
0

Digital Analysis and Synthesis of Musical

Recordings

New Mexico

Supercomputing Challenge

Final Report

April 4th, 2011

Team 43

La Cueva High School

Eldorado High School

Team Members:

Alexandra Porter

Evan Roche

Sponsor:

Jennifer Coughlin

1

Digital Analysis and Synthesis of Music Recordings

Table of Contents

Project Summary ... 5

Introduction..6

Purpose ...7

Background and Theory ..8

 Fourier Transform...8

 Wavelets..9

 Harmonics and Overtones.......................................10

Procedural Overview...12

 Fourier Transform..13

 Haar Wavelet Transform............................10

 Analysis Program Outline.......................................16

Results and Conclusions...17

 Fourier..17

 Wavelets..23

 Analysis Program...26

 Synthesis.. 29

Future Work..36

Acknowledgements...38

Bibliography...37

Appendix A - Data..39

Appendix B - Code...43

2

Tables

1. Instrument Characteristics..9

2. Dynamic Ranges...11

3. Wavelet Step Size Ratios..11

4. Waveform Analysis Results..27

Equations

1. Continuous Fourier Transform..4

2. Euler's Formula...4

3. Euler's Formula applied to the Fourier Transform..................4

3

Figures

1. The Haar Mother Wavelet...6

2. The Wavelet Transform...10

3. Flute A4 Waveform...18

4. Clarinet A4 Waveform..18

5. Trumpet A4 Waveform...19

6. Oboe A4 Waveform..19

7. Flute A4=440 Hz...20

8. Clarinet A4=440 Hz..20

9. Trumpet A4=440 Hz...21

10. Oboe A4=440 Hz..21

11. Oboe B4=493.883 Hz...22

12. Oboe A5=880 Hz..22

13. Oboe A4 Dynamic: High Volume.....................................23

14. Oboe A4 Dynamic: Low Volume......................................24

15. Oboe A4: High Pass Wavelet Coefficients...........................24

16. Oboe A4: Intermediate Pass Wavelet Coefficients...............25

17. Oboe A4: Low Pass Wavelet Coefficients...........................25

18. Oboe A4: Original Waveform...30

19. Oboe A4: 1 Peak...30

20. Oboe A4: 2 Peaks..31

21. Oboe A4: 4 Peaks..31

22. Trumpet C5: Original Waveform.......................................32

4

23. Trumpet C5: 1 Peak..32

24. Trumpet C5: 3 Peaks...33

25. Trumpet C5: 6 Peaks...33

26. Oboe A4 Trumpet C5: Original Waveform..........................34

27. Oboe A4 and Trumpet C5: 1 Peak......................................34

28. Oboe A4 and Trumpet C5: 3 Peaks.....................................35

29. Oboe A4: 4 Peaks; Trumpet C5: 6 Peaks.............................35

5

Project Summary

The goal of the project was to develop a C++ analysis program that can analyze

recordings of musical instruments using Fourier and wavelet transform algorithms. The

combined use of wavelets and the Fourier transform is a unique way of modeling the physical

characteristics of sound for accurate analysis.

First, instrumental recordings were produced from various instruments playing specific

pitches and series of pitches. C++ programs were developed to read the recorded .wav format

files into numerical arrays that were then used in a Fast Fourier Transform program. The Fourier

transform converts the discretely sampled data into the frequency domain, showing which

frequencies are present in the sound. Peaks in the resulting frequency domain data show the

fundamental frequencies and overtones present in a recording. A C++ program was developed to

identify these peaks and measure their relative emphasis and position. This information

determines timbre, or the distinct sound of the instrument. Knowing the frequency composition

of a particular instrument at a certain pitch, a range of pitches can be synthesized with the timbre

of the instrument.

Wavelets were also used to analyze the instrumental recordings. Wavelets allow for time

domain analysis of discretely sampled data, which means a recording containing multiple pitches

or a decaying pitch can be more accurately analyzed. Wavelets are a more versatile tool than

Fourier Transforms, due to the fact that they allow the detection and analysis of multiple notes in

sequence and musical phrases. Wavelets were also used in instrument identification.

A java program was developed to visually display analysis results in sheet music

notation, a practical format for potential users.

6

Introduction

Sound, and especially music, is an essential part of the world that we live in. Sound is

purely a mechanical wave of oscillating pressure with a variety of physical characteristics and

properties that we record in our brains and on computers as electrical impulses [4]. In recent

years, technology has allowed us to accurately detect and measure these characteristics. Our

understanding of the physics and math governing sound has increased greatly, mainly through

research in the scientific fields of acoustics and signal processing.

This increased understanding has led to the creation of many new sound and music

technologies such as sound editing programs, sound recognition technologies, and artificial

sound production.

 There are still many things to learn about the physics of sound and the processes used for

analysis and synthesis. Polyphonic sound analysis is currently being researched, but no defined

methods have become widely accepted.

7

Purpose

 The purpose of this project is to develop an algorithm to more accurately analyze the

waveforms of sound files through modeling with wavelets and Fourier transforms. This

algorithm will be used identify the instrument, frequency or frequencies, volume, and timbre of

waveforms. The algorithm will also be used to analyze polyphonic recordings for these same

characteristics.

8

Background and Theory

 All the tests in this project were done on the waveforms of sound recordings sampled at

44100 Hz. A waveform is a series of discretely sampled pressures over time.

The Fourier Transform

The Fourier transform is an algorithm that determines the frequency components of a

wave from either a function or discretely sampled amplitudes in the time domain. The Fourier

transform results are in the form of amplitude over frequency. It finds the frequency by breaking

a wave down into a summation of cosine and sine waves [9]. The Fourier transform is a useful

algorithm applicable to any form of periodic data.

The Fourier transform of the continuous function f(x) is shown as:

Applying Euler’s formula:

 The results of the Fourier transform are divided into real and imaginary parts. For most

practical applications, only the real parts are of use. The data in this project is entirely composed

of real numbers so all imaginary components are set to zero.

Equation 1

Equation 2

Equation 3

9

The Discrete Fourier Transform is a discrete adaptation of the Fourier Transform, that

takes in a sampled set of finite values. This project made use of the FFT (Fast Fourier

Transform), which is simply a more efficient way to compute the Discrete Fourier Transform.

The FFT exploits useful patterns found in the Fourier transform to save both memory and time

[9].

Wavelets

Wavelets are functions used in signal processing to analyze data that is not necessarily

periodic. They are defined by two functions, the mother wavelet function, and the scaling

function (also referred to as the father function) [2]. In wavelet transforms, the mother function is

shifted, scaled and duplicated so that it can be used to model portions of the function being

analyzed. By finding the scaling and wavelet coefficients, information can be obtained and the

desired spectra produced.

Wavelets are a more recent approach to the problem of extracting both time and

frequency information from a transformed function. The main weaknesses of the Fourier

transform is that it requires periodic and continuous data [2]. The Discrete and Fast Fourier

Transforms allow for non-continuous inputs, but data must still be periodic. The Short-Time

Fourier Transform is an adaptation that has properties similar to wavelets. It is localized in both

time and frequency, but it still cannot capture detail as precisely as wavelets. Wavelets can give a

more accurate signal representation using multiresolutional analysis.

Another significant advantage of wavelets is their computational efficiency. They are

even faster than the FFT. Wavelet transforms are calculated in O(n), which is a linear growth

10

directly proportional to the size of the input. The FFT on the other hand, functions in the

linearithmic O(N logn) time, which is slower than linear but faster than quadratic.

In this project, we used the Haar wavelet as a mother function. The Haar wavelet is a

basic mother wavelet, as shown below. The Haar wavelet is not continuous so it can easily be

used to scale inputted functions with rapid growths and decays [6]. This makes it a good

candidate for analyzing audio files, as they often have sharp peaks or shifts in amplitude.

The Haar Mother Wavelet:

The fundamental frequency of a signal is often accompanied by higher frequencies called

overtones. Harmonics are ideal overtones, with frequencies that are integer multiples of the

fundamental frequency. The overtones of instruments are usually close to the harmonics, but not

necessarily exact multiples. Overtones that don't correlate to harmonics create small amounts of

dissonance, which can contribute to the unique sounds of different instruments. During the

construction of most instruments efforts are taken to minimize dissonance, such as flaring the

bell on a trumpet.

 Sound in instruments is generated by oscillating strings or columns of air. Strings and

columns of air in an open tube vibrate at a certain frequency, but their length also vibrates in

halves, thirds, fourths, etc. This produces overtones with doubled, tripled, and quadrupled

frequencies. The first harmonic is the fundamental frequency, the first overtone is the frequency

twice the fundamental frequency. If a tube is closed on one end, as some instruments are, only

Harmonics and Overtones

1

-1
0.5 1.0

Figure 1

11

odd harmonics are generated, due to the node created at the closed end. Overtones and harmonics

are higher in frequency than the fundamental, and generally decrease in amplitude as they get

higher [4].

 Overtones are a very important part of sound, as they are the physical components that

give each sound its unique timbre. Timbre is a term used to describe sound quality, sometimes it

is also referred to as the “color” or “flavor” of sound. Timbre is determined by how many

overtones can be heard, which of those are emphasized, and how close those overtone are to their

respective harmonic series [4].

 The relative ratios of amplitude and distance between overtones is a key factor, as well as

the rate at which different overtones decay. Overall, overtones are an essential element in the

process of determining the sound characteristics of a note or phrase.

12

Procedural Overview

First, a set of .wav recordings were created and obtained from the Internet [6]. A

program was developed in C to read .wav files into .txt format.

A Fourier transform program was then written in C [7.]. The Fourier transform program

performs a Fast Fourier transform on data points read from a text file. In order to get the most

accurate results in the Fourier transform the articulation and decay at the end of each note were

removed. The peaks resulting from the Fourier transform were then analyzed for location and

emphasis, factors which determine the note's fundamental frequency and timbre.

The second program developed was a C program that performs the Haar wavelet

transform. This program loops through the data and calculates the wavelet coefficients. These

coefficients were then analyzed in order to reveal characteristics of the waveform in the time

domain.

The main program used both of the transforms. It calculated each of them separately and

used the results to analyze a sound file, identify the instrument, find the frequencies of multiple

notes, and determine the volume levels.

The Inverse Fourier transform was used to recreate a waveform from a modified

frequency spectrum. The Fourier transform of a waveform was calculated and noise was

removed. The inverse transform resulted in a cleaner, more accurate pitch that still preserved

timbre.

13

 Fourier Transform Program

The Fourier transform was used to identify the fundamental frequency and the instrument

being played. First, the highest peak was calculated and points in the bottom fourth of that peak

were removed. The peak in each cluster of remaining data was then found. These remaining

peaks were the most prominent and formed the basis for our overtone data.

The general trend in emphasis was calculated by counting how many peaks were higher

than the previous peak and how many were lower. This was particularly useful in identifying the

oboe, which has a fairly unique upward trend in its overtones.

 Lastly, the relative emphasis of the first three peaks was calculated. This was

accomplished for each of the three peaks by calculating the proportion of the amplitude of the

peak to the average of the other two. For example, the ratio of emphasis for the first peak is

amplitude1 /((amplitude2+ amplitude3)/2), which is equivalent to

2*amplitude1/(amplitude2+amplitude3). These relative emphases are generally the same for all

notes on a given instrument. Data was calculated based on a range of notes (see Appendix A) and

is show below. The program determines the instrument of the waveform, assuming it is the one

that the ratios and upward or downward trend resemble most.

Instrument Characteristics

 Flute Oboe Trumpet Clarinet

Ratio of 1
st
 Peak 1.75 0.30 3.80 2.90

Ratio of 2
nd

 Peak 1.25 1.55 .050 0.40

Ratio of 3
rd

 Peak 0.80 2.00 0.40 1.00

Increasing or

Decreasing

decreasing increasing decreasing decreasing

Table 1

14

Haar Wavelet Transform Program

The Haar Wavelet transform operates by calculating the average and the step size

between each pair of adjacent points in the waveform. The step sizes and averages are stored in

an array, and the new averages become the data used to calculate the next set of step sizes and

averages. This is repeated until a single average is achieved, therefore the number of passes is

log2(n) for n = number of original data points.

 The Haar wavelet transform was calculated for the waveform and used to determine

characteristics in the time domain, specifically note length and dynamic (volume) level.

 Note lengths were calculated relative to each other. Because the tempo is unknown the

actual musical length of the note (eighth note, quarter note, etc) cannot be determined. Instead,

the notes are scaled to each other and the relative length is outputted.

Figure 2

15

The average dynamic level was determined by comparing the average step size of the

wavelet transform to given dynamic ranges specific to the instrument. As shown below, the

dynamics from softest to loudest are pianissimo, piano, mezzo-piano, mezzo-forte, forte, and

fortissimo.

Dynamic trends upward (crescendo) or downward (diminuendo) were also calculated by

looking at the trend in step size for a very low pass level filter on the wavelet transform. If this

trend was significant, a starting and ending dynamic were determined and outputted.

Dynamic Ranges

 Piano Mezzo-piano Mezzo-forte Forte Fortissimo

Flute 0.0007 0.00125 0.0018 0.00238 0.0029

Oboe 0.000225 0.0002863 0.0003475 0.000409 0.00047

Trumpet 0.0008 0.00165 0.0025 0.00335 0.0042

Clarinet 0.0037 0.00385 0.004 0.00415 0.0043

Wavelets were also used as a factor in determining the instrument. The ratio of

magnitude of positive to negative step sizes was found to be effected by instrument. As shown,

the positive and negative step sizes on the oboe are very close in magnitude.

 Flute Oboe Trumpet Clarinet

Step Size Ratio 1.4 1.0 1.7 0.7

Table 2

Table 3

16

Analysis Program Outline

1. Locate gaps in input; store each section/ note separately

2. Compute Fourier transform on each note

› Sends middle portion with length 2
x
 ; cleanest periodic sample

› Locate peaks in Fourier transform: points over fraction of maximum

› First peak is fundamental frequency, others are overtones

› If more than 2 peaks correspond to multiples of a different fundamental, identifies

recording as polyphonic, separates out peaks by their corresponding fundamental

3. Compute relative size of each peak returned by Fourier transform

› Average up or down trend and relative sizes compared to instrument data

4. Compute wavelet transform

› ratio of positive to negative step sizes correlates to instrument

5. Record best instrument; instrument with most matches characteristics

6. Compute average amplitude from wavelet transform, match to instrument to identify

dynamic range, trend

7. Display information in musical notation

17

Results and Conclusions

Fourier Transform

 On the Fourier transforms shown the peaks over approximately 0.25 (a fourth of the

highest peak) are of significance. The first of these peaks is the fundamental frequency and is

within about 20 Hz of the frequency listed for each graph. The waveforms (figures 3-6) shown

are the actual samples contained in the original .wav file. The differences between instruments in

the shape of their cycle correspond to differences in the relative peak sizes in the Fourier

transform (figures 7-10). Figures 10, 11, and 12 show the Fourier transforms of different notes

being played on the same instrument, the oboe. These Fourier transforms all have similar

characteristics, particularly the upward trend in emphasis of the first three peaks. Each of these

Fourier transforms also has the fundamental frequency represented by the first significant peak.

Due to the fact that oboe's fundamental frequency is relatively small, a slightly lower threshold is

necessary to preserve the fundamental frequency and the first few overtones.

18

Figure 3

Figure 4

19

Figure 5

Figure 6

20

Figure 7

Figure 8

21

Figure 9

Figure 10

22

Figure 11

Figure 12

23

Wavelet Transform

 The first two wavelet transforms shown represent the same note, A4=440 Hz on the same

instrument, an oboe. The difference is that in figure 14, where the dynamic is piano (the second

lowest dynamic used in this project), the transform has much smaller step sizes than in figure 14,

where the dynamic is fortissimo (the highest in this project).

 Figures 15-17 show parts of the final wavelet transform. Figure 15, the high pass filter

results, contains the most detail because it is the step sizes between groups of four points. The

intermediate and low pass wavelet transform results are more general and contain fewer discrete

points, each of which is the average of more points for lower passes.

-20

-15

-10

-5

0

5

10

15

20
Oboe A4 Wavelet Transform: High Volume

Figure 13

24

-10

-5

0

5

10

15

20

oboe A4 High Pass Wavelet Coefficients

Figure 14

Figure 15

25

-20

-15

-10

-5

0

5

10

15

20
oboe A4 Intermediate Coefficients

-5

0

5

10

15

20
oboe A4 Low Pass Wavelet Coefficients

Figure 16

Figure 17

26

Analysis Program

 The analysis program analyzed waveforms by using both the Fourier transform and the

wavelet transform. First, gaps in the waveform were identified and if they were above a set

minimum length the gaps were considered spaces between notes. Next, a Fourier transform was

performed on each note. The Fourier transform of each note was analyzed and matched with the

best instrument, based on the criteria in table 1. The instrument with the highest number of

criteria matches for all the notes was identified as the instrument used to produce the waveform.

The first peak in the Fourier transform was also identified as the fundamental frequency and the

index of this peak was scaled to the sampling rate of 44100 Hz.

 Next, the wavelet transform was performed on the waveform. Due to lack of computing

power, the waveform had to be segmented to perform the wavelet transform, but the results are

the same. The average step sizes were calculated over a single pass of the waveform. Step sizes

vary in each pass, but the one used in calculations was the same pass used to determine the

known volume ranges. Average step sizes of the waveform were compared to the volume ranges

for the identified instrument. A very low pass filter was also used to identify any significant

volume trends in the waveform.

 As shown in tables 4 and 5, the analysis program was able to identify each note and its

dynamic characteristics. The instrument was also correctly identified in all trials shown. The

program was also able to distinguish between two notes and identify their frequencies. However,

due to the computer's capacity, a longer waveform could not be analyzed. The most significant

result obtained was that the algorithm had the capacity to sort peaks in the Fourier transform

based on which fundamental frequency the peaks

27

correspond to, which allows for polyphonic waveform analysis. A java program was developed

to adapt analysis results into a more practical visual format (see appendix).

Waveform Analysis Results

Instrument

(all correctly

indentified)

Flute Oboe Clarinet Trumpet

Ideal Frequency Flute, A4=

440 Hz

A4=440 Hz A4=440 Hz A4=440 Hz

Number of Notes 1 1 1 1

Calculated

Frequency

400 Hz 420 Hz 420 Hz 440 Hz

Overall Dynamic

Level

Fortissimo Fortissimo Fortissimo Fortissimo

Volume Trend None None None None

Table 4

28

Waveform Analysis Results

Instrument

(all correctly

indentified)

Flute Trumpet Flute Oboe and Trumpet

(simultaneous)

Ideal

Frequency

G5= 783.991

Hz

A5=880 Hz G6=1567.98 Hz,

A6=1760 Hz

A4=440 Hz,

C5=523.251 Hz

Number of

Sequential

Notes

1 1 2 1

Calculated

Frequency

820 Hz 850 Hz 1533 Hz, 1750 Hz 440 Hz, 523 Hz

Overall

Dynamic Level

Pianissimo Mezzo-

forte

Fortissimo Fortissimo

Volume Trend None Crescendo None None

Table 4 Continued

29

Synthesis

After determining the primary frequencies and overtones present in the sound files,

the waveforms were recreated from the most prominent overtones. These new waveforms

resemble the originals but are more consistent. By adding together sine waves representing each

significant peak in the Fourier transform, the Inverse Fourier transform is essentially being

computed on a cleaned version of the Fourier transform. The waveform of an oboe playing

A4=440 Hz was re-created using one, two, three, and four frequency components. The waveform

of a trumpet playing C5=523.251 Hz was created using one, two, three, four, five, and six

frequency components. More frequency components were necessary for the trumpet waveform to

resemble the original. This is data that corresponds to the physical complexity of the instrument's

sound. The waveforms of a trumpet playing C5 and oboe playing A4 at the same time was also

synthesized by combining one, two and three frequencies from each, along with four from the

oboe and six from the trumpet.

30

Figure 18

Figure 19

31

Figure 21

Figure 20

32

Figure 23

Figure 22

33

Figure 25

Figure 24

34

Figure 26

Figure 27

35

Figure 28

Figure 29

36

Future Work

 In the future we plan on using parallelization to increase the capacity of our programs.

The algorithms can handle sequential and polyphonic notes, so being able to analyze a longer

waveform would mean being able to analyze an entire piece of music.

37

Acknowledgements

We would like to thank the following people for their helpful suggestions and feedback.

Bob Chesebrough

Nick Bennett

Jeffry Clymer

38

Bibliography

1. Clymer, Jeffrey W., 2010 High Brass Overtones

2. Graps, Amara., 1995, An Introduction to Wavelets, Institute of Electrical and Electronics

Engineers, Inc. 18 p.

3. Hubbard, B. B., 1998, The World According to Wavelets, Second Edition, A K Peters, Ltd.

330 p.

4. Howe, Hubert S., 1975, Electronic Music Synthesis: Concepts, Facilities, Techniques, W. W.

Norton & Company, Inc. 272 p.

5. Lynch, John T., 2001, The Natural Resonances of a Trumpet.

6. Ogden, R. T., 1997, Essential Wavelets for Statistical Applications and Data Analysis,

Birkhauser Boston, 206 p.

7. Philharmonia Orchestra, The Sound Exchange. Sample Library

8. Press, W. H., Teukolosky, S. A., Vetterling, W. T., Flannery, B. P., 2007, Numerical Recipes:

The Art of Scientific Computing, Third Edition, Cambridge University Press, 1235 p.

9. Yoo, Y., 2001, Tutorial on Fourier Theory, 18 p.

39

Appendix A: Data

 Screen shots of Analysis Output

40

Java Musical Notation Output

41

42

43

Appendix B: Code

Analysis Program

#include <iostream>

#include "waveAnalysis.h"

#include "fourier.h"

#include "linearWavelets.h"

#include <fstream>

#include <string>

#include <math.h>

#include <stdio.h>

using namespace std;

int main(int argc, char** argv)

{

 ifstream infile;

 infile.open("infile.txt");

 ofstream outfile("transform_analysis.txt");

 string line;

 const int length=8192;

 const int segNum=3;

 double data[2*length];

 double segs[segNum][length];

 //segments divide where notes start and end

 double transform[length];

 int seglength[segNum];

 double dataTemp[length];

 double transformData[segNum][5];

 int ifouriermax;

 int tempLength=0;

 int threePeaks=0;

 int segpow2=0;

 int singleCounter=0;

 int countHoles=0;

 int segmentcount=0;

 int j=0;

 int lengthtemp=0;

 double peak1=0;

 double peak2=0;

 double peak3=0;

 double peakSum1=0;

 double peakSum2=0;

 double peakSum3=0;

 int peakCount=0;

 double peakPrev=0;

 int upDown=0;

 double fundamentalFreq[segNum];

44

 double fundamentalFreqAvg=0;

 double inputTemp;

 double scaleK=0;

 double outCount=0;

 double peaks[30];

 const int notesinRange=100;

 double notes[notesinRange];

 int totalPeakprev=0;

 int totalPeaks=0;

 double peakSeparate[2][15];

 //will contain all peaks, sorted by corresponding fundamental frequency

 int instrument1count=0;

 int instrument2count=0;

 int roundedFreq=0;

 int roundedFreqPrev=0;

 //define note ranges

 int octaveCount=0;

 int octave23=0;

 int noteCountersingle=0;

for (int i=0; i<notesinRange; i+=2)

{

 notes[noteCountersingle]=261.6262*pow(1.059463094,(double)(i));

 octaveCount+=1;

 noteCountersingle+=1;

 if (octave23==0 && octaveCount==3)

 {

 octave23=1;

 octaveCount=0;

 i=i-1;

 }

 if (octave23==1 && octaveCount==4)

 {

 octave23=0;

 octaveCount=0;

 i=i-1;

 }

}

 for (int i=0; i<length; i++)

 //thresholding- holes show where notes end

 {

 getline(infile, line);

 inputTemp=atoi(line.c_str());

 data[i]=inputTemp;

 if(data[i]<2 && data[i]>-2)

 //excludes preset zeros

 {

 dataTemp[i]=0;

 }

 if(data[i]>2 || data[i]<-2)

45

 {

 dataTemp[i]=data[i];

 }

 dataTemp[i]=data[i];

 if (dataTemp[i]==0 && (dataTemp[i-1]==0 || dataTemp[i-1]==0) &&

(dataTemp[i-2]==0 || dataTemp[i-2]==0))

 {

 countHoles+=1;

 }

 if (dataTemp[i]!=0)

 {

 if (countHoles>500)

 {

 seglength[segmentcount]=j;

 segmentcount+=1;

 j=0;

 countHoles=0;

 }

 }

 if (i==(length-1))

 {

 seglength[segmentcount]=j;

 }

 segs[segmentcount][j]=data[i];

 if (data[i]!=0)

 j+=1;

 }

segmentcount+=1;

if (segmentcount==1)

 seglength[0]=length;

//if all one segment first segment is total length

//fourier segments

for (int i=0; i<segmentcount; i++)

{

 segpow2=(int)(log((long double)seglength[i])/log((long double)2));

 singleCounter=seglength[i]/4;

 cout<<"segpow2: "<<segpow2<<endl;

 for (int j=0; j<((int)pow(2.,(double)(segpow2+1))); j+=2)

 //length thats a power of two, double so that it alternates with 0s.

 {

 dataTemp[j]=segs[i][singleCounter];

 //takes middle half, cleanest periodic part of note

 dataTemp[j+1]=0;

 singleCounter+=1;

46

 }

 ifouriermax=fourier(dataTemp,

 transform,((int)pow(2.,(double)(segpow2))));

 //transform each piece-return into transform

 for (int k=0; k<((int)pow(2.,(double)(segpow2))); k++)

 //through all of fourier transform

 {

 outfile<<transform[k]<<endl;

 if (transform[k]<ifouriermax/4)

 {

 transform[k]=0;

 //weed out data below a fraction of the max

 }

 if (transform[k]>transform[k-1] && transform[k]>transform[k+1])

 {

 scaleK=k*(44100/((int)pow(2.,(double)(segpow2))/2));

 for (int m=0; m<notesinRange; m++)

 {

 if(scaleK<notes[m+1] && scaleK>notes[m])

 {

 if (abs(scaleK-notes[m])<abs(scaleK-

notes[m+1]))

 {

 peaks[totalPeaks]=notes[m];

 }

 else

 {

 peaks[totalPeaks]=notes[m+1];

 cout<<"peak true."<<endl;

 }

 if (peaks[totalPeaks]==peaks[totalPeaks-1])

 //if to close, accounts for peak missed in threshold

 peaks[totalPeaks]=0;

 }

 }

 if (peaks[totalPeaks]!=0)

 {

 totalPeaks+=1;

 }

 if (peakCount==0)

 {

47

 peak1=transform[k];

 peakSum2+=peak1;

 peakSum3+=peak1;

 //calculate frequency

 fundamentalFreq[i]=k*(44100/((int)pow(2.,(double)(segpow2))/2));

 cout<<"fundamental peak: "<<k<<endl;

 fundamentalFreqAvg+=fundamentalFreq[i];

 cout<<"fundamentalFreq: "<<fundamentalFreq[i]<<endl;

 peakPrev=peak1;

 }

 if (peakCount==1)

 {

 peak2=transform[k];

 cout<<"peak2: "<<peak2<<endl;

 peakSum1+=peak2;

 peakSum3+=peak2;

 if (peak2>peakPrev)

 {

 upDown=1;

 }

 if (peak2<peakPrev)

 {

 upDown=-1;

 }

 peakPrev=peak2;

 }

 if (peakCount==2)

 {

 peak3=transform[k];

 cout<<"peak3: "<<peak3<<endl;

 peakSum1+=peak3;

 peakSum2+=peak3;

 if (peak3>peakPrev)

 upDown+=1;

 if (peak3<peakPrev)

 upDown-=1;

 peakPrev=peak3;

 }

 peakCount+=1;

 }

 else

 {

 transform[k]=0;

 //cut out to peaks only above threshold

 }

 }

48

 //end of loop through fourier data

 for (int j=0; j<totalPeaks; j++)

 {

 if ((int)(peaks[j]/peaks[0])!=(int)((peaks[j]/peaks[0])+0.9))

 roundedFreq=(int)((peaks[j]/peaks[0])+0.9);

 else

 roundedFreq=(int)(peaks[j]/peaks[0]);

 if (roundedFreq!=roundedFreqPrev)

 {

 peakSeparate[0][instrument1count]=peaks[j];

 instrument1count+=1;

 cout<<"peakSep[0]:"<<peakSeparate[0][instrument1count]<<"";

 }

 else

 {

 outCount+=1;

 if (abs(peaks[j]/peaks[0]-roundedFreq)>abs(peaks[j-

 1]/peaks[0]-roundedFreq))

 //if previous is closer to ratio than current peak

 {

 peakSeparate[1][instrument2count]=peaks[j];

 cout<<"peakSep[0]:

"<<peakSeparate[0][instrument1count]<<" ";

 cout<<"peakSep[1]:

"<<peakSeparate[1][instrument1count]<<endl;

 instrument2count+=1;

 }

 else

 {

 peakSeparate[0][instrument1count-1]=peaks[j];

 peakSeparate[1][instrument2count]=peaks[j-1];

 cout<<"peakSep[0]:

"<<peakSeparate[0][instrument1count]<<" ";

 cout<<"peakSep[1]:

"<<peakSeparate[1][instrument1count]<<endl;

 instrument1count+=1;

 }

 }

 roundedFreqPrev=roundedFreq;

 }

 if (peakCount>2)

 {

 transformData[i][0]=peak1/(peakSum1/(peakCount-1));

 //ratio of first peak to average of rest

 transformData[i][2]=peak2/(peakSum2/(peakCount-1));

49

 transformData[i][3]=peak3/(peakSum3/(peakCount-1));

 }

 else

 {

 transformData[i][0]=peak1/(peakSum1);

 transformData[i][2]=peak2/(peakSum2);

 transformData[i][3]=peak3/(peakSum3);

 }

 if (upDown>0)

 //general up or down trend

 transformData[i][1]=1;

 if (upDown<0)

 transformData[i][1]=-1;

 if (upDown==0)

 transformData[i][1]=0;

 peak1=0;

 peak2=0;

 peak3=0;

 peakSum1=0;

 peakSum2=0;

 peakSum3=0;

 peakCount=0;

 peakPrev=0;

 upDown=0;

}

//end of loop through all notes

//combine information from each note

const int instrumentCount=4;

const int factors=5;

double instruments[instrumentCount][factors];

const int chunklength=2048;

const int wavesegs=length/chunklength;

const int sweeps=(int)(log((long double)chunklength)/log((long double)2));

//flute data

instruments[0][0]=1.75;

instruments[0][1]=0;

instruments[0][2]=1.25;

instruments[0][3]=0.8;

instruments[0][4]=1.4;

//oboe data

instruments[1][0]=0.30;

instruments[1][1]=1;

instruments[1][2]=1.55;

instruments[1][3]=2.0;

instruments[1][4]=1.0;

//trumpet data

instruments[2][0]=3.80;

instruments[2][1]=-1;

instruments[2][2]=0.5;

50

instruments[2][3]=0.3;

instruments[2][4]=1.7;

//clarinet data

instruments[3][0]=2.9;

instruments[3][1]=-1;

instruments[3][2]=0.4;

instruments[3][3]=1.0;

instruments[3][4]=0.7;

double ratioAvg1=0;

double ratioAvg2=0;

double ratioAvg3=0;

double upDownTotal=0;

 for (int i=0; i< segmentcount; i++)

 {

 ratioAvg1+=transformData[i][0];

 ratioAvg2+=transformData[i][2];

 ratioAvg3+=transformData[i][3];

 upDownTotal+=transformData[i][1];

 }

 upDownTotal=0;

 if (upDownTotal>0)

 upDownTotal=1;

 if (upDownTotal<0)

 upDownTotal=-1;

 if (upDownTotal==0)

 upDownTotal=0;

 ratioAvg1=ratioAvg1/(segmentcount);

 ratioAvg2=ratioAvg2/(segmentcount);

 ratioAvg3=ratioAvg3/(segmentcount);

//make comparisons to instruments

 int instrumentPoints[instrumentCount];

 double diffSums[instrumentCount];

 double diffSumMin=1000;

 int diffSumMinindex=0;

 int closestRatioIndex1=0;

 int closestRatioIndex2=0;

 int closestRatioIndex3=0;

 for (int i=0; i<instrumentCount; i++)

 {

 diffSums[i]=0;

 instrumentPoints[i]=0;

 if (upDownTotal==instruments[i][1])

//give "point" for same trend

 instrumentPoints[i]+=8;

51

 diffSums[i]+=abs(ratioAvg1-instruments[i][0]);

 diffSums[i]+=abs(ratioAvg1-instruments[i][2]);

 diffSums[i]+=abs(ratioAvg1-instruments[i][3]);

 if (diffSums[i]<diffSumMin)

 {

 diffSumMinindex=i;

 diffSumMin=diffSums[i];

 }

 }

instrumentPoints[diffSumMinindex]+=5;

double positiveMax=-100;

double negativeMin=1000;

double plusMinusRatio=0;

double waveletClosest=100;

int waveletIndex=0;

for (int i=0; i<wavesegs; i++)

{

 for (int j=0; j<chunklength; j++)

 {

 dataTemp[j]=data[j+(chunklength*i)];

 }

 linearWavelets(dataTemp, transform, chunklength,sweeps);

//use of wavelet characteristics to identify instrument

 for (int g=(chunklength/32); g<(chunklength/16); g++)

 {

 dataTemp[g-(chunklength/32)]=transform[g];

 if (transform[g]>positiveMax)

 positiveMax=transform[g];

 if (transform[g]<negativeMin)

 negativeMin=transform[g];

 }

}

plusMinusRatio=abs(positiveMax)/abs(negativeMin);

for (int i=0; i<instrumentCount; i++)

{

 if (abs(plusMinusRatio-instruments[i][4])<waveletClosest)

 {

 waveletClosest=abs(plusMinusRatio-instruments[i][4]);

 waveletIndex=i;

 }

}

instrumentPoints[waveletIndex]+=2;

 int bestInstrument=0;

//set to closest instrument by finding instrument with most points

 for (int i=0; i<instrumentCount; i++)

52

 {

 if (instrumentPoints[i]>instrumentPoints[bestInstrument])

 {

 bestInstrument=i;

 }

 }

 const int numVolumeLevels=6;

 double instrumentAmps[instrumentCount][numVolumeLevels];

 double amplitudeAverage[wavesegs];

 int amplitudeAverageCount[wavesegs];

 int volumeLevel[wavesegs];

 fundamentalFreqAvg=fundamentalFreqAvg/segmentcount;

 int volumeTrend[wavesegs];

 int volumeLevelAvg=0;

//flute dynamics

instrumentAmps[0][0]=0.0007; //pp

instrumentAmps[0][1]=0.00125; //mp

instrumentAmps[0][2]=0.0018; //mf

instrumentAmps[0][3]=0.00238; //f

instrumentAmps[0][4]=0.0029;//ff

instrumentAmps[0][5]=1; //top bound

//oboe dynamics

instrumentAmps[1][0]=0.000225; // p

instrumentAmps[1][1]=0.0002863; //mp

instrumentAmps[1][2]=0.0003475; //mf

instrumentAmps[1][3]=0.00040875; //f

instrumentAmps[1][4]=0.00047; //ff

instrumentAmps[1][5]=1; //topbound

//trumpet dynamics

instrumentAmps[2][0]=0.0008;// p

instrumentAmps[2][1]=0.00165; //mp

instrumentAmps[2][2]=0.0025; //mf

instrumentAmps[2][3]=0.00335; //f

instrumentAmps[2][4]=0.0042; //ff

instrumentAmps[2][5]=0.012; //topbound

//clarinet dynamics

instrumentAmps[3][0]=0.0037; // p

instrumentAmps[3][1]=0.00385; //mp

instrumentAmps[3][2]=0.004; //mf

instrumentAmps[3][3]=0.00415; //f

instrumentAmps[3][4]=0.0043; //ff

instrumentAmps[3][5]=1; //topbound

for (int i=0; i<wavesegs; i++)

{

 amplitudeAverage[i]=0;

 amplitudeAverageCount[i]=0;

 volumeTrend[i]=0;

 for (int j=0; j<chunklength; j++)

53

 {

 dataTemp[j]=data[j+(chunklength*i)];

 }

 linearWavelets(dataTemp, transform, chunklength,sweeps);

 for (int k=(chunklength/8); k<(chunklength/4); k++)

//a level of the wavelet transform

 {

 dataTemp[k-(chunklength/8)]=abs(transform[k]);

 if (dataTemp[k-(chunklength/8)]!=0 && dataTemp[k-

 (chunklength/8)]!=-1)

//over boundary- so it doesn't include between notes

 {

 amplitudeAverage[i]+=dataTemp[k-(chunklength/8)];

 amplitudeAverageCount[i]+=1;

 }

 }

 amplitudeAverage[i]=(amplitudeAverage[i]/amplitudeAverageCount[i])/fund

 amentalFreqAvg;

 volumeLevel[i]=0;

 for (int m=0; m<(numVolumeLevels-1); m++)

 {

 if (amplitudeAverage[i]>instrumentAmps[bestInstrument][m] &&

 amplitudeAverage[i]<instrumentAmps[bestInstrument][m+1])

 volumeLevel[i]=m;

//best range-range is space above set mark

 volumeLevelAvg+=volumeLevel[i];

 }

 for (int g=(chunklength/32); g<(chunklength/16); g++)

 {

 dataTemp[g-(chunklength/32)]=abs(transform[g]);

 if (dataTemp[g-(chunklength/32)]>dataTemp[g-

(chunklength/32)-1])

 {

 volumeTrend[i]+=1;

 }

 if (dataTemp[g-(chunklength/32)]<dataTemp[g-

(chunklength/32)-1])

 {

 volumeTrend[i]-=1;

 }

 }

54

 }

if (volumeLevel[0]==volumeLevel[wavesegs-1])

{

 int x=1;

}

else

{

 for (int i=1; i<wavesegs; i++)

 {

 volumeTrend[0]+=volumeTrend[i];

 }

}

//write data to file

outfile<<segmentcount<<endl;

cout<<"Number of notes: "<<segmentcount<<endl;

volumeLevelAvg=volumeLevelAvg=wavesegs;

outfile<<volumeLevelAvg<<endl;

cout<<"Volume level (out of 4): "<<volumeLevelAvg<<endl;

if (volumeTrend[0]> -10 && volumeTrend[0]<10)

 volumeTrend[0]=0;

outfile<<volumeTrend[0]<<endl;

cout<<"Volume trend: "<<volumeTrend[0]<<endl;

outfile<<bestInstrument<<endl;

cout<<"Instrument (0=flute, 1=oboe, 2=trumpet, 3=clarinet):

"<<bestInstrument<<endl;

int smallestNote=100000000;

for (int i=0; i<segmentcount; i++)

{

 if (seglength[i]<smallestNote)

 smallestNote=seglength[i];

}

for (int i=0; i<segmentcount; i++)

{

 outfile<<(int)fundamentalFreq[i]<<endl;

 cout<<"Note number "<<(i+1)<<"

 frequency:"<<(int)fundamentalFreq[i]<<endl;

 outfile<<1<<endl;

 cout<<"note length: "<<seglength[i]<<

 (int)(seglength[i]/smallestNote)<<endl;

}

 return 0;

}

55

Fourier Transform Program

#include <cmath>

#include <stdio.h>

#include <iostream>

#include <stdlib.h>

#include <fstream>

#include <string>

#define SWAP(a,b)tempr=(a);(a)=(b);(b)=tempr

#define _USE_MATH_DEFINES

#include <math.h>

using namespace std;

int fourier (double* dataComplex, double* transform, int n)

{

 const int isign=-1;

 //const int n=256;

 unsigned long mmax,m,j,istep,i;

 double wtemp,wr,wpr,wpi,wi,theta,tempr,tempi;

 double swapTemp;

 n=n/2;

 int number_of_complex_samples=n/2;

 j=0;

 for (int i=0;i<n/2;i+=2)

 {

 if (j > i)

 {

 //swap the real part

 SWAP(dataComplex[j],dataComplex[i]);

 //swap the complex part

 SWAP(dataComplex[j+1],dataComplex[i+1]);

 }

 m=n/2;

 while (m >= 2 && j >= m)

 {

 j -= m;

 m = m/2;

 }

 j += m;

 }

 mmax=2;

 //external loop

 while (n > mmax)

 {

 istep = mmax<< 1;

 theta=isign*(2*3.14159265358979323/mmax);

 wtemp=sin(0.5*theta);

 wpr = -2.0*wtemp*wtemp;

 wpi=sin(theta);

 wr=1.0;

 wi=0.0;

 //internal loops

 for (m=1;m<mmax;m+=2)

56

 {

 for (i= m;i<=n;i+=istep)

 {

 j=i+mmax;

 tempr=wr*dataComplex[j-1]-wi*dataComplex[j];

 tempi=wr*dataComplex[j]+wi*dataComplex[j-1];

 dataComplex[j-1]=dataComplex[i-1]-tempr;

 dataComplex[j]=dataComplex[i]-tempi;

 dataComplex[i-1] += tempr;

 dataComplex[i] += tempi;

 }

 wtemp=wr;

 wr=wtemp*wpr-wi*wpi+wr;

 wi=wi*wpr+wtemp*wpi+wi;

 }

 mmax=istep;

 }

 int datamax=0;

 int imax=0;

 int r=0;

 for (int i=0; i<(n/2); i+=2)

 {

 transform[r]=sqrt((dataComplex[i]*dataComplex[i])+(dataComplex[i+1]*dat

 aComplex[i+1]));

 transform[0]=0;

 if (transform[r]>datamax)

 {

 datamax=transform[r];

 imax=datamax;

 }

 r+=1;

 }

return imax;

}

57

Wavelet Transform Program

#include <iostream>

#include <fstream>

#include <string>

#include <sstream>

#include <vector>

#include <cstdlib>

#include <cmath>

using namespace std;

void linearWavelets(double* data, double* transform, int n, int sweeps)

{

 const int size=19;

 const int length=2048;

 double cof[size][length];

 int k=0;

 for (int i=0; i<length; i++)

 cof[0][i]=data[i];

 for (int j=1; j<=sweeps; j++)

 {

 k=0;

 for (int i=0; i<(length*2); i+=2

 {

 if (i<((length/(int)(pow(2.,(double)(j-1))))))

 {

 cof[j][k]=(cof[j-1][i]+cof[j-1][i+1])/2;

 cof[j][k+(length/(int)pow(2.,(double)j))]=(cof[j-1][i]-

 cof[j-1][i+1])/2;

 }

 else

 {

 cof[j][k+(length/(int)pow(2.,(double)j))]=cof[j-

 1][k+(length/(int)pow(2.,(double)j))];

 }

 k+=1;

 }

 }

 for (int i=0; i<length; i++)

 transform[i]=cof[sweeps][i];

}

58

Java Sheet Music Notation Program

import java.awt.*;

import java.awt.geom.*;

import javax.swing.*;

import java.util.*;

import java.lang.Math.*;

import java.io.*;

class main extends JFrame

{

 public static void main(String[] args)

 {

 main graphicsObject = new main();

 graphicsObject.setBackground(Color.white);

 graphicsObject.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 }

 main()

 {

 super("Graph of .wav File");

 setSize(1300,1200);

 setVisible(true);

 }

 public void paint (Graphics g)

 {

 Graphics2D g2d = (Graphics2D) g;

 g2d.translate (0.0,500.0); //make 0 where graph is 0,0

 g2d.scale (1.0, -1.0); //make positive up, to the right

 g.setColor(Color.black);

 g.drawLine(50, 0, 1225, 0);//horizontal lines

 g.drawLine(50, 25,1225, 25);

 g.drawLine(50, 50,1225,50);

 g.drawLine(50, 75,1225, 75);

 g.drawLine(50, 100,1225, 100);

 //********** importing

 double max=0;

 double min=100000;

 int dataCount=0;

 int oldX;

 int oldY=0;

 int size;

 int secondRow=0;

 try{

 // Open the file that is the first

 FileInputStream fstream = new

 fileInputStream("waveform_analysis.txt");

 // Get the object of DataInputStream

 DataInputStream in = new DataInputStream(fstream);

 BufferedReader br = new BufferedReader(new

 InputStreamReader(in));

 //Read File Line By Line

 String strLine;

 size=15;

59

 int numberNotes;

 int trend=0;

 int startVolume=10;

 int endVolume=10;

 int averageVolume;

 int bestInstrument;

 int instrument;

 int smallestIndex;

 int[] relativeLengths=new int[15];

 int[] frequencies=new int[15];

 strLine=br.readLine();

 numberNotes=Integer.parseInt(strLine);

 strLine=br.readLine();

 averageVolume=Integer.parseInt(strLine);

 strLine=br.readLine();

 if (Integer.parseInt(strLine)>0) //trend up

 {

 trend=1;

 strLine=br.readLine();

 startVolume=Integer.parseInt(strLine);

 strLine=br.readLine();

 endVolume=Integer.parseInt(strLine);

 }

 if (Integer.parseInt(strLine)<0) //trend down

 {

 trend=-1;

 strLine=br.readLine();

 startVolume=Integer.parseInt(strLine);

 strLine=br.readLine();

 endVolume=Integer.parseInt(strLine);

 }

 if (Integer.parseInt(strLine)==0) //trend down

 {

 trend=0;

 startVolume=averageVolume;

 endVolume=averageVolume;

 }

 strLine=br.readLine();

 instrument=Integer.parseInt(strLine);

 g2d.scale (1.0, -1.0); //make positive up, to the right

 Font font = new Font("Arial", Font.PLAIN, 75);

 g2d.setFont(font);

 if (trend==0)

 {

 if (averageVolume==0)

 g.drawString("pp",30, 80);

 if (averageVolume==1)

 g.drawString("p", 30, 80);

 if (averageVolume==2)

60

 g.drawString("mp",30, 80);

 if (averageVolume==3)

 g.drawString("mf", 30, 80);

 if (averageVolume==4)

 g.drawString("f", 30, 80);

 if (averageVolume==5)

 g.drawString("ff", 30, 80);

 }

 else

 {

 }

 if (instrument==0)

 g.drawString("flute", 50, -200);

 if (instrument==1)

 g.drawString("oboe", 50, -400);

 if (instrument==2)

 g.drawString("trumpet", 50, -400);

 if (instrument==3)

 g.drawString("clarinet", 50, -400);

 g2d.scale (1.0, -1.0); //make positive up, to the right

 g2d.translate (200.0,0.0); //make 0 where graph is 0,0

 for (int i=0; i<numberNotes; i++)

 {

 strLine=br.readLine();

 frequencies[i]=Integer.parseInt(strLine);

 strLine=br.readLine();

 relativeLengths[i]=Integer.parseInt(strLine);

 if (relativeLengths[i]==1)

 smallestIndex=i;

 }

 int xPosition=0;

 int halfSteps=0;

 int octave=0;

 double yPosition=0;

 for (int i=0; i<numberNotes; i++)

 {

 System.out.println("freq:" +frequencies[i]);

 halfSteps=(int)(Math.log((double)(frequencies[i]/329

628))Math.log((double)1.059463));//steps from e

 if (halfSteps<13)

 octave=1;

 if (halfSteps>12 && halfSteps<25)

 octave=2;

 if (halfSteps>24)

 octave=3;

 if ((double)((int)(halfSteps/2))< halfSteps/2)

 yPosition=25*((int)(halfSteps/2)+octave)\

12;

 else

 yPosition=25*(halfSteps/2+octave)-12;

61

 System.out.println("ypos: "+yPosition);

 System.out.println("half steps: "+halfSteps);

 xPosition+=75;

 // g.fillRect(xPosition, (int)yPosition, 50, 50);

 if (relativeLengths[i]==1)

 {

 System.out.println("quarter note");

 g.fillOval(xPosition, (int)yPosition, 30, 25);

 g.fillRect(xPosition+26, (int)yPosition+12,2,100);

 }

 if (relativeLengths[i]>1 && relativeLengths[i]<2.2)//twice

smallest

 {

 System.out.println("half note");

 g.drawOval(xPosition, (int)yPosition, 30, 25);

 }

 if (relativeLengths[i]>=2.2 && relativeLengths[i]<3.2)

 {

 System.out.println("dotted quarter");

 g.fillOval(xPosition, (int)yPosition, 30, 25);

 g.fillOval(xPosition+28, (int)yPosition, 8, 8);

 }

 if (relativeLengths[i]>=3.2)

 {

 g.drawOval(xPosition, (int)yPosition, 30, 25);

 System.out.println("whole note");

 }

 }

 //Close the input stream

 in.close();

 }catch (Exception e){//Catch exception if any

 System.err.println("Error: " + e.getMessage());

 }

 }

}

