
Object Recognition
on the iPhone

New Mexico

Supercomputing Challenge

Final Report

April 6, 2011

Team Number 34

Desert Academy

Team Members:

Megan Belzner

Matt Rohr

Teachers:

Jocelyne Comstock

John Paterson

Object Recognition on the iPhone – Team 34

Table of Contents

0.0 – Executive Summary 3

1.0 – Introduction 4
1.1 – Background

1.2 – The Project

1.3 – Reasoning

1.4 – Uses

2.0 – Implementation 7
2.1 – The Algorithm

2.2 – Assumptions and Limitations

3.0 – Results and Conclusions 12
3.1 – The Program

3.2 – Achievements

3.3 – Conclusion

3.4 – The Future

Appendix A – References 16

Appendix B – Pictures 17

Appendix C – Code 20

Page 2 of 25

Object Recognition on the iPhone – Team 34

0.0 – Executive Summary

The field of object recognition, wherein a computer is made able to recognize and define

objects, has both a vast array of techniques and a variety of applications. Common techniques

include feature detection, text recognition, and template matching through edge detection, and

the applications vary from face recognition and detection, to identifying abnormal cells, to

reading the labels on objects. However, one thing which object recognition software has yet to

achieve is general, wide-ranging recognition of objects of any sort, not just those in a specific

class. This project attempts to create a generalized object recognition program for Apple's

iPhone, designed for maximum range, portability, and day-to-day usefulness.

The program uses an algorithm of our own design, which is intended to overcome the

limitations inherent in other methods. Though we begin with edge detection, the result is not

just a map of the lines but rather a picture of the object based on geometric shapes. From this

“shape map”, the object can be matched with similar ones in a database of images which has

been pre-processed in a similar way. Using shapes rather than lines lessens the need for exact

similarities, and with a sufficiently large database the program should not be limited to any

specific class of objects.

Though we were not able to implement the full algorithm, we have completed the

program to the point where it can recognize basic shapes such as rectangles and acute triangles.

Though there are several issues with our current method, such as difficulties identifying shapes

with obtuse angles, we have attempted to correct these issues and have come up with ways to

solve the problems present. Despite the issues, we have shown that our method is a feasible one

and could be extremely successful once these changes are implemented.

Page 3 of 25

Object Recognition on the iPhone – Team 34

1.0 – Introduction

1.1 – Background

Object recognition, a sub-field in the realm of computer vision, is a field of study which

attempts to utilize a vast array of different methods with a single end goal: allowing computers

to recognize and define objects, whether those in a specific class or more generally. Despite the

wide range of methods, most methods have certain similarities. Many methods can be divided

into one of two groups: appearance-based or feature-based [5].

Appearance-based methods are based on comparing images to template images. “Local”

appearance-based methods focus on finding points or regions of interest characterized by things

such as corners or edges. “Global” methods, meanwhile, examine the image as a whole: that is,

all pixels are considered rather than centering on a small region [6]. Edge detection is commonly

the first step in an appearance-based method, and once the outline of the object in question is

found it can be compared with previously “learned” images.

Edge detection algorithms are based on finding discontinuities within the image,

typically in image brightness which can be assumed to represent a boundary of some sort.

Many edge detection algorithms are based on the first or second derivative of the pixel

intensity. As an edge is characterized by a sharp increase or decrease in intensity, in one

dimension maximums and minimums in the first derivative can denote an edge. The second

derivative can also be used, as a maximum or minimum in the first derivative will always have

a value of 0 in the second. This method is thus known as the “zero-crossing” method. The Sobel

method of edge detection uses this idea in two dimensions, by using two 3-by-3 arrays which

estimate the gradient (that is, the first derivative of intensity) in the x and y directions,

respectively. The Laplacian method, meanwhile, uses a single 5-by-5 grid and the second

derivative. [2]

Feature-based methods use features specific to objects of a given type to determine

whether the object is present or not. For example, in faces the eye region is typically darker than

the cheek region. Thus, a common method in face detection is to examine two adjacent

Page 4 of 25

Object Recognition on the iPhone – Team 34

rectangles and determine the difference between pixel intensities [3]. For accurate

determination, a large number of such features must be used. So, for example, an algorithm

constructed to determine the presence of a mug searches for parallel lines, various geometric

shapes, and other things to determine whether or not the object is present in the image [1].

1.2 – The Project

Our goal in this project was to create general object recognition software for Apple’s

iPhone. We intended to use an edge detection algorithm which would allow us to determine the

geometric shapes present in an image, which would enable us to identify the object by

comparing it to a database of similarly processed images. We designed our program for

maximum range of object recognition and maximum portability, to allow for increased

usefulness in everyday situations compared to existing object recognition techniques.

1.3 – Reasoning

We decided to create our program for the iPhone because of the mobility and power it

offered. The newest iteration of Apple’s iPhone has 512 megabytes of RAM and a 1 GHz

processor, which means it is even slightly better than the standard 2003 iMac. The iPhone is

about half as powerful as most current netbooks. Though most computers today are far more

powerful than the iPhone, the portability of the device is a huge advantage. Object recognition,

when used for general purposes, is most likely to be of use in situations where a laptop or

desktop computer would be highly impractical. While this project would work equally well on

many Android devices, the iPhone was chosen because it can be guaranteed that the newest

iPhones have a camera while not all Android devices do.

We wanted to take a general approach with our algorithm, allowing it to recognize

many objects rather than just a small set. We used an appearance-based method, though with

some notable differences compared to most methods. We decided to create a shape map, rather

than stopping at an edge map, as this theoretically allows for matches to be less exact without

hurting the accuracy of recognition. In addition, while text recognition has been utilized before

to create object recognition software for portable devices, we did not want to take this approach

Page 5 of 25

Object Recognition on the iPhone – Team 34

because this would severely limit the usefulness of the program, as the object would need to be

labeled for the program to work.

1.4 – Uses

Mobile object recognition software as we attempted to create could be useful in a variety

of situations. One such possible use is image-based search. Using a program such as this, one

could photograph an object that perhaps they did not know the name of, then search the web

for more information on it. Another use we envisioned is augmenting a vision-impaired

person’s perception of their surroundings, by providing more information about objects around

them than they might be able to gain through other means. Particularly if the object recognition

could be made to work in real-time, one could point the iPhone at an object and, by auditory

cues from the device, figure out exactly what the object is without having to rely on other senses

which may not be exact enough.

Page 6 of 25

Object Recognition on the iPhone – Team 34

2.0 – Implementation

2.1 – The Algorithm

The first step in the algorithm is setting up the picture, which begins by loading the

image as a bitmap. In the standard format for images in Objective-C, UIImage, pixel data cannot

be easily accessed. Thus, we have used a piece of code [4], the only part not written by us,

which initializes images as bitmaps, allowing for easy access to the color data. The next step,

once the image is loaded, is to determine the background color by noting the red, green, and

blue values of the first pixel in the upper left corner of the image. This data is put into the “bg”

array, where bg[0] is the red value, bg[1] is green, and bg[2] is blue. However, at this point the

image is still not easy for the computer to analyze. In order to make image analysis simpler, at

this point the image is translated into an array of numbers. A 2-dimensional array is created

with the same size as the image, and nested for loops are used to loop through the image row

by row. Any pixel which is within the allowable margin-of-error range from the background

color (which is set at bg ± 0x30) is considered to be part of the background, which is noted by a

0 in the array at that point. Any pixel outside of this range is considered to be part of the object,

noted by a 1 in the array. Thus, at this point, a sample image could be as shown in figure 2.1.1,

where the indicated point of the star is represented as an array of 1s and 0s.

Figure 2.1.1

Once the area covered by the shape is determined, the next step is to find the outline of

the shape. Again, for loops are used to check each pixel, though this time the array, rather than

the image, is being examined. Any pixel which is part of the background is ignored, but

Page 7 of 25

Object Recognition on the iPhone – Team 34

whenever the algorithm finds a “1” in the array (that is, when it finds an object pixel), it checks

the surrounding 4 (directly adjacent) pixels. If any of the four pixels are part of the background,

then the pixel in question is on the edge of the shape and is thus considered to be part of the

outline. To denote this, the “1” is replaced with a “2” in the array. Figure 2.1.2 shows both the

adjacent locations which are examined, as well as a sample outline in the array.

Figure 2.1.2

Following the outline marking, the final step so far is to determine the number of

vertices in the shape. For this step, there are two different algorithms which can be used. The

first one, which is currently more complete but also more limited, merely searches for simple

patterns. The algorithm loops through each outline pixel, building a 3-by-3 viewing window

around the pixel in question. The positions of other outline pixels in this 3-by-3 array are noted,

and the algorithm checks for one of three patterns in their positions, with the basic patterns

shown in figure 2.1.3.

Figure 2.1.3

The other algorithm, while being extremely limited at this time, has more potential to be

expanded. The algorithm is based on the idea of using a larger viewing window. At this point

an 11-by-11 window is considered, but in the future this could be expanded as needed. The

algorithm as it stands now merely looks at the center row and column, the ones including the

pixel in question. If the type of pixel (either “2” or “not 2”) is different on either side of the

Page 8 of 25

Object Recognition on the iPhone – Team 34

center pixel, the pixel is considered to be a vertex as shown in figure 2.1.4

Figure 2.1.4

In either case, once a pixel is found which fits into one of the patterns, the “vertex”

variable is increased by 1. Once the entire shape has been examined the shape represented is

determined based on the number of vertices. While at this point this is limited to triangles (3

vertices) and quadrilaterals (4 vertices), with any shape with more (or less) vertices being called

a polygon, the algorithm should theoretically be expanded to recognize any shape with between

3 and 8 vertices, with any other shape being called a circle. While octagons are fairly common in

day to day life, nonagons and above are not prevalent enough to be particularly noted.

The remainder of the algorithm has yet to be implemented, though we have determined

what steps the program should take from here. First, it must be noted that of course most

objects are not composed of a single shape, but rather many shapes put together. Once vertices

are found, the theoretical algorithm would break the shape apart into simple polygons by

“cutting” the shape at concave vertices, resulting in a shape map similar to the one in figure

2.1.5.

Page 9 of 25

Object Recognition on the iPhone – Team 34

Figure 2.1.5

Based on this the general shape layout of the image could be determined, at which point

this “blueprint” of the object would be compared to a database of images which had been pre-

processed in a similar manner. Based on the numbers of various shapes present in the image,

and possibly other factors if necessary, the set of possible matches could be narrowed down

until a good match was found. The tags on this image could be used to name the object, and this

information would be relayed back to the user through visual or auditory means.

2.2 – Assumptions and Limitations

At this point, the program is very limited. Although a large part of this is because the

algorithm as planned has not been fully implemented, there are still some issues inherent in the

method itself. One of the first and most prominent is the limitations of both current vertex

finding algorithms. The first one, while it is able to accurately find many triangles and

quadrilaterals, it is limited to acute angles which means it cannot easily be expanded to shapes

with 5 or more vertices. At this point obtuse angles would be extremely common, but any

pattern in a 3-by-3 window which could denote an obtuse angle could also denote a

continuation of the line, as shown in figure 2.2.1.

Figure 2.2.1

The second vertex algorithm is even more limited at this point, only really able to

identify perfectly straight right angles and thus limited to rectangles. However, this general

approach has far more potential to be expanded, as discussed later in section 3.1. Another major

issue apparent in the current approach is that it assumes a single color background. Though the

shape could theoretically be multi-colored (within reason), the background must be a single

color for the program to work. This, of course, would not be the case in a real-life situation.

However, this limitation will be extremely difficult to overcome as differentiating between the

Page 10 of 25

Object Recognition on the iPhone – Team 34

object and the background will become increasingly harder.

In addition to these limitations, some assumptions had to be made. The major one is the

assumption that the entire object is in the frame. Again, this cannot always be guaranteed in

real-life situations. However, this may not be as much of an issue as it seems at first glance.

With a sufficiently large comparison database, there are likely to be images with off-center

objects. Thus, as long as the shape map can still be drawn, the object may still be recognizable.

Another issue could arise if the object happens to be in the upper left corner such that the

“background color” is actually the color of the object. However, the outline would still end up

in more or less the same place in this case, and corrections could be made for the fact that the

image is reversed.

Finally there are those things which appear to be potential problems, but in fact are not.

How the object happens to be rotated is one such non-issue. Similarly to the off-center objects

note above, with a sufficiently large image database there would be images of similar objects

from many perspectives. Another possible issue is similarities in shape maps between different

objects. However, if simple appearance of shapes is not enough to determine the object

represented, there are many other things which could theoretically be taken into account. On a

basic level, the program could consider the relative sizes and positions of the shapes, or the

color(s) of the object. If even this is not enough, once multi-colored backgrounds are usable the

size of the object compared to other objects in the scene could be considered.

Page 11 of 25

Object Recognition on the iPhone – Team 34

3.0 – Results and Conclusions

3.1 – The Program

At this point, the program is able to recognize most quadrilaterals and triangles

(provided they only have acute angles). Though the program cannot work with multi-colored

backgrounds it is able to handle some variations in shade (that is, “noise”), and has also been

proven to work with images the size that an image from the camera would be. The program is

not able to handle imperfect lines, with one such example shown in figure 3.1.1.

Figure 3.1.1

Though the eye still perceives the first part as a (rather jagged) line, the computer would

identify several vertices along the line. The program may also run into difficulties if the

background color and object color are too similar, though for the most part it has been

successful within the current limitations. The images which it can currently run with can be

seen in Appendix B.

In its current version, the program has two different vertex algorithms it could use as

noted in section 2.1. Though at this point the first algorithm is the only useful one in most

situations, it cannot be easily expanded. With a 3-by-3 grid there is not much else the program

could do besides what it does now. Thus, the next step is to widen the viewing field of the

vertex algorithm. This is what the second method begins to do. However, at this point one runs

into a problem. While the first algorithm was based on finding certain exact patterns, with a

larger viewing window the number of possible patterns becomes far too large to use the same

method. Two possible methods that could be of use are noting where in the grid most of the

object pixels are concentrated, or finding the directions of the lines. Though both of these

Page 12 of 25

Object Recognition on the iPhone – Team 34

approaches have possible issues associated with them, such as handling curves in the first

method and determining the exact point of direction change for the second, either method

would be more useful than the current algorithm. Thus, although the second method is very

limited at this point, this is the one to pursue further.

Finally, another variable to examine is the size of the image. A photograph taken from

the camera is 720-by-960 pixels, which means the program has 691200 pixels to loop through.

As the size of the image decreases, so will the time it takes to process the image. Timing for the

image processing function to run was taken for ten compression levels of the same image. Each

level is a certain percent of the dimensions (for example, 10% compression is a 72-by-96 pixel

image), so the amount of pixels will decrease more rapidly (the 10% image has only 1% of the

pixels in the full size image). Graphs of the timing compared to both compression level and

number of pixels are shown in figure 3.1.2.

Figure 3.1.2

In both graphs the time decreases more or less linearly, suggesting that the smaller the

picture in question is, the better. However, accuracy must be balanced with speed. While the

50% image is still easily recognizable, around 30% the quality of the image begins to interfere

with seeing the details. Examples of the compression levels are given in Appendix B. For some

objects, the program would not need a high level of detail, but for others this lack of detail could

completely throw off the program. In addition, the time for the full size image is still fairly

Page 13 of 25

Object Recognition on the iPhone – Team 34

short. Although there is a noticeable delay after opening the program, this delay is not enough

to interfere with the use of the program. It must also be noted that these images were

compressed manually beforehand, while in the program a compression algorithm would have

to be run first. This would take additional time, with the result that it is probably not even

worth it to compress the image.

3.2 – Achievements

Although our program is far from complete, we have experimented with new ideas in

the field of object recognition. Although edge matching methods are common in object

recognition, we have taken this a step further by using shape matching instead of just leaving

the edges alone. If only the lines are considered, the edge maps will be more wildly varied than

if shapes are considered, as with shapes it is easier to not have an exact match without hurting

the accuracy too much. And while typical edge matching methods do not take into account

color or lighting, in theory the final version of our algorithm would take these things into

account which would increase the accuracy and range of object recognition tremendously.

In addition, many existing object recognition methods are limited to a relatively small

set of objects. Although we have not yet reached this point, our program aims for more general

object recognition by using a comprehensive image database and detecting elements of the

image which are not limited to only one object or type of objects. We have also tried to make

object recognition technology more portable and useful in everyday situations by creating our

project for the iPhone.

3.3 – Conclusion

Though our project was not entirely successful, we have proven that the basic idea is a

feasible method for object recognition. Though the method would not be perfect, we have

shown that it is possible to run these sorts of complex algorithms on mobile devices which,

though powerful, do not have nearly the processing power of computers. The current

implementation of the method has been successful within the realm it is designed for, and so

with more time the algorithm could be made more useful and general object recognition could

Page 14 of 25

Object Recognition on the iPhone – Team 34

be achieved through this method.

3.4 – The Future

The first and most obvious place to continue to is full implementation of the planned

algorithm. While at this point the program is only able to recognize extremely basic shapes,

with the full algorithm it would be able to recognize more complicated shapes such as stars and

possibly even basic objects. However, simply implementing the full algorithm will still leave it

somewhat useless in real-life situations as there is still the issue of working with multi-colored

backgrounds. This might require a reworking of the algorithm, though things such as focus and

depth through shading could be used to determine and differentiate the object in question.

Once the program is at a useful stage in the algorithm, the database must be made useful

as well. For a truly comprehensive database a large number of pictures would be needed, more

than could be collected by a small group of people. Thus, a possibility for filling the database is

putting an option for users to submit photos, tagged by them, to the database. Although this

would open up the possibility of misuse of the program by tagging images incorrectly, it would

also allow for a wide range of objects to be collected with little effort, as well as taking care of

the necessary preprocessing.

Finally, at this point the concept is based on a still image. However, real-time video feed

object recognition also offers some interesting possibilities. While the processing power of any

mobile device on the market is likely not enough for something like this, real-time object

recognition would be far more useful in many situations. In addition, the various sensors on the

iPhone (particularly the accelerometer and gyroscope) provide an interesting opportunity here.

With video-feed based object recognition, motion of objects could also be a factor in

determining the object represented. The iPhone’s sensors would allow for perceived motion of

the object to be corrected for user motion so that a proper picture of motion is possible.

Page 15 of 25

Object Recognition on the iPhone – Team 34

Appendix A – References

[1] Bakker, H.H.C., R.C. Flemmer and J.W. Howarth, “Feature-Based Object

Recognition”, Massey University, New Zealand.

<http://www.massey.ac.nz/~rcflemme/feature-based%20object%20recognition.pdf>

[2] Green, Bill, “Edge Detection Tutorial”, Drexel University, Philadelphia PA; 2002.

<http://www.pages.drexel.edu/~weg22/edge.html>

[3] “Haar-like Features”, Wikipedia. <http://en.wikipedia.org/wiki/

Haar-like_features>

[4] “How to Figure Out 'Color of a Specific Pixel' in an Image?”, Stack Overflow; July 3,

2010. <http://stackoverflow.com/questions/3172229/how-to-figure-out-color-of-a-specific-

pixel-in-an-image>

[5] “Object Recognition (Computer Vision)”, Wikipedia. <http://en.wikipedia.org/

wiki/Object_recognition_(computer_vision)>

[6] Roth, Peter M and Martin Winter, “Survey of Appearance-Based Methods for Object

Recognition”, Graz University of Technology, Austria; January 15, 2008. <http://web.mit.edu/

~wingated/www/introductions/appearance_based_methods.pdf>

Page 16 of 25

Object Recognition on the iPhone – Team 34

Appendix B – Pictures

Images to demonstrate the program:

This picture simply demonstrates

recognition of a standard rectangle.

This picture demonstrates recognition

of a standard triangle.

This picture demonstrates that the

program will work with any two

colors, not just black and white.

This picture demonstrates the program

when using a picture with “noise”,

variations in shade of the background.

In addition, this triangle contains

examples of each of the three types of

vertices under the first algorithm.

This picture is used to demonstrate the

second vertex algorithm.

Page 17 of 25

Object Recognition on the iPhone – Team 34

Page 18 of 25

Object Recognition on the iPhone – Team 34

Levels of Compression:

Page 19 of 25

Object Recognition on the iPhone – Team 34

50% Compression

Page 20 of 25

Object Recognition on the iPhone – Team 34

30% Compression

10% Compression

Page 21 of 25

Object Recognition on the iPhone – Team 34

Appendix C – Code

Note: This section only gives the code which we programmed ourselves, it does not include the

code from [4] or the standard code in a new iPhone view-based application in Xcode. To use this code, the

code from [4] must be placed into the respective files, ImageBitmap.h and ImageBitmap.m.

//shapesViewController.h

#import <UIKit/UIKit.h>
#import "ImageBitmap.h"

@interface shapesViewController : UIViewController {
UIImageView *image;
ImageBitmap *image_d;
UILabel *shape;
Byte *pixel, *pixel2;
int bg[3], line[11][11], num[11];
NSInteger check[3][3];
NSMutableArray *x, *y;
int height, width, vertex, adj;
NSNumber *x_0, *x_1, *y_0, *y_1;

}

@end

//shapesViewController.m

#import "shapesViewController.h"

@implementation shapesViewController

- (void)viewDidLoad {
 [super viewDidLoad];

/*
 initial setup
 sets variables, loads image, and displays info onscreen
 objective-c-style variables are allocated here
 the image is reloaded as a bitmap (for data writing)
 the background color is set from the pixel in the upper left
*/
self.view.backgroundColor = [UIColor whiteColor];
shape = [[UILabel alloc] initWithFrame:CGRectMake(50, 50, 500, 500)];
shape.text = [NSString stringWithFormat:@"Shape:"];
[self.view addSubview:shape];
vertex = 0;
image = [[UIImageView alloc] initWithImage:[UIImage imageNamed:@"squ01.png"]];
height = (int)image.image.size.height;
width = (int)image.image.size.width;
image.frame = CGRectMake(0, 0, width, height);
[self.view addSubview:image];
image_d = [[ImageBitmap alloc] initWithImage:image.image

bitmapInfo:kCGImageAlphaNoneSkipLast];
pixel = [image_d pixelAtX:0 Y:0]; // pixel[0] = red value, pixel[1] = green, pixel[2] =

blue
bg[0] = (int)pixel[0];
bg[1] = (int)pixel[1];

Page 22 of 25

Object Recognition on the iPhone – Team 34

bg[2] = (int)pixel[2];
x = [NSMutableArray arrayWithCapacity:2];
y = [NSMutableArray arrayWithCapacity:2];

/*
 writing data
 loops through each individual pixel
 if a pixel is within the 0x30 margin of error from the background color,
 the corresponding point in the array is set at 0 to denote "background"
 otherwise the array slot is set as 1 to denote "object"
*/
int data[height][width];
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {

pixel = [image_d pixelAtX:j Y:i];
if ((pixel[0]>=bg[0]-0x30 && pixel[0]<=bg[0]+0x30) && (pixel[1]>=bg[1]-0x30 &&

pixel[1]<=bg[1]+0x30) && (pixel[2]>=bg[2]-0x30 && pixel[2]<=bg[2]+0x30))
data[i][j] = 0;

else {
data[i][j] = 1;

}
}

}

/*
 finding outlines
 loops through each individual slot in the array (each pixel)
 for any pixel which is part of the object (==1),
 it checks the directly adjacent (surrounding 4) spaces
 if any are the background color (==0)
 sets pixel to 2 to denote "outline"
*/
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {

if (data[i][j]==1) {
if (data[i-1][j]==0 || data[i+1][j]==0 || data[i][j-1]==0 || data[i]

[j+1]==0)
data[i][j] = 2;

}
}

}

/*
 finding vertices
 loops through each pixel
 for any pixel which is an outline (==2),
 it checks to see if the pixel is a vertex
*/
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {

/*
 algorithm 1
 this algorithm constructs a 3*3 array where any outline is denoted by 1
 and any non-outline is denoted by 0
 it notes the positions of the adjacent pixels to the center pixel
 if these (theoretically two) pixels are themselves adjacent
 or in the same (non-center) column or row,
 the center pixel is considered as a vertex
 which adds one to the vertex variable
 so far only for acute angles
 and thus only useful for triangles and rectangles
*/
if (data[i][j]==2) {

if (data[i-1][j-1]==2)
check[0][0] = 1;

Page 23 of 25

Object Recognition on the iPhone – Team 34

else
check[0][0] = 0;

if (data[i-1][j]==2)
check[0][1] = 1;

else
check[0][1] = 0;

if (data[i-1][j+1]==2)
check[0][2] = 1;

else
check[0][2] = 0;

if (data[i][j-1]==2)
check[1][0] = 1;

else
check[1][0] = 0;

check[1][1] = 0;
if (data[i][j+1]==2)

check[1][2] = 1;
else

check[1][2] = 0;
if (data[i+1][j-1]==2)

check[2][0] = 1;
else

check[2][0] = 0;
if (data[i+1][j]==2)

check[2][1] = 1;
else

check[2][1] = 0;
if (data[i+1][j+1]==2)

check[2][2] = 1;
else

check[2][2] = 0;
adj = 0;
for (int k = 0; k < 3; k++) {

for (int l = 0; l < 3; l++) {
if (check[k][l]==1) {

adj++;
[x insertObject:[NSNumber numberWithInt:l]

atIndex:adj-1];
[y insertObject:[NSNumber numberWithInt:k]

atIndex:adj-1];
}

}
}
if (adj>1) {

x_0 = [x objectAtIndex:0];
x_1 = [x objectAtIndex:1];
y_0 = [y objectAtIndex:0];
y_1 = [y objectAtIndex:1];

}
if (adj==2) {

if ((((x_0==[NSNumber numberWithInt:0] && x_1==[NSNumber
numberWithInt:1]) || (x_0==[NSNumber numberWithInt:1] && x_1==[NSNumber numberWithInt:2])) &&
y_0==y_1) || (((y_0==[NSNumber numberWithInt:0] && y_1==[NSNumber numberWithInt:1]) ||
(y_0==[NSNumber numberWithInt:1] && y_1==[NSNumber numberWithInt:2])) && x_0==x_1)) {

vertex++;
}
else if ((x_0==[NSNumber numberWithInt:1] && x_1==[NSNumber

numberWithInt:0] && y_0==[NSNumber numberWithInt:0] && y_1==[NSNumber numberWithInt:1]) ||
(x_0==[NSNumber numberWithInt:1] && x_1==[NSNumber numberWithInt:2] && y_0==[NSNumber
numberWithInt:0] && y_1==[NSNumber numberWithInt:1]) || (x_0==[NSNumber numberWithInt:0] &&
x_1==[NSNumber numberWithInt:1] && y_0==[NSNumber numberWithInt:1] && y_1==[NSNumber
numberWithInt:2]) || (x_0==[NSNumber numberWithInt:2] && x_1==[NSNumber numberWithInt:1] &&
y_0==[NSNumber numberWithInt:1] && y_1==[NSNumber numberWithInt:2])) {

vertex++;
}

Page 24 of 25

Object Recognition on the iPhone – Team 34

else if ((x_0!=[NSNumber numberWithInt:1] && x_0==x_1) || (y_0!
=[NSNumber numberWithInt:1] && y_0==y_1)) {

vertex++;
}

}
}
/*
 algorithm 2
 this algorithm copies an 11*11 portion centered around each outline pixel
 at this point it merely examines the center row and center column
 if either one has all outline pixels to one side of the center,
 it's considered a vertex
 this algorithm can only identify non-rotated rectangles
 though the general approach of
 examining the placement of outlines in an 11*11 square
 has potential to be expanded, far moreso than algorithm 1
*/
/*if (data[i][j]==2) {

for (int m = 0; m < 11; m++) {
for (int n = 0; n < 11; n++) {

line[m][n] = data[i+m-5][j+n-5];
}

}
for (int k = 0; k < 11; k++) {

if (line[5][k]==2)
num[k] = 1;

else
num[k] = 0;

}
if (num[4]!=num[6])

vertex++;
else {

for (int l = 0; l < 11; l++) {
if (line[l][5]==2)

num[l] = 1;
else

num[l] = 0;
}
if (num[4]!=num[6])

vertex++;
}

}*/
}

}
if (vertex==3)
shape.text = [NSString stringWithFormat:@"Shape: Triangle"];

else if (vertex==4)
shape.text = [NSString stringWithFormat:@"Shape: Rectangle"];

else
shape.text = [NSString stringWithFormat:@"Shape: Polygon"];

}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
}

- (void)viewDidUnload {
}

- (void)dealloc {
 [super dealloc];
}

@end

Page 25 of 25

