheat Crops." Commodities - About 
Commodities and Futures Trading. About.com. Web. 06 Apr. 2011. 
<http://commodities.about.com/od/researchcommodities/a/wheat-seasons.htm>. 

 
Bauder, James W. "Wheat Irrigation." MSU Extension Water Quality Program. 12 May 2005. Web. 06 

Apr. 2011. <http://waterquality.montana.edu/docs/irrigation/wheatirrigation.shtml>. 
 
Chang, C. W. "Chemical Properties of Alkali Soils in Mesilla Valley, New M... : Soil Science."LWW 

Journals. Web. 06 Apr. 2011. 
<http://journals.lww.com/soilsci/Citation/1953/03000/Chemical_Properties_of_Alkali_Soils_in_M
esilla.8.aspx>. 

 
"Requirements for Growing Wheat | Garden Guides." Garden Guides, Your Guide to Everything 

Gardening. Web. 18 Feb. 2011. <http://www.gardenguides.com/124101-requirements-growing-
wheat.html>. 

 
An Excerpt from "Wheat Irrigation", EM 3048, December, 1976. Washington State University Extension 

Service. 
 
"Physical Characteristics of the Site." Co.dona-ana.nm.us. Web. 18 Feb. 2011. http://www.co.dona-

ana.nm.us/superfund/docs/ris/RISsection3.pdf 
 
Herrera, Esteban A., and Ted Sammis. "Water Management in Pecan Orchards." Docstoc – Documents, 

Templates, Forms, Ebooks, Papers & Presentations. Web. 18 Feb. 2011. 
<http://www.docstoc.com/docs/68291777/Water-Management-in-Pecan-Orchards>. 

 
"Price of Wheat." Wheat Prices, Wheat Quote. Web. 18 Feb. 2011. <http://www.quotewheat.com/>. 
 
"Cost of Water." Fairfax Water. Web. 18 Feb. 2011. 

<http://www.fcwa.org/story_of_water/html/costs.htm>.



 

9 

 

Appendix A: 
Rainfall_in_an_agricultural_setting.exe (main (master) 
program) 
Code from objMain, main handler of events and controls the flow of the program 

Information about object: objMain 
 
Sprite: <no sprite> 
Solid: false 
Visible: true 
Depth: 0 
Persistent: false 
Parent: <no parent> 
Mask: <same as sprite> 
 
Create Event: 
execute code: 
 
// http://commodities.about.com/od/researchcommodities/a/wheat-seasons.htm 
// Growing season (two seasons per year taking up all year) 
 
//http://waterquality.montana.edu/docs/irrigation/wheatirrigation.shtml 
//Total seasonal requirement is about 18-21" inches for these two crops, depending upon the location 
within the state and seasonal weather variations. 
 
//located in the lower Mesilla valley? 
//http://journals.lww.com/soilsci/Citation/1953/03000/Chemical_Properties_of_Alkali_Soils_in_Mesilla.
8.aspx 
//Average Low Temperature, 27.9° F. Rainy Days, 13%. Average Annual Rainfall, 9.2 inches ... 
 
globalvar FIRSTLOOP, LOOPCOUNT, DAYCOUNT, SEASONCOUNT, TEMPERATURE, Potential, YIELD; 
globalvar WATER, tempWater, TOTALWATER, R, I, GROUNDWATER;//WATER is total amt. of water in 
field, temp"" is the same but respective to the day 
globalvar LOW,HIGH,CHANCERAIN,Daylength,TOTALDAYS;//lowest amt. of rainfall possible, highest 
possible, % chance of rain 
LOW = 0.5; HIGH = 1.5; CHANCERAIN = 13; LCHANCE = 0; HCHANCE = 13;//HChance and LChance 
determine the possible range of percent chance of rain each day 
Daylength = 4; 
I = 1; 
 
TOTALWATER = 0; 
 
FIRSTLOOP = 1; 
LOOPCOUNT = 0; 



 

10 

 

DAYCOUNT = 0; TOTALDAYS = 0; 
SEASONCOUNT = 0; 
 
TEMPERATURE = 75;//Wheat grows best in temperatures between 70 and 75 degrees F. The minimum 
temperature that wheat can withstand during its growth cycle is about 40 degrees F. 
//Wheat does not grow well if temperatures exceed 95 degrees F. Temperatures below 40 degrees F 
during seed germination will result in lower germination rates. Temperatures higher than 95 degrees F 
during maturation will result in lower yields. 
//From "http://www.gardenguides.com/124101-requirements-growing-wheat.html" 
 
 
////////////////////////////////////////////////// 
 
/*SM = 1.5;*/ R = 0; I = 0; Potential = 0;//Potential is measure of "Life" or how well a field is doing by 
how much it can return 
 
/*From "http://waterquality.montana.edu/docs/irrigation/wheatirrigation.shtml" 
 
A simple way to calculate either the potential yield or seasonal water requirements is by use of models, 
such as the following: 
 
Estimated yield (in bushels/acre) = 5.8 (SM + R/I - 4.1) bushels/acre where: 
 
          SM = soil moisture (inches)  
          R = rainfall (inches)  
          I = irrigation (inches) 
 
For instance, if plant available soil moisture is 6 inches, rainfall is 3 inches, and irrigation is 6 inches, 
estimated yield in bushels/acre is = 5.8 (6 + 3 + 6 - 4.1) = 63 bu/acre. 
 
Admittedly, this provides only an estimate. More refined models are available to distinguish between 
winter wheat and spring wheat. However, for practical planning purposes, models like the above 
provide a good approximation. 
 
*Excerpted from "Wheat Irrigation", EM 3048, December, 1976. Washington State University Extension 
Service. 
*/ 
//////////////////////////////////////////////////// 
 
//some really good info "http://www.co.dona-ana.nm.us/superfund/docs/ris/RISsection3.pdf" 
//Potential evaporation and transpiration greatly exceeds rainfall.  Potential evaporation rates measured 
in an evaporation pan average about 97 inches per year 
//Most rain is limited to brief, sometimes intense  
//thunderstorms, with more than half of the annual precipitation falling during the period July through  
//September 
 
execute code: 



 

11 

 

 
//http://www.docstoc.com/docs/68291777/Water-Management-in-Pecan-Orchards 
//Water Moisture about 1.5 in./foot assuming 3 ft root zone 
// 
// 
// 
 
execute code: 
 
globalvar SEASONWATER,DROUGHT,RR,WR,SEASONDAYCOUNT,WI; 
globalvar severity; 
DROUGHT = 0;//whether there is a drought or not 
SEASONWATER = 0; 
RR = 0;//temporary rain of a day, R is seasonal rain 
WR = 0;//temporary rain of the week 
WI = 0;//Weekly irrigation count 
SEASONDAYCOUNT = 0;//how many days in a season 
severity = 0; 
 
execute code: 
 
globalvar WATERGRAPH,MONEYNGRAPH,MONEYGGRAPH,MONEYLGRAPH; 
WATERGRAPH = objMain;//The graph to keep track of water 
MONEYNGRAPH = objMain;//Graph tracking net profit 
MONEYGGRAPH = objMain;//graph tracking gross profit 
MONEYLGRAPH = objMain;//graph tracking money debts 
 
execute code: 
 
globalvar FIRSTSEASON;//whether it is the first season of the simulation 
FIRSTSEASON = 1; 
globalvar COLORARR; 
COLORARR[0] = c_blue; 
 
globalvar INDICATORG;//Indicator button graph 
INDICATORG = self; 
 
//an acre is 6,272,640 inches squared 
globalvar Profit,Debit; 
Profit = 0; Debit = 0; 
NetProfit = 0; 
 
execute code: 
 
globalvar 
default_run,usrPercentmax,usrPercentlow,usrWeeklyI,usrRainhigh,usrRainlow,usrGrainprice,usrWaterc
ost,usrFieldsize; 



 

12 

 

default_run = 1;//whether there are NOT user values to use instead of the default random ones 
usrPercentmax = HCHANCE;//user vals for highest possible chance of rain per day 
usrPercentlow = LCHANCE;//user vals for lowest possible chance of rain per day 
usrRainhigh = HIGH;//high amt. it can rain when it does rain 
usrRainlow = LOW;//low amt. it can rain when it does rain 
usrWeeklyI = WEEKLY;//weekly amt. farmer irrigates 
usrGrainprice = 5.5;//profit per bushel 
usrWatercost = 1.5;//water cost per thousand gallons 
usrFieldsize = 1;//Size of the field 
 
 
Other Event: Game Start: 
execute code: 
 
/*if (!file_exists("BatchRASSCC01.bat")) 
 { 
 var fff,str; 
 fff = file_text_open_write("BatchRASSCC01.bat"); 
 str = "UserVarGetSlave.exe "+string(usrPercentmax)+" "+string(usrPercentlow)+" "+string(usrWeeklyI)+" 
"+string(usrRainhigh)+" "+string(usrRainlow)+" "+string(usrGrainprice)+" "+string(usrWatercost)+" 
"+string(usrFieldsize); 
 file_text_write_string(fff,str); 
 file_text_close(fff); 
 } 
else 
 { 
 var ans; 
 ans = show_question("BatchRASSCC01.bat already exists.  This is a file the program needs to overwrite 
to operate correctly.  If this Batch file is important please hit 'no' and change its directory.  If this is not 
important, hit 'yes'.  If program was shutdown unexpectedly, this is a common error and just hit 'yes'."); 
 if (ans)//if they say yes, overwrite file 
  { 
  var fff,str; 
  fff = file_text_open_write("BatchRASSCC01.bat"); 
  str = "UserVarGetSlave.exe "+string(usrPercentmax)+" "+string(usrPercentlow)+" 
"+string(usrWeeklyI)+" "+string(usrRainhigh)+" "+string(usrRainlow)+" "+string(usrGrainprice)+" 
"+string(usrWatercost)+" "+string(usrFieldsize); 
  file_text_write_string(fff,str); 
  file_text_close(fff); 
  } 
 }*/ 
 
 
Other Event: Game End: 
execute code: 
 



 

13 

 

file_delete("BatchRASSCC01.bat"); 
 
 
Draw Event: 
execute script scrDrought with arguments (0,0,0,0,0) 
execute script scrTempMain with arguments (0,0,0,0,0)



 

14 

 

ScrDrought(): script that handles drought intervals at the beginning of each season 

if (SEASONCOUNT == 1) || (SEASONCOUNT > 1 && DROUGHT)//whether to cause a drought or not, 
second season will be drought, first will not, rest are random 
 { 
 if (SEASONDAYCOUNT == 1)//if first day of drought 
  { 
  DROUGHT = 1;//confirm drought 
  //var severity; 
  severity = choose(1,2,3);//how severe is the drought, 3 is the worst 
  switch (severity) 
   { 
   case 1: 
   LOW = 0; HIGH = 1; 
   HCHANCE = 8; 
   break; 
    
   case 2: 
   LOW = 0; HIGH = .5; 
   HCHANCE = 4; 
   break; 
    
   case 3: 
   LOW = 0; HIGH = 0; 
   HCHANCE = 0; 
   break; 
   } 
  } 
  
 } 
  
if (!DROUGHT) && (SEASONDAYCOUNT == 1) 
 { 
 LOW = 0.5; HIGH = 1.5; LCHANCE = 0; HCHANCE = 13; 
 } 
  
var /*severity,*/aaa,ccc; //severity = 0; 
aaa = draw_get_alpha(); 
ccc = draw_get_color(); 
draw_set_alpha(1); 
draw_set_color(c_black); 
 
//draw_text(8,room_height-32,string(DROUGHT)+","+string(severity));//draw drought info 
 
draw_set_alpha(aaa); 
draw_set_color(ccc); 



 

15 

 

Information about object: objField (the field that is seen in the middle of the 
Window) 
 
Sprite: <no sprite> 
Solid: false 
Visible: true 
Depth: 100 
Persistent: false 
Parent: <no parent> 
Mask: <same as sprite> 
 
Create Event: 
execute code: 
 
LIGHT = .5; 
Draw_light = LIGHT;//the alpha the orange color is actually drawn with 
 
 
Draw Event: 
execute code: 
 
draw_set_color(c_black); 
//draw_rectangle(96,96,room_width-64,room_height-64,0); 
draw_rectangle(152,8,882-8,room_height-152,0); 
draw_set_color(c_orange); 
draw_set_alpha(Draw_light); 
draw_rectangle(152,8,882-8,room_height-152,0); 
 
if (Draw_light > LIGHT) 
 { 
 Draw_light -= .075; 
 } 
else 
 { 
 Draw_light = LIGHT; 
 } 
draw_set_alpha(1); 
draw_set_color(c_green); 
draw_text(152,8,"The Wheat Field"); 
  
 
 



 

16 

 

Information about object: objRain (the rain that is drawn when it does rain) 
 
Sprite: sprRain 
Solid: false 
Visible: true 
Depth: 50 
Persistent: false 
Parent: <no parent> 
Mask: <same as sprite> 
 
Create Event: 
execute code: 
 
x = objField.x; 
y = objField.y; 
image_alpha = .2; 
deathcount = 4; 
 
 
Other Event: Animation End: 
execute code: 
 
if (deathcount > 0) 
 { 
 deathcount -= 1; 
 } 
else 
 { 
 instance_destroy(); 
 } 
 
 
Draw Event: 
execute code: 
 
draw_sprite(sprite_index,image_index,152,8);//draw on field 
 
 
  



 

17 

 

Information about object: objIndicator (colored box at top of window, indicates 
the kind of drought or whether user-inputted data is being run) 
 
Sprite: <no sprite> 
Solid: false 
Visible: true 
Depth: -100 
Persistent: false 
Parent: <no parent> 
Mask: <same as sprite> 
Create Event: 
execute code: 
 
haveset = 0; 
my_col = c_blue; 
 
End Step Event: 
execute code: 
 
if (!haveset) 
 { 
 if (instance_exists(objGraph)) 
  { 
  objGraph.dotcol = my_col; 
  haveset = 1; 
  } 
 } 
 
Draw Event: 
execute code: 
 
var aaa,ccc,str; 
ccc = draw_get_color();//backup color 
aaa = draw_get_alpha();//backup alpha 
draw_set_color(c_black); 
str = "Drought Severity"; 
draw_text((room_width/2)-(string_width(str)/2),0,str); 
if (default_run) 
 { 
 if (!DROUGHT) 
  { 
  LOW = 0.5; HIGH = 1.5; LCHANCE = 0; HCHANCE = 13;//set correct values 
   
  draw_set_color(c_blue); 
  my_col = c_blue; 
  draw_rectangle((room_width/2)-
64,string_height(str),(room_width/2)+64,string_height(str)+16,0);//draw indicator 



 

18 

 

  draw_set_color(c_white); 
  draw_text((room_width/2)-64,string_height(str),"None"); 
  } 
 else 
  { 
  switch (severity) 
   { 
   case 1: 
   draw_set_color(c_yellow); 
   my_col = c_yellow; 
   draw_rectangle((room_width/2)-
64,string_height(str),(room_width/2)+64,string_height(str)+16,0);//draw indicator 
   draw_set_color(c_black); 
   draw_text((room_width/2)-64,string_height(str),"Mild"); 
   break; 
    
   case 2: 
   draw_set_color(c_orange); 
   my_col = c_orange; 
   draw_rectangle((room_width/2)-
64,string_height(str),(room_width/2)+64,string_height(str)+16,0);//draw indicator 
   draw_set_color(c_black); 
   draw_text((room_width/2)-64,string_height(str),"Medium"); 
   break; 
    
   case 3: 
   draw_set_color(c_red); 
   my_col = c_red; 
   draw_rectangle((room_width/2)-
64,string_height(str),(room_width/2)+64,string_height(str)+16,0);//draw indicator 
   draw_set_color(c_white); 
   draw_text((room_width/2)-64,string_height(str),"Severe"); 
   break; 
   } 
  } 
   
 } 
else//if running user-variables, say so 
 { 
  draw_set_color(c_dkgray); 
  my_col = c_black; 
  draw_rectangle((room_width/2)-
64,string_height(str),(room_width/2)+64,string_height(str)+16,0);//draw indicator 
  draw_set_color(c_white); 
  draw_text((room_width/2)-64,string_height(str),"User-Defined");   
 } 
 



 

19 

 

draw_set_color(ccc);//restore old color 
draw_set_alpha(aaa);//restore old alpha



 

20 

 

Information about object: objGraph (The graphs that keep track of all data) 
 
Sprite: <no sprite> 
Solid: false 
Visible: true 
Depth: 0 
Persistent: false 
Parent: <no parent> 
Mask: <same as sprite> 
 
Create Event: 
execute code: 
 
if (!variable_local_exists("XArray")) {XArray[0] = 0;}//XArray 
if (!variable_local_exists("YArray")) {YArray[0] = 0;}//YArray arrays holding pixels 
if (!variable_local_exists("XC")) {XC = 0;}//XC current dot 
if (!variable_local_exists("YC")) {YC = 0;}//YC current dot 
if (!variable_local_exists("ind")) {ind = 0;}//ind 
//if (!variable_local_exists("")) {}//XWidthNum 
if (!variable_local_exists("YHeightNum")) {YHeightNum = 10;}//YHeightNum 
if (!variable_local_exists("pxlHeight")) {pxlHeight = 96;}//pxlHeight 
if (!variable_local_exists("pxlWidth")) {pxlWidth = room_width;}//pxlWidth 
if (!variable_local_exists("dotcol")) {dotcol = c_black;}//color to draw graph in 
if (!variable_local_exists("bckcol")) {bckcol = c_white;}//color to draw background with 
if (!variable_local_exists("squish")) {squish = 1;}//squish ?? 
if (!variable_local_exists("GName")) {GName = "Graph";}//Graph name 
 
if (!variable_local_exists("Permanent")) {Permanent = 0;} 
 
if (!variable_local_exists("XGreatest")) {XGreatest = 0;} 
if (!variable_local_exists("YGreatest")) {YGreatest = 0;} 
if (!variable_local_exists("XLowest")) {XLowest = 0;} 
if (!variable_local_exists("YLowest")) {YLowest = 0;} 
 
if (!variable_local_exists("NewCoord")) {NewCoord = 0;}//whether there are new coordinates or not 
if (!variable_local_exists("NewX")) {NewX = 0;}//next x to be graphed 
if (!variable_local_exists("NewY")) {NewY = 0;}//next y to be graphed 
 
if (!variable_local_exists("tpText")) {tpText = 0;} 
xlast = x;//variable that stores 
ylast = y; 
save_at_end = 0; 
 
 
Destroy Event: 
execute code: 
 



 

21 

 

if (save_at_end) 
 { 
 var fff,str; 
  str = ""; 
   
  fff = file_text_open_write(uid+".txt");//clear any data previously in file 
  file_text_write_string(fff,""); 
  file_text_close(fff); 
  for (i=0;i<ind;i+=1)//write data to file 
   { 
   str = string(XArray[i])+" "+string(YArray[i]);// 
    
   fff = file_text_open_append(uid+".txt"); 
   file_text_write_string(fff,str); 
   file_text_close(fff); 
    
   fff = file_text_open_append(uid+".txt"); 
   file_text_writeln(fff); 
   file_text_close(fff); 
   }//end writing data loop 
 instance_create(mouse_x,mouse_y,objSaved);//show "Saved" message 
 save_at_end = 0; 
 } 
 
 
End Step Event: 
execute code: 
 
if (NewCoord)//if there is another coordinate detected 
 { 
 XArray[ind] = NewX; XC = NewX;//add new coordinates to array 
 YArray[ind] = NewY; YC = NewY;//set to Current coordinate 
  
 if (XC > XGreatest) {XGreatest = XC;} 
 if (YC > YGreatest) {YGreatest = YC;}//if bigger than biggest number, change record 
  
 if (XC < XLowest) {XLowest = XC;} 
 if (YC < YLowest) {YLowest = YC;}//if smaller than smallest number, change record 
  
 NewX = 0; 
 NewY = 0; 
 ind += 1; 
 NewCoord = 0; 
 } 
 
 
 



 

22 

 

Draw Event: 
execute code: 
 
var i,xpoint,ypoint,aaa,ccc; 
 
dotcol = objIndicator.my_col; 
 
objMouse.image_index = 0; 
aaa = draw_get_alpha();//save backup 
ccc = draw_get_color(); 
draw_set_color(bckcol); 
draw_rectangle(x,y-16,x+string_width(GName),y+string_height(GName)-16,1); 
if (tpText = 0) 
{ 
draw_rectangle(x,y,x+pxlWidth,y+pxlHeight,0);//draw background 
 
draw_set_color(c_white); 
draw_text(x,y-16,GName); 
 
draw_set_color(ccc); 
draw_set_alpha(aaa); 
 
draw_set_color(c_gray); 
//draw_set_alpha(.3);//draw bar dividing graph 
if ((YGreatest - YLowest) <= pxlHeight)//if not too many gray lines draw horizontal lines 
 { 
 for (i=YLowest;i<YGreatest;i+=1) 
  { 
  draw_line(x,y+(i*(pxlHeight/(YGreatest - YLowest))),x+pxlWidth,y+(i*(pxlHeight/(YGreatest-YLowest)))); 
  } 
 } 
draw_set_color(c_black); 
draw_text(x,y,string(YGreatest)); 
draw_text(x,y+pxlHeight-16,YLowest); 
 
for (i=0;i<ind;i+=1)//draw line graph in loop 
 { 
 aaa = draw_get_alpha();//save backup 
 ccc = draw_get_color(); 
  
 if (XGreatest > 0 && YGreatest > 0) || (/*XLowest < 0 || */YLowest < 0) 
  { 
  xpoint = (pxlWidth/(XGreatest - XLowest))*XArray[i];//set pixel coordinates to draw on 
  ypoint = (pxlHeight/(YGreatest - YLowest))*YArray[i]; 
   
  draw_set_alpha(.3);//draw bar dividing graph 
  draw_set_color(c_gray); 



 

23 

 

  draw_line(x+xpoint,y,x+xpoint,y+pxlHeight); 
   
  draw_set_alpha(1); 
   
  if (i > 0)//connect dots with line 
   { 
   var lnwidth; 
   draw_set_color(dotcol); 
   if (Permanent) 
    { 
    draw_set_color(COLORARR[i-1]); lnwidth = 2; 
    } 
   else {lnwidth = 1;} 
   xlast = (pxlWidth/(XGreatest - XLowest))*XArray[i-1]; 
   ylast = (pxlHeight/(YGreatest - YLowest))*YArray[i-1]; 
   draw_line_width(x+xlast,(y+pxlHeight)-ylast,x+xpoint,(y+pxlHeight)-ypoint,lnwidth);//draw connecting 
line 
   } 
   
  draw_point(x+xpoint,(y+pxlHeight)-ypoint/*,dotcol*/);//draw point 
  } 
 } 
} 
else 
 { 
 draw_set_color(c_white); 
 /*draw_line(x,y,x,y-string_height(GName));//draw box around title 
 draw_line(x+string_width(GName),y,x+string_width(GName),y-string_height(GName)); 
 draw_line(x,y-string_height(GName),x+string_width(GName),y-string_height(GName));*/ 
 draw_rectangle(x,y-16,x+string_width(GName),y+string_height(GName)-16,1); 
 draw_text(x,y-16,GName); 
 draw_set_font(fntLarge); 
 draw_set_color(bckcol); 
 draw_rectangle(x,y+8,x+string_width(string(YC)),y+string_height(string(YC)),0) 
 if (YC > 0) {draw_set_color(c_blue);} 
 else {draw_set_color(c_red);} 
 draw_text(x,y+8,string(YC)); 
 draw_set_font(-1); 
 pxlWidth = string_width(GName) 
 if (string_width(string(YC)) > pxlWidth) 
  {pxlWidth = string_width(string(YC))} 
 pxlHeight = string_height(GName)+string_height(string(YC))+8; 
   
 } 
//-------------------If click, create .txt file that can be imported into excel 
if (mouse_x > x) && (mouse_x < x+pxlWidth) && (mouse_y > y) && (mouse_y < y+pxlHeight) 
 { 



 

24 

 

 draw_set_alpha(.8); 
 draw_set_color(c_blue); 
 draw_rectangle(x-4,y-4,x+pxlWidth+4,y+pxlHeight+4,1);//draw background 
 var mmm; mmm = 1; 
 if (mouse_check_button_pressed(mb_right)) 
  { 
  var strTemp; 
  if (!save_at_end) {strTemp = "Save Data at Season's end";} 
  else {strTemp = "Cancel Save at end"} 
  mmm = show_menu/*_pos*/(/*mouse_x,mouse_y,*/"Save Snapshot of Data|"+strTemp,-1); 
  if (mmm == 1)//toggle save at end 
   { 
   if (!save_at_end) {save_at_end = 1;} 
   else {save_at_end = 0;} 
   } 
  } 
 if (mouse_check_button_pressed(mb_left)) || (mmm == 0)//if left click 
  {//--begin file writing process 
  var fff,str; 
  str = ""; 
   
  fff = file_text_open_write(uid+".txt");//clear any data previously in file 
  file_text_write_string(fff,""); 
  file_text_close(fff); 
   
  objMouse.image_index = 1; 
  for (i=-1;i<ind;i+=1)//write data to file 
   { 
   if (i==-1 && uid = "Drought_Record") {str = "0 is the best, if greater, then it is worse; 5 indicates user 
variables being run"} 
   else//if not drought recording graph or not first loop 
    { 
    if (i>-1) 
     {str = string(XArray[i])+" "+string(YArray[i]);} 
    else {str = "/s/s/s/s/s/"} 
    } 
    
   if (str != "/s/s/s/s/s/")//only write to file if either: is drought recorder (can be on the "-1st" loop) |or| if 
not drought recorder and not on "-1st" loop 
    { 
    fff = file_text_open_append(uid+".txt"); 
    file_text_write_string(fff,str); 
    file_text_close(fff); 
     
    fff = file_text_open_append(uid+".txt"); 
    file_text_writeln(fff); 
    file_text_close(fff); 



 

25 

 

    } 
   }//end writing data loop 
  instance_create(mouse_x,mouse_y,objSaved);//show "Saved" message 
  }//--end process 
 } 
//-------------------end click code-------------------------------------------- 
draw_set_alpha(aaa);//restore backup of color settings 
draw_set_color(ccc); 
 
 

 
Information about object: objSaved (object alerting a particular graph has saved 
its data) 
 
Sprite: <no sprite> 
Solid: false 
Visible: true 
Depth: 0 
Persistent: false 
Parent: <no parent> 
Mask: <same as sprite> 
 
Create Event: 
execute code: 
 
my_alpha = 1; 
 
 
Draw Event: 
execute code: 
 
var aaa,ccc; 
aaa = draw_get_alpha();//restore point 
ccc = draw_get_color(); 
 
draw_set_color(c_white); 
draw_rectangle(x,y,x+string_width("Saved Graph Data"),y+string_height("Saved Graph Data"),0); 
draw_set_color(c_red); 
draw_set_alpha(my_alpha); 
draw_text(x,y,"Saved Graph Data"); 
y -= 4; 
my_alpha -= .1; 
 
draw_set_color(ccc);//restore defaults 
draw_set_alpha(aaa); 
 
if (my_alpha == 0) 



 

26 

 

 { 
 instance_destroy(); 
 } 
 
  
 
 
Information about object: objHelp (the help button) 
 
Sprite: sprHelp 
Solid: false 
Visible: true 
Depth: 0 
Persistent: false 
Parent: <no parent> 
Mask: <same as sprite> 
 
Create Event: 
execute code: 
 
image_speed = 0; 
my_imgind = 0; 
 
 
Draw Event: 
execute code: 
 
if (position_meeting(mouse_x,mouse_y,self)) 
 { 
 if (mouse_check_button_pressed(mb_any))//if clicked, set right image and show help 
  { 
  my_imgind = 2; 
  show_info(); 
  } 
 else//if not clicked, just make darker 
  {my_imgind = 1;} 
 } 
else {my_imgind = 0;}//set to regular image when mouse isn't over 
 
draw_sprite(sprite_index,my_imgind,x,y);//draw self with correct images 
 
  



 

27 

 

Information about object: objMouse (mouse that is in window) 
 
Sprite: sprMouse 
Solid: false 
Visible: true 
Depth: -1000 
Persistent: false 
Parent: <no parent> 
Mask: <same as sprite> 
 
Create Event: 
execute code: 
 
image_speed = 0; 
image_index = 0; 
counter = 0; 
yesno = 0;//boolean controlling speed of arrows on sides 
 
 
Mouse Event for Glob Left Button: 
execute code: 
 
if (position_meeting(mouse_x,mouse_y,objGraph)) 
 { 
 image_index = 1; 
 } 
 
 
Draw Event: 
execute code: 
 
x = mouse_x; 
y = mouse_y; 
draw_sprite(sprite_index,image_index,x,y); 
 
execute code: 
 
var ccc; 
ccc = draw_get_color(); 
draw_set_color(c_dkgray); 
draw_line(view_wview,0,view_wview,view_hview); 
draw_set_color(ccc); 
 
execute code: 
 
if yesno 
 { 



 

28 

 

 if (counter < 4) 
  {counter += 1;} 
 else {counter = 0;} 
 yesno = 0; 
 } 
else 
 {yesno = 1;} 
  
var aaa,midx,temp; 
midx = (view_xview+view_xview+view_wview)/2; 
aaa = draw_get_alpha(); 
temp = abs(midx - x)/((view_xview+view_wview)/2) 
//draw_text(x+32,y,temp); 
//draw_set_alpha(temp); 
if (view_xview > 0) 
 { 
 //draw_sprite_ext(sprPointerL,counter,view_xview,y,1,1,0,c_white,temp); 
 draw_sprite(sprPointerL,counter,view_xview,room_height-32); 
 } 
if (view_xview+view_wview < room_width) 
 { 
 //draw_sprite_ext(sprPointer,counter,view_xview+view_wview-48,y,1,1,0,c_white,temp); 
 draw_sprite(sprPointer,counter,view_xview+view_wview-48,room_height-32); 
 } 
draw_set_alpha(aaa); 
  

Information about object: objEnterInfo (button that executes variable 
grabber prgm) 
 
Sprite: sprEnterInfo 
Solid: false 
Visible: true 
Depth: 0 
Persistent: false 
Parent: <no parent> 
Mask: <same as sprite> 
 
Create Event: 
execute code: 
 
my_imgind = 0; 
 
 
Draw Event: 
execute code: 
 



 

29 

 

if (position_meeting(mouse_x,mouse_y,self)) 
 { 
 if (mouse_check_button_pressed(mb_any))//if clicked, set right image and show help 
  { 
  my_imgind = 2; 
  //execute "click" code here 
  if (default_run) 
  { 
  if (secure_mode)//if in secure mode, give an alert 
   { 
   //show_message("This function is not available in secure mode. Please turn secure mode off to access 
the programs full potential."); 
   wd_message_simple("This function is not available in secure mode. Please turn secure mode off to 
access the programs full potential."); 
   } 
  else//execute user variable getting program if not in secure mode 
   { 
   if (file_exists("UserVarGetSlave.exe"))//if variable getting program exists 
    { 
    /*if (!file_exists("BatchRASSCC01.bat"))//write batch file to execute prgm 
     {*/ 
     var fff,str; 
     fff = file_text_open_write("BatchRASSCC01.bat"); 
     str = "UserVarGetSlave.exe "+string(usrPercentmax)+" "+string(usrPercentlow)+" 
"+string(usrWeeklyI)+" "+string(usrRainhigh)+" "+string(usrRainlow)+" "+string(usrGrainprice)+" 
"+string(usrWatercost)+" "+string(usrFieldsize); 
     file_text_write_string(fff,str); 
     file_text_close(fff); 
     /*} 
    else 
     { 
     var ans; 
     ans = show_question("BatchRASSCC01.bat already exists.  This is a file the program needs to 
overwrite to operate correctly.  If this Batch file is important please hit 'no' and change its directory.  If 
this is not important, hit 'yes'.  If program was shutdown unexpectedly, this is a common error and just 
hit 'yes'."); 
     if (ans)//if they say yes, overwrite file 
      { 
      var fff,str; 
      fff = file_text_open_write("BatchRASSCC01.bat"); 
      str = "UserVarGetSlave.exe "+string(usrPercentmax)+" "+string(usrPercentlow)+" 
"+string(usrWeeklyI)+" "+string(usrRainhigh)+" "+string(usrRainlow)+" "+string(usrGrainprice)+" 
"+string(usrWatercost)+" "+string(usrFieldsize); 
      file_text_write_string(fff,str); 
      file_text_close(fff); 
      } 
     }*/ 



 

30 

 

     
    var argTemp; 
    
//usrPercentmax,usrPercentlow,usrWeeklyI,usrRainhigh,usrRainlow,usrGrainprice,usrWatercost,usrFiel
dsize 
    //argTemp = 
string(usrPercentmax)+"|"+string(usrPercentlow)+"|"+string(usrWeeklyI)+"|"+string(usrRainhigh)+"|"+s
tring(usrRainlow)+"|"+string(usrGrainprice)+"|"+string(usrWatercost)+"|"+string(usrFieldsize); 
    //show_message(argTemp);//debug thing, get rid of after fixed 
    //execute_program("UserVarGetSlave.exe",string(usrPercentmax) | string(usrPercentlow) | 
string(usrWeeklyI) | string(usrRainhigh) | string(usrRainlow) | string(usrGrainprice) | 
string(usrWatercost) | string(usrFieldsize)/*argTemp*/,1);//launch variable-obtaining prgm; pause until 
it ends 
    execute_program("BatchRASSCC01.bat","",1) 
     
    if (file_exists("VarGetExe.UVGS"))//if code with variables to set exists, execute the code 
     { 
     execute_file("VarGetExe.UVGS"); 
     //file_delete("VarGetExe.UVGS") 
     } 
    else//if file with variables does not exist 
     { 
     //show_message("Error 503: No file containing variables exists.  If secure mode is on, please turn it 
off.") 
     wd_message_set_text("Error 503: No file containing variables exists.  If secure mode is on, please 
turn it off.") 
     wd_message_show(wd_mk_error,wd_mb_ok,wd_mb_none,wd_mb_none); 
     } 
    } 
   else//if (var-getting) executable does not exist 
    { 
    //show_message("Error 504: No executable to obtain variables exists.  If secure mode is on, please 
turn it off.") 
    wd_message_set_text("Error 504: No executable to obtain variables exists.  If secure mode is on, 
please turn it off.") 
    wd_message_show(wd_mk_error,wd_mb_ok,wd_mb_none,wd_mb_none); 
    } 
   } 
  } 
  else {default_run = 1; scrDrought();} 
  } 
 else//if not clicked, just make darker 
  {my_imgind = 1;} 
 } 
else {my_imgind = 0;}//set to regular image when mouse isn't over 
 
draw_sprite(sprite_index,my_imgind,x,y);//draw self with correct images 



 

31 

 

 
/*if (!default_run) 
 { 
 var ccc; 
 ccc = draw_get_color(); 
 draw_set_color(c_white); 
 draw_rectangle(x,y-16,x+sprite_width,y-1,0);//draw rectangle background 
 draw_set_color(c_black); 
 draw_text(x,y-16,"Running User variables"); 
 draw_set_color(ccc); 
 }*/ 
  



 

32 

 

 

scrTempMain(): (Main script ran by objMain) 
if (LOOPCOUNT == Daylength)//if delay between days is over 
{ 
 if (SEASONDAYCOUNT == 1) 
  { 
  objIndicator.haveset = 0; 
  WATERGRAPH = instance_create(0,room_height-320,objGraph); 
  WATERGRAPH.uid = "Water_field_Graph";//used in file naming 
  WATERGRAPH.GName = "Water in the field (in.)/Day"; 
  WATERGRAPH.pxlWidth = 540; 
  //WATERGRAPH.image_alpha = .6; 
   
  RAINGRAPH = instance_create(0,room_height-208,objGraph); 
  RAINGRAPH.uid = "Rain_Graph"; 
  RAINGRAPH.GName = "Rain (in.)/Day"; 
  RAINGRAPH.pxlWidth = 540; 
   
  IRRGRAPH = instance_create(0,room_height-96,objGraph); 
  IRRGRAPH.uid = "Irrigation_Graph"; 
  IRRGRAPH.GName = "Irrigated Water (in.)/Day"; 
  IRRGRAPH.pxlWidth = 540; 
  //now create total graphs 
  if (FIRSTSEASON) 
   { 
   SWATERGRAPH = instance_create(542,room_height-448,objGraph); 
   SWATERGRAPH.uid = "Season_Water_Graph"; 
   SWATERGRAPH.Permanent = 1; 
   SWATERGRAPH.GName = "Total Water/Season"; 
   SWATERGRAPH.pxlWidth = 340; 
    
   UWATERGRAPH = instance_create(542,room_height-336,objGraph); 
   UWATERGRAPH.uid = "Season_Irrigation_Graph"; 
   UWATERGRAPH.Permanent = 1; 
   UWATERGRAPH.GName = "Total Irrigated Water/Season"; 
   UWATERGRAPH.pxlWidth = 340; 
    
   BUSHELGRAPH = instance_create(542,room_height-224,objGraph); 
   BUSHELGRAPH.uid = "Bushel_Graph"; 
   BUSHELGRAPH.Permanent = 1; 
   BUSHELGRAPH.GName = "Total number of bushels gained/Season"; 
   BUSHELGRAPH.pxlWidth = 340; 
   BUSHELGRAPH.pxlHeight = 224; 
   //-------------------------------Set first values to zero---------------// 
   SWATERGRAPH.NewX = 0; 
   SWATERGRAPH.NewY = 0; 



 

33 

 

   SWATERGRAPH.NewCoord = 1; 
    
   UWATERGRAPH.NewX = 0; 
   UWATERGRAPH.NewY = 0; 
   UWATERGRAPH.NewCoord = 1; 
    
   BUSHELGRAPH.NewX = 0; 
   BUSHELGRAPH.NewY = 0; 
   BUSHELGRAPH.NewCoord = 1; 
    
   MONEYGGRAPH = instance_create(882,room_height-224,objGraph); 
   MONEYGGRAPH.uid = "Revenue_Graph"; 
   MONEYGGRAPH.Permanent = 1; 
   MONEYGGRAPH.GName = "Total revenue ($) per season"; 
   MONEYGGRAPH.pxlWidth = room_width - MONEYGGRAPH.x; 
   MONEYGGRAPH.pxlHeight = 224; 
    
   MONEYLGRAPH = instance_create(882,room_height-464,objGraph); 
   MONEYLGRAPH.uid = "Money_Costs"; 
   MONEYLGRAPH.Permanent = 1; 
   MONEYLGRAPH.GName = "Total costs ($) per season"; 
   MONEYLGRAPH.pxlWidth = room_width - MONEYLGRAPH.x; 
   MONEYLGRAPH.pxlHeight = 224; 
    
   MONEYNGRAPH = instance_create(882,16,objGraph); 
   //show_message("Yay"); 
   MONEYNGRAPH.tpText = 1; 
   MONEYNGRAPH.uid = "Net_Profit_Graph"; 
   MONEYNGRAPH.Permanent = 1; 
   MONEYNGRAPH.GName = "Profit ($)"; 
   MONEYNGRAPH.pxlWidth = room_width - MONEYNGRAPH.x; 
   MONEYNGRAPH.pxlHeight = room_height-496; 
    
   //inserted here 
   MONEYGGRAPH.NewX = 0;//Gross Profit graph 
   MONEYGGRAPH.NewY = 0; 
   MONEYGGRAPH.NewCoord = 1; 
    
   MONEYLGRAPH.NewX = 0;//Debit graph 
   MONEYLGRAPH.NewY = 0; 
   MONEYLGRAPH.NewCoord = 1; 
    
   MONEYNGRAPH.NewX = 0;//Net Profit graph 
   MONEYNGRAPH.NewY = 0; 
   MONEYNGRAPH.NewCoord = 1; 
    
   //-------special button graph to save Drought sequence 



 

34 

 

   INDICATORG = instance_create(0,room_height-380,objGraph); 
   INDICATORG.Permanent = 1; 
   INDICATORG.uid = "Drought_Record";//used in file naming 
   INDICATORG.GName = "Drought Record on scale from 0-3"; 
   INDICATORG.pxlWidth = 32; 
   INDICATORG.pxlHeight = 32; 
    
   instance_create(32,56,objHelp);//create help button 
   instance_create(objHelp.x+objHelp.sprite_width+16,objHelp.y,objEnterInfo);//create enter data object 
below help button 
   } 
  R = 0; 
  RR = 0; 
  WR = 0; 
  WI = 0; 
  I = 0; 
  SEASONWATER = 0; 
  WATER = 0; 
   
  INDICATORG.NewX = SEASONCOUNT; 
  if (default_run) {INDICATORG.NewY = severity;} 
  else {INDICATORG.NewY = 5;}//5 indicates user variable being run 
  INDICATORG.NewCoord = 1; 
  } 
 if (SEASONDAYCOUNT < 182)//if season still going on 
  { 
  SEASONDAYCOUNT += 1; 
  //In a typical Day: 
      var GRAPHI;//whether to graph irrigation level 
      GRAPHI = 1; 
       
      WATER = 0; 
      //Rain--------------------- 
      ////Average Low Temperature, 27.9° F. Rainy Days, 13%. Average Rainfall, 9.2 inches ... 
      var israin; 
      if (default_run) 
       {CHANCERAIN = irandom_range(LCHANCE, HCHANCE);} 
      else 
       {CHANCERAIN = irandom_range(usrPercentlow, usrPercentmax);} 
      israin = random_range(0,100); 
      if (israin < CHANCERAIN)//test percent chance of rain 
       { 
       //effect_create_above(ef_rain,0,0,4,c_dkgray);//Yay! it's raining! 
       if (default_run) 
        {RR = irandom_range(LOW,HIGH+1);} //how much rain in inches 
       else {RR = irandom_range(usrRainlow,usrRainhigh+1);} //how much rain in inches 
       WATER += RR;//add rain to water count in field 



 

35 

 

       R += RR; 
       instance_create(objField.x,objField.y,objRain);//make it look like it rained 
       WR += RR; 
       } 
      else {RR = 0;WR += RR;} 
      //End of Rain--------------- 
       
       
      //water field--------------- 
          //NEEDS is amt. in inches field needs per season 
          //WEEKLY is (NEEDS*7)/182 (amt. watered per week w/o rain) 
          if (DAYCOUNT == 0)//if first day of week 
           { 
           WI = 0; 
           if (default_run) 
            { 
           /////// 
            if (WR <= WEEKLY)  
             { 
             WI = (WEEKLY-WR);//Weekly is the amt. of water farmer needs to water, Water field amt. 
needed (taking into account rain) 
             WATER += WI;//add the farmer's addition to the amount of water in the field 
              
             GRAPHI = 0; 
             if (instance_exists(objGraph)) 
              { 
              IRRGRAPH.NewX = SEASONDAYCOUNT; 
              IRRGRAPH.NewY = WI; 
              IRRGRAPH.NewCoord = 1; 
              } 
             I += WI; WI = 0; 
             }//overall Irrigation add from weekly Irrigation 
            //////// 
            } 
           else 
            { 
           /////// 
            if (WR <= usrWeeklyI)  
             { 
             WI = (usrWeeklyI-WR);//Weekly is the amt. of water farmer needs to water, Water field amt. 
needed (taking into account rain) 
             //WI *= usrFieldsize; 
             WATER += WI;//add the farmer's addition to the amount of water in the field 
              
             GRAPHI = 0; 
             if (instance_exists(objGraph)) 
              { 



 

36 

 

              IRRGRAPH.NewX = SEASONDAYCOUNT; 
              IRRGRAPH.NewY = WI; 
              IRRGRAPH.NewCoord = 1; 
              } 
             I += WI; WI = 0; 
             }//overall Irrigation add from weekly Irrigation 
            //////// 
            } 
           WR = 0; 
           } 
      //end of watering field----- 
       
       
      //Draw? 
      //End of Draw? 
       
      TOTALWATER += WATER; 
      SEASONWATER += WATER; 
      //Potential = 5.8*(SM + R + I - 4.1); 
      if (WATER > 0) 
       { 
       objField.LIGHT = (WEEKLY/(WATER+(WEEKLY*1.5)));//change field color to match how much water 
was put in it. 
       } 
      else 
       { 
       objField.LIGHT = 1;//if completely dry, just plain orange 
       } 
 
  if (instance_exists(objGraph)) 
   { 
   WATERGRAPH.NewX = SEASONDAYCOUNT; 
   WATERGRAPH.NewY = WATER; 
   WATERGRAPH.NewCoord = 1; 
    
   RAINGRAPH.NewX = SEASONDAYCOUNT; 
   RAINGRAPH.NewY = RR; 
   RAINGRAPH.NewCoord = 1; 
     
   if (GRAPHI) 
    { 
    IRRGRAPH.NewX = SEASONDAYCOUNT; 
    IRRGRAPH.NewY = WI; 
    IRRGRAPH.NewCoord = 1; 
    } 
   } 
    



 

37 

 

  LOOPCOUNT = 0;//reset number controlling how long till the next day 
   
  if (DAYCOUNT < 6) {DAYCOUNT += 1;}//control day of the week 
  else {DAYCOUNT = 0;} 
  TOTALDAYS += 1;//the total amount of days farm has been working 
  draw_set_color(c_white); 
  draw_set_alpha(1); 
  draw_text(32,32,/*string(SEASONWATER)+","+string(WATER)+*/"Total days:"+string(TOTALDAYS)); 
   
  //End of day 
  } 
 else//if season is over 
  { 
  COLORARR[SEASONCOUNT] = objIndicator.my_col;//save drought severity to array 
  objIndicator.haveset = 0; 
  //calculate water loss, grain profit 
  if (default_run) 
   { 
   Potential = 5.8*(SM + SEASONWATER - 4.1); 
   } 
  else 
   { 
   Potential = 5.8*(SM + SEASONWATER - 4.1)*usrFieldsize; 
   } 
   
  //calculate money gain and loss 
  if (default_run) 
   { 
   Profit = Potential * 5.5;//Profit gained 
   Debit = ((6272640 * I)/231)*(1.5/1000);//inches in acre squared * inches of water irrigated / 
conversion to gallons * conversion to money 
   NetProfit += (Profit-Debit); 
   } 
  else 
   { 
   Profit = Potential * 5.5;//Profit gained 
   Debit = (((6272640 * usrFieldsize) * I)/231)*(1.5/1000);//inches in acre squared * inches of water 
irrigated / conversion to gallons * conversion to money 
   NetProfit += (Profit-Debit); 
   } 
    
  //show_message("Amt. of water field got: "+string(SEASONWATER)+"#Was gained in 
"+string(SEASONDAYCOUNT)+" days#Water Loss: "+string(I)); 
  //show_message("You earned "+string(Potential)+" bushels of wheat#In season 
"+string((SEASONCOUNT+1))); 
   
  if (instance_exists(objGraph))//send data to graphs 



 

38 

 

   { 
   SWATERGRAPH.NewX = SEASONCOUNT+1;//season water graph 
   SWATERGRAPH.NewY = SEASONWATER; 
   SWATERGRAPH.NewCoord = 1; 
    
   UWATERGRAPH.NewX = SEASONCOUNT+1;//irrigated (used) water graph 
   if (!default_run) {I *= usrFieldsize;} 
   UWATERGRAPH.NewY = I; 
   UWATERGRAPH.NewCoord = 1; 
    
   BUSHELGRAPH.NewX = SEASONCOUNT+1;//amount of bushels graph 
   BUSHELGRAPH.NewY = Potential; 
   BUSHELGRAPH.NewCoord = 1; 
    
   MONEYGGRAPH.NewX = SEASONCOUNT+1;//Gross Profit graph 
   MONEYGGRAPH.NewY = Profit; 
   MONEYGGRAPH.NewCoord = 1; 
    
   MONEYLGRAPH.NewX = SEASONCOUNT+1;//Debit graph 
   MONEYLGRAPH.NewY = Debit; 
   MONEYLGRAPH.NewCoord = 1; 
    
   MONEYNGRAPH.NewX = SEASONCOUNT+1;//Net Profit graph 
   MONEYNGRAPH.NewY = NetProfit; 
   MONEYNGRAPH.NewCoord = 1; 
   } 
   
  SEASONDAYCOUNT = 0; 
  SEASONCOUNT += 1;//Add to number of growing seasons that have been on the farm 
  DAYCOUNT = 0;//reset number of days in growing season 
  DROUGHT = choose(0,1);//set DROUGHT to random 
  if (!DROUGHT) 
   { 
   severity = 0; 
   LOW = .5; 
   HIGH = 1.5; 
   CHANCERAIN = 13; 
   }//if it's not a drought, set drought severity to 0 
  else {scrDrought();} 
   
  with (objGraph)//destroy graphs 
   { 
   if (!Permanent)//if it's not the total graphs 
    { 
    instance_destroy(); 
    } 
   else//if a permanent graph, check if needs to save data 



 

39 

 

    { 
    if (save_at_end) 
     { 
     var fff,str; 
     str = ""; 
      
     fff = file_text_open_write(uid+".txt");//clear any data previously in file 
     file_text_write_string(fff,""); 
     file_text_close(fff); 
     for (i=0;i<ind;i+=1)//write data to file 
      { 
      str = string(XArray[i])+" "+string(YArray[i]);// 
       
      fff = file_text_open_append(uid+".txt"); 
      file_text_write_string(fff,str); 
      file_text_close(fff); 
       
      fff = file_text_open_append(uid+".txt"); 
      file_text_writeln(fff); 
      file_text_close(fff); 
      }//end writing data loop 
     instance_create(mouse_x,mouse_y,objSaved);//show "Saved" message 
     save_at_end = 0; 
     } 
    } 
   } 
   
  FIRSTSEASON = 0; 
  } 
} 
else//the steps that are not one of the "days" 
 { 
 LOOPCOUNT += 1; 
 draw_set_color(c_white); 
 draw_set_alpha(1); 
 draw_text(32,32,/*string(TOTALWATER)+","+string(WATER)+*/"Total days:"+string(TOTALDAYS)); 
 } 
  



 

40 

 

UserVarGetSlave.exe (variable grabber program (slave 
program, used by main or master program)) 
 
scrMain(): (used by objMain) 
if (firstrun) 
 { 
 
//usrPercentmax,usrPercentlow,usrWeeklyI,usrRainhigh,usrRainlow,usrGrainprice,usrWatercost,usrFiel
dsize 
 var i,ii,iii,iv,v,vi,vii,viii; 
 i = instance_create(32,32,clsButton); 
 i.title = "Max. Percent Chance it can rain each day"; 
 i.number = 1; 
 i.default_val = real(parameter_string(1)); 
  
 ii = instance_create(32,96,clsButton); 
 ii.title = "Min. Percent Chance it can rain each day"; 
 ii.number = 2; 
 ii.default_val = real(parameter_string(2)); 
  
 iii = instance_create(32,160,clsButton); 
 iii.title = "Amount Farmer waters each week (inches/acre)"; 
 iii.number = 3; 
 iii.default_val = real(parameter_string(3)); 
  
 iv = instance_create(32,224,clsButton); 
 iv.title = "Max. amount it is possible to rain each time it rains (inches)"; 
 iv.number = 4; 
 iv.default_val = real(parameter_string(4)); 
  
 v = instance_create(32,288,clsButton); 
 v.title = "Min. amount it is possible to rain each time it rains (inches)"; 
 v.number = 5; 
 v.default_val = real(parameter_string(5)); 
  
 vi = instance_create(32,352,clsButton); 
 vi.title = "Grain Price per Bushel (dollars)"; 
 vi.number = 6; 
 vi.default_val = real(parameter_string(6)); 
  
 globalvar pxlLeftWidth;//get x-coordinate right column should be placed 
 pxlLeftWidth = string_width("Max. amount it is possible to rain each time it rains (inches)")+32; 
  
 vii = instance_create(pxlLeftWidth,32,clsButton); 
 vii.title = "Water price per Thousand Gallons (dollars/thousand gallons)"; 



 

41 

 

 vii.number = 7; 
 vii.default_val = real(parameter_string(7)); 
  
 viii = instance_create(pxlLeftWidth,96,clsButton); 
 viii.title = "Field size (acres)"; 
 viii.number = 8; 
 viii.default_val = real(parameter_string(8)); 
 } 
  
  
firstrun = 0; 
  
 

Information about object: objMain 
 
Sprite: <no sprite> 
Solid: false 
Visible: true 
Depth: 0 
Persistent: false 
Parent: <no parent> 
Mask: <same as sprite> 
 
Create Event: 
execute code: 
 
//usrPercentmax,usrPercentlow,usrWeeklyI,usrRainhigh,usrRainlow,usrGrainprice,usrWatercost,usrFiel
dsize 
globalvar myParam,firstrun; 
for (i=1;i<=parameter_count();i+=1) 
 { 
 myParam[i] = real(parameter_string(i)); 
 } 
firstrun = 1; 
 
 
Other Event: Game End: 
execute code: 
 
var fff,tempCode; 
tempCode = "usrPercentmax = "+string(myParam[1])+"; usrPercentlow = "+string(myParam[2])+"; 
usrWeeklyI = "+string(myParam[3])+"; usrRainhigh = "+string(myParam[4])+"; usrRainlow = 
"+string(myParam[5])+"; usrGrainprice = "+string(myParam[6])+"; usrWatercost = 
"+string(myParam[7])+"; usrFieldsize = "+string(myParam[8])+"; default_run = 0;";//set string to write to 
file for "mother" to execute; sets correct variables in mother 
fff = file_text_open_write("VarGetExe.UVGS");//open file for writing, creating it if necessary 



 

42 

 

file_text_write_string(fff,tempCode); 
file_text_close(fff); 
 
 
Draw Event: 
execute code: 
 
scrMain(); 
var str,i; 
str = ""; 
for (i=1;i<=parameter_count();i+=1) 
 { 
 str += " "+parameter_string(i); 
 } 
draw_text(x,y,str); 
  

Information about object: clsButton 
 
Sprite: sprButton 
Solid: false 
Visible: true 
Depth: 0 
Persistent: false 
Parent: <no parent> 
Mask: <same as sprite> 
 
Create Event: 
execute code: 
 
//if (!variable_local_exists("default_val")) {default_val = 0;} 
if (!variable_local_exists("title")) {title = "";}//just a title saying what variable is being changed 
checked = 0; 
//new_val = default_val; 
set = 0; 
 
 
Begin Step Event: 
execute code: 
 
if (!set)//if haven't checked for number setting order and parameter, do so 
 { 
 //the commented code is error causing, delete soon... 
 /*if (!variable_local_exists("number"))  
  { 
  number = 1;//just a title saying what variable is being changed 
  } 



 

43 

 

 default_val = myParam[number];*/ 
 new_val = default_val; 
  
 set = 1;//set checker for "" (see top line) to "has been set" 
 } 
 
 
Draw Event: 
execute code: 
 
if (!set)//if haven't checked for number setting order and parameter, do so 
 { 
  
 if (!variable_local_exists("number"))  
  { 
  number = 1;//just a title saying what variable is being changed 
  } 
 default_val = myParam[number]; 
 new_val = default_val; 
  
 set = 1;//set checker for "" (see top line) to "has been set" 
 } 
 
execute code: 
 
draw_text(x,y-16,title);//draw title above button 
if (mouse_check_button_pressed(mb_any)) && (position_meeting(mouse_x,mouse_y,self))//if user 
clicks on button 
 { 
 checked = !checked; 
 if (checked) 
  { 
  var str,ttt; 
  str = "0";//string which will be converted to a number to be the new value 
  ttt = 0;//amt. it looped through getting a number 
   
  do//get string to be converted to a number, repeat until all attributes are valid 
   { 
   if (ttt > 0) 
    { 
    //show_message("Must be greater than 0!"); 
    wd_message_set_text("New Value must be greater than 0"); 
    wd_message_show(wd_mk_warning,wd_mb_ok,wd_mb_none,wd_mb_none);//show warning 
message 
    } 
   //str = get_string("Enter a number greater than 0 for "+title,string(new_val)); 



 

44 

 

   str = wd_input_box("New Value","Enter a number greater than or equal to 0 for: 
"+title,string(new_val)); 
   ttt += 1; 
   } until (real(str) >= 0); 
    
  new_val = real(str); 
  myParam[number] = new_val; 
  } 
 } 
draw_sprite(sprite_index,image_index,x,y);//draw self 
if (checked) 
 { 
 draw_sprite(sprCheck,0,x,y);//if checked, draw check mark 
 draw_text(x,y+sprite_height,string(new_val)); 
 } 
else 
 { 
 myParam[number] = default_val; 
 draw_text(x,y+sprite_height,string(default_val)); 
 } 
 
 



 

45 

 

Appendix B: Graphs of data 
 

 
 

 


