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Project Summary 

The goal of the project was to develop a C++ analysis program that can analyze 

recordings of musical instruments using Fourier and wavelet transform algorithms. The 

combined use of wavelets and the Fourier transform is a unique way of modeling the physical 

characteristics of sound for accurate analysis. 

First, instrumental recordings were produced from various instruments playing specific 

pitches and series of pitches. C++ programs were developed to read the recorded .wav format 

files into numerical arrays that were then used in a Fast Fourier Transform program. The Fourier 

transform converts the discretely sampled data into the frequency domain, showing which 

frequencies are present in the sound. Peaks in the resulting frequency domain data show the 

fundamental frequencies and overtones present in a recording.  A C++ program was developed to 

identify these peaks and measure their relative emphasis and position. This information 

determines timbre, or the distinct sound of the instrument. Knowing the frequency composition 

of a particular instrument at a certain pitch, a range of pitches can be synthesized with the timbre 

of the instrument. 

Wavelets were also used to analyze the instrumental recordings. Wavelets allow for time 

domain analysis of discretely sampled data, which means a recording containing multiple pitches 

or a decaying pitch can be more accurately analyzed. Wavelets are a more versatile tool than 

Fourier Transforms, due to the fact that they allow the detection and analysis of multiple notes in 

sequence and musical phrases. Wavelets were also used in instrument identification.  

A java program was developed to visually display analysis results in sheet music 

notation, a practical format for potential users.  
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Introduction 

Sound, and especially music, is an essential part of the world that we live in. Sound is 

purely a mechanical wave of oscillating pressure with a variety of physical characteristics and 

properties that we record in our brains and on computers as electrical impulses [4]. In recent 

years, technology has allowed us to accurately detect and measure these characteristics. Our 

understanding of the physics and math governing sound has increased greatly, mainly through 

research in the scientific fields of acoustics and signal processing. 

This increased understanding has led to the creation of many new sound and music 

technologies such as sound editing programs, sound recognition technologies, and artificial 

sound production. 

 There are still many things to learn about the physics of sound and the processes used for 

analysis and synthesis.  Polyphonic sound analysis is currently being researched, but no defined 

methods have become widely accepted. 
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Purpose 

 The purpose of this project is to develop an algorithm to more accurately analyze the 

waveforms of sound files through modeling with wavelets and Fourier transforms. This 

algorithm will be used identify the instrument, frequency or frequencies, volume, and timbre of 

waveforms. The algorithm will also be used to analyze polyphonic recordings for these same 

characteristics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

 

Background and Theory 

 All the tests in this project were done on the waveforms of sound recordings sampled at 

44100 Hz. A waveform is a series of discretely sampled pressures over time.  

 

 

The Fourier Transform 

The Fourier transform is an algorithm that determines the frequency components of a 

wave from either a function or discretely sampled amplitudes in the time domain. The Fourier 

transform results are in the form of amplitude over frequency. It finds the frequency by breaking 

a wave down into a summation of cosine and sine waves [9]. The Fourier transform is a useful 

algorithm applicable to any form of periodic data.  

The Fourier transform of the continuous function f(x) is shown as: 

 

Applying Euler’s formula: 

 

 The results of the Fourier transform are divided into real and imaginary parts. For most 

practical  applications, only the real parts are of use. The data in this project is entirely composed 

of real numbers so all imaginary components are set to zero. 

Equation 1 

Equation 2 

 

 

Equation 3 
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The Discrete Fourier Transform is a discrete adaptation of the Fourier Transform, that 

takes in a sampled set of finite values. This project made use of the FFT (Fast Fourier 

Transform), which is simply a more efficient way to compute the Discrete Fourier Transform. 

The FFT exploits useful patterns found in the Fourier transform to save both memory and time 

[9]. 

 

Wavelets 

Wavelets are functions used in signal processing to analyze data that is not necessarily 

periodic.  They are defined by two functions, the mother wavelet function, and the scaling 

function (also referred to as the father function) [2]. In wavelet transforms, the mother function is 

shifted, scaled and duplicated so that it can be used to model portions of the function being 

analyzed. By finding the scaling and wavelet coefficients, information can be obtained and the 

desired spectra produced.  

Wavelets are a more recent approach to the problem of extracting both time and 

frequency information from a transformed function. The main weaknesses of the Fourier 

transform is that it requires periodic and continuous data [2]. The Discrete and Fast Fourier 

Transforms allow for non-continuous inputs, but data must still be periodic. The Short-Time 

Fourier Transform is an adaptation that has properties similar to wavelets. It is localized in both 

time and frequency, but it still cannot capture detail as precisely as wavelets. Wavelets can give a 

more accurate signal representation using multiresolutional analysis.   

Another significant advantage of wavelets is their computational efficiency.  They are 

even faster than the FFT.  Wavelet transforms are calculated in O(n), which is a linear growth 
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directly proportional to the size of the input.  The FFT on the other hand, functions in the 

linearithmic O(N logn) time, which is slower than linear but faster than quadratic. 

In this project, we used the Haar wavelet as a mother function. The Haar wavelet is a 

basic mother wavelet, as shown below. The Haar wavelet is not continuous so it can easily be 

used to scale inputted functions with rapid growths and decays [6].  This makes it a good 

candidate for analyzing audio files, as they often have sharp peaks or shifts in amplitude.  

The Haar Mother Wavelet:  

 

 

  

 

The fundamental frequency of a signal is often accompanied by higher frequencies called 

overtones. Harmonics are ideal overtones, with frequencies that are integer multiples of the 

fundamental frequency. The overtones of instruments are usually close to the harmonics, but not 

necessarily exact multiples. Overtones that don't correlate to harmonics create small amounts of 

dissonance, which can contribute to the unique sounds of different instruments. During the 

construction of most instruments efforts are taken to minimize dissonance, such as flaring the 

bell on a trumpet. 

 Sound in instruments is generated by oscillating strings or columns of air. Strings and 

columns of air in an open tube vibrate at a certain frequency, but their length also vibrates in 

halves, thirds, fourths, etc. This produces overtones with doubled, tripled, and quadrupled 

frequencies. The first harmonic is the fundamental frequency, the first overtone is the frequency 

twice the fundamental frequency. If a tube is closed on one end, as some instruments are, only 

Harmonics and Overtones 

 

1 

-1 
0.5 1.0 

Figure 1 
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odd harmonics are generated, due to the node created at the closed end. Overtones and harmonics 

are higher in frequency than the fundamental, and generally decrease in amplitude as they get 

higher [4]. 

    Overtones are a very important part of sound, as they are the physical components that 

give each sound its unique timbre. Timbre is a term used to describe sound quality, sometimes it 

is also referred to as the “color” or “flavor” of sound. Timbre is determined by how many 

overtones can be heard, which of those are emphasized, and how close those overtone are to their 

respective harmonic series [4].  

 The relative ratios of amplitude and distance between overtones is a key factor, as well as 

the rate at which different overtones decay. Overall, overtones are an essential element in the 

process of determining the sound characteristics of a note or phrase. 
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Procedural Overview 

First, a set of .wav recordings were created and obtained from the Internet [6].  A 

program was developed in C to read .wav files into .txt format.  

A Fourier transform program was then written in C [7.]. The Fourier transform program 

performs a Fast Fourier transform on data points read from a text file. In order to get the most 

accurate results in the Fourier transform the articulation and decay at the end of each note were 

removed. The peaks resulting from the Fourier transform were then analyzed for location and 

emphasis, factors which determine the note's fundamental frequency and timbre. 

The second program developed was a C program that performs the Haar wavelet 

transform. This program loops through the data and calculates the wavelet coefficients. These 

coefficients were then analyzed in order to reveal characteristics of the waveform in the time 

domain. 

The main program used both of the transforms. It calculated each of them separately and 

used the results to analyze a sound file, identify the instrument, find the frequencies of multiple 

notes, and determine the volume levels.  

The Inverse Fourier transform was used to recreate a waveform from a modified 

frequency spectrum. The Fourier transform of a waveform was calculated and noise was 

removed. The inverse transform resulted in a cleaner, more accurate pitch that still preserved 

timbre. 
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    Fourier Transform Program 

The Fourier transform was used to identify the fundamental frequency and the instrument 

being played. First, the highest peak was calculated and points in the bottom fourth of that peak 

were removed. The peak in each cluster of remaining data was then found. These remaining 

peaks were the most prominent and formed the basis for our overtone data. 

The general trend in emphasis was calculated by counting how many peaks were higher 

than the previous peak and how many were lower. This was particularly useful in identifying the 

oboe, which has a fairly unique upward trend in its overtones. 

  Lastly, the relative emphasis of the first three peaks was calculated. This was 

accomplished for each of the three peaks by calculating the proportion of the amplitude of the 

peak to the average of the other two. For example, the ratio of emphasis  for the first peak is 

amplitude1 /((amplitude2+ amplitude3)/2), which is equivalent to 

2*amplitude1/(amplitude2+amplitude3). These relative emphases are generally the same for all 

notes on a given instrument. Data was calculated based on a range of notes (see Appendix A) and 

is show below. The program determines the instrument of the waveform, assuming it is the one 

that the ratios and upward or downward trend resemble most. 

Instrument Characteristics 

 Flute  Oboe  Trumpet  Clarinet  

Ratio of 1
st
 Peak  1.75 0.30  3.80  2.90  

Ratio of 2
nd

 Peak  1.25 1.55  .050  0.40  

Ratio of 3
rd

 Peak  0.80  2.00  0.40  1.00  

Increasing or 

Decreasing  

decreasing  increasing  decreasing  decreasing  

 
Table 1 
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Haar Wavelet Transform Program 

The Haar Wavelet transform operates by calculating the average and the step size 

between each pair of adjacent points in the waveform. The step sizes and averages are stored in 

an array, and the new averages become the data used to calculate the next set of step sizes and 

averages. This is repeated until a single average is achieved, therefore the number of passes is 

log2(n) for n = number of original data points. 

 

  The Haar wavelet transform was calculated for the waveform and used to determine 

characteristics in the time domain, specifically note length and dynamic (volume) level.  

  Note lengths were calculated relative to each other. Because the tempo is unknown the 

actual musical length of the note (eighth note, quarter note, etc) cannot be determined. Instead, 

the notes are scaled to each other and the relative length is outputted. 

Figure 2 
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The average dynamic level was determined by comparing the average step size of the 

wavelet transform to given dynamic ranges specific to the instrument. As shown below, the 

dynamics from softest to loudest are pianissimo, piano, mezzo-piano, mezzo-forte, forte, and 

fortissimo. 

Dynamic trends upward (crescendo) or downward (diminuendo) were also calculated by 

looking at the trend in step size for a very low pass level filter on the wavelet transform. If this 

trend was significant, a starting and ending dynamic were determined and outputted. 

Dynamic Ranges 

 Piano Mezzo-piano Mezzo-forte Forte Fortissimo 

Flute  0.0007  0.00125  0.0018  0.00238  0.0029  

Oboe  0.000225  0.0002863  0.0003475  0.000409  0.00047  

Trumpet  0.0008  0.00165  0.0025  0.00335  0.0042  

Clarinet  0.0037  0.00385  0.004  0.00415  0.0043  

 

 

Wavelets were also used as a factor in determining the instrument. The ratio of 

magnitude of positive to negative step sizes was found to be effected by instrument. As shown,  

the positive and negative step sizes on the oboe are very close in magnitude. 

 

 Flute Oboe Trumpet Clarinet 

Step Size Ratio  1.4  1.0  1.7 0.7  

 

Table 2 

Table 3 
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Analysis Program Outline 

1. Locate gaps in input; store each section/ note separately 

2. Compute Fourier transform on each note 

› Sends middle portion with length 2
x
 ; cleanest periodic sample 

› Locate peaks in Fourier transform: points over fraction of maximum 

› First peak is fundamental frequency, others are overtones 

› If more than 2 peaks correspond to multiples of a different fundamental, identifies 

recording as polyphonic, separates out peaks by their corresponding fundamental 

3. Compute relative size of each peak returned by Fourier transform 

› Average up or down trend and relative sizes compared to instrument data 

4. Compute wavelet transform 

› ratio of positive to negative step sizes correlates to instrument 

5. Record best instrument; instrument with most matches characteristics 

6. Compute average amplitude from wavelet transform, match to instrument to identify 

dynamic range, trend 

7. Display information in musical notation 
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Results and Conclusions 

Fourier Transform 

    On the Fourier transforms shown the peaks over approximately 0.25 (a fourth of the 

highest peak) are of significance. The first of these peaks is the fundamental frequency and is 

within about 20 Hz of the frequency listed for each graph. The waveforms (figures 3-6) shown 

are the actual samples contained in the original .wav file. The differences between instruments in 

the shape of their cycle correspond to differences in the relative peak sizes in the Fourier 

transform (figures 7-10). Figures 10, 11, and 12 show the Fourier transforms of different notes 

being played on the same instrument, the oboe. These Fourier transforms all have similar 

characteristics, particularly the upward trend in emphasis of the first three peaks. Each of these 

Fourier transforms also has the fundamental frequency represented by the first significant peak. 

Due to the fact that oboe's fundamental frequency is relatively small, a slightly lower threshold is 

necessary to preserve the fundamental frequency and the first few overtones. 
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Figure 3 

Figure 4 
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Figure 5 

Figure 6 
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Figure 7 

Figure 8 
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Figure 9 

Figure 10 
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Figure 11 

Figure 12 
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Wavelet Transform 

 The first two wavelet transforms shown represent the same note, A4=440 Hz on the same 

instrument, an oboe. The difference is that in figure 14, where the dynamic is piano (the second 

lowest dynamic used in this project), the transform has much smaller step sizes than in figure 14, 

where the dynamic is fortissimo (the highest in this project).  

 Figures 15-17 show parts of the final wavelet transform. Figure 15, the high pass filter 

results, contains the most detail because it is the step sizes between groups of four points. The 

intermediate and low pass wavelet transform results are more general and contain fewer discrete 

points, each of which is the average of more points for lower passes. 
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Figure 15 
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Figure 17 
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Analysis Program 

 The analysis program analyzed waveforms by using both the Fourier transform and the 

wavelet transform. First, gaps in the waveform were identified and if they were above a set 

minimum length the gaps were considered spaces between notes. Next, a Fourier transform was 

performed on each note. The Fourier transform of each note was analyzed and matched with the 

best instrument, based on the criteria in table 1. The instrument with the highest number of 

criteria matches for all the notes was identified as the instrument used to produce the waveform. 

The first peak in the Fourier transform was also identified as the fundamental frequency and the 

index of this peak was scaled to the sampling rate of 44100 Hz. 

 Next, the wavelet transform was performed on the waveform. Due to lack of computing 

power, the waveform had to be segmented to perform the wavelet transform, but the results are 

the same. The average step sizes were calculated over a single pass of the waveform. Step sizes 

vary in each pass, but the one used in calculations was the same pass used to determine the 

known volume ranges. Average step sizes of the waveform were compared to the volume ranges 

for the identified instrument. A very low pass filter was also used to identify any significant 

volume trends in the waveform. 

 As shown in tables 4 and 5, the analysis program was able to identify each note and its 

dynamic characteristics. The instrument was also correctly identified in all trials shown. The 

program was also able to distinguish between two notes and identify their frequencies. However, 

due to the computer's capacity, a longer waveform could not be analyzed. The most significant 

result obtained was that the algorithm had the capacity to sort peaks in the Fourier transform 

based on which fundamental frequency the peaks 
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correspond to, which allows for polyphonic waveform analysis.  A java program was developed 

to adapt analysis results into a more practical visual format (see appendix). 

 

 

 

 

 

 

Waveform Analysis Results 

Instrument 

(all correctly 

indentified)  

Flute  Oboe  Clarinet  Trumpet  

Ideal Frequency  Flute, A4= 

440 Hz 

A4=440 Hz  A4=440 Hz  A4=440 Hz  

Number of Notes  1 1  1  1  

Calculated 

Frequency  

400 Hz 420 Hz  420 Hz  440 Hz  

Overall Dynamic 

Level  

Fortissimo  Fortissimo  Fortissimo  Fortissimo  

Volume Trend  None  None  None  None  

Table 4  
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Waveform Analysis Results 

Instrument  

(all correctly 

indentified)  

Flute  Trumpet  Flute  Oboe and Trumpet 

(simultaneous)  

Ideal 

Frequency  

G5= 783.991 

Hz  

A5=880 Hz  G6=1567.98 Hz, 

A6=1760 Hz  

A4=440 Hz, 

C5=523.251 Hz 

Number of 

Sequential 

Notes  

1 1  2  1  

Calculated 

Frequency  

820 Hz  850 Hz  1533 Hz,  1750 Hz  440 Hz, 523 Hz  

Overall 

Dynamic Level  

Pianissimo  Mezzo-

forte  

Fortissimo  Fortissimo  

Volume Trend  None  Crescendo  None  None  

Table 4 Continued 
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Synthesis 

After determining the primary frequencies and overtones present in the sound files,         

the waveforms were recreated from the most prominent overtones.  These new waveforms 

resemble the originals but are more consistent. By adding together sine waves representing each 

significant peak in the Fourier transform, the Inverse Fourier transform is essentially being 

computed on a cleaned version of the Fourier transform. The waveform of an oboe playing 

A4=440 Hz was re-created using one, two, three, and four frequency components. The waveform 

of a trumpet playing C5=523.251 Hz was created using one, two, three, four, five, and six 

frequency components. More frequency components were necessary for the trumpet waveform to 

resemble the original. This is data that corresponds to the physical complexity of the instrument's 

sound. The waveforms of a trumpet playing C5 and oboe playing A4 at the same time was also 

synthesized by combining one, two and three frequencies from each, along with four from the 

oboe and six from the trumpet.  
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Figure 18 

Figure 19 
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Figure 21 

Figure 20 
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Figure 23 

Figure 22 
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Figure 25 

Figure 24 
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Figure 26 

Figure 27 
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Figure 28 

Figure 29 
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Future Work 

 In the future we plan on using parallelization to increase the capacity of our programs. 

The algorithms can handle sequential and polyphonic notes, so being able to analyze a longer 

waveform would mean being able to analyze an entire piece of music. 
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Appendix A: Data  

   Screen shots of Analysis Output 
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Java Musical Notation Output 
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Appendix B: Code 

Analysis Program 

#include <iostream> 

#include "waveAnalysis.h" 

#include "fourier.h" 

#include "linearWavelets.h" 

#include <fstream> 

#include <string> 

#include <math.h> 

#include <stdio.h> 

 

using namespace std; 

int main(int argc, char** argv) 

{ 

 ifstream infile; 

    infile.open("infile.txt"); 

 

    ofstream outfile("transform_analysis.txt"); 

 

    string line; 

 

 const int length=8192; 

  

 const int segNum=3; 

 double data[2*length]; 

 double segs[segNum][length]; 

 //segments divide where notes start and end 

 double transform[length]; 

 int seglength[segNum]; 

 double dataTemp[length]; 

 double transformData[segNum][5]; 

 int ifouriermax; 

 int tempLength=0; 

 int threePeaks=0; 

 int segpow2=0; 

 int singleCounter=0; 

 int countHoles=0; 

 int segmentcount=0; 

 int j=0; 

 int lengthtemp=0; 

 

 double peak1=0; 

 double peak2=0; 

 double peak3=0; 

 double peakSum1=0; 

 double peakSum2=0; 

 double peakSum3=0; 

 int peakCount=0; 

 double peakPrev=0; 

 int upDown=0; 

 double fundamentalFreq[segNum]; 
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 double fundamentalFreqAvg=0; 

 double inputTemp; 

 double scaleK=0; 

 double outCount=0; 

 double peaks[30]; 

 const int notesinRange=100; 

 double notes[notesinRange]; 

 int totalPeakprev=0; 

 int totalPeaks=0; 

 double peakSeparate[2][15]; 

 //will contain all peaks, sorted by corresponding fundamental frequency 

 int instrument1count=0; 

 int instrument2count=0; 

 int roundedFreq=0; 

 int roundedFreqPrev=0; 

 

 //define note ranges 

 int octaveCount=0; 

 int octave23=0; 

 int noteCountersingle=0; 

 

for (int i=0; i<notesinRange; i+=2) 

{ 

  notes[noteCountersingle]=261.6262*pow(1.059463094,(double)(i)); 

  octaveCount+=1; 

  noteCountersingle+=1; 

   if (octave23==0 && octaveCount==3) 

   { 

   octave23=1; 

   octaveCount=0; 

   i=i-1; 

   } 

    if (octave23==1 && octaveCount==4) 

   { 

   octave23=0; 

   octaveCount=0; 

   i=i-1; 

   } 

  

} 

 for (int i=0; i<length; i++)  

 //thresholding- holes show where notes end 

 { 

 

  getline(infile, line); 

  inputTemp=atoi(line.c_str()); 

  data[i]=inputTemp; 

    

  

   

  if(data[i]<2 && data[i]>-2) 

  //excludes preset zeros  

  { 

   dataTemp[i]=0; 

    

  } 

  if(data[i]>2 || data[i]<-2) 
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  { 

      dataTemp[i]=data[i]; 

  } 

   dataTemp[i]=data[i]; 

   if (dataTemp[i]==0 && (dataTemp[i-1]==0 || dataTemp[i-1]==0) && 

(dataTemp[i-2]==0 || dataTemp[i-2]==0)) 

  { 

              

   countHoles+=1; 

 

    

   } 

   

  if (dataTemp[i]!=0) 

  { 

  if (countHoles>500) 

            { 

    

    seglength[segmentcount]=j; 

               segmentcount+=1; 

          j=0; 

      countHoles=0; 

 

                

             } 

   

  } 

  if (i==(length-1)) 

  { 

   seglength[segmentcount]=j; 

  } 

   segs[segmentcount][j]=data[i]; 

  if (data[i]!=0) 

   j+=1; 

 } 

 

segmentcount+=1; 

if (segmentcount==1) 

 seglength[0]=length;  

//if all one segment first segment is total length 

 

 

//fourier segments 

for (int i=0; i<segmentcount; i++) 

{ 

  

 segpow2=(int)(log((long double)seglength[i])/log((long double)2)); 

 singleCounter=seglength[i]/4; 

 cout<<"segpow2: "<<segpow2<<endl; 

 for (int j=0; j<((int)pow(2.,(double)(segpow2+1))); j+=2) 

 //length thats a power of two, double so that it alternates with 0s. 

 { 

 dataTemp[j]=segs[i][singleCounter];  

 //takes middle half, cleanest periodic part of note 

 dataTemp[j+1]=0; 

 singleCounter+=1; 
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 } 

  

 ifouriermax=fourier(dataTemp, 

 transform,((int)pow(2.,(double)(segpow2)))); 

 //transform each piece-return into transform 

  

 for (int k=0; k<((int)pow(2.,(double)(segpow2))); k++) 

 //through all of fourier transform 

 { 

  outfile<<transform[k]<<endl; 

  if (transform[k]<ifouriermax/4) 

  { 

   transform[k]=0;  

   //weed out data below a fraction of the max 

     

  } 

   

    if (transform[k]>transform[k-1] && transform[k]>transform[k+1]) 

   { 

     

    scaleK=k*(44100/((int)pow(2.,(double)(segpow2))/2)); 

   

   for (int m=0; m<notesinRange; m++) 

   { 

     

     

    if(scaleK<notes[m+1] && scaleK>notes[m]) 

    { 

     if (abs(scaleK-notes[m])<abs(scaleK-

notes[m+1])) 

     { 

     peaks[totalPeaks]=notes[m]; 

      

     } 

     else 

     { 

      peaks[totalPeaks]=notes[m+1]; 

      cout<<"peak true."<<endl; 

     } 

      

    if (peaks[totalPeaks]==peaks[totalPeaks-1]) 

    //if to close, accounts for peak missed in threshold 

      peaks[totalPeaks]=0; 

 

     

    } 

      

 

   } 

    

   if (peaks[totalPeaks]!=0) 

   { 

     

    totalPeaks+=1; 

       } 

    if (peakCount==0) 

    { 
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    peak1=transform[k]; 

    peakSum2+=peak1; 

    peakSum3+=peak1; 

    //calculate frequency 

   

 fundamentalFreq[i]=k*(44100/((int)pow(2.,(double)(segpow2))/2)); 

    cout<<"fundamental peak: "<<k<<endl; 

    fundamentalFreqAvg+=fundamentalFreq[i]; 

    cout<<"fundamentalFreq: "<<fundamentalFreq[i]<<endl; 

    

    peakPrev=peak1; 

    } 

    if (peakCount==1) 

    { 

      

    peak2=transform[k]; 

    cout<<"peak2: "<<peak2<<endl; 

    peakSum1+=peak2; 

    peakSum3+=peak2; 

 

    if (peak2>peakPrev) 

    { 

     upDown=1; 

 

    } 

    if (peak2<peakPrev) 

    { 

     upDown=-1; 

      

    } 

     

    peakPrev=peak2; 

    } 

    if (peakCount==2) 

    {  

     

    peak3=transform[k]; 

    cout<<"peak3: "<<peak3<<endl; 

   peakSum1+=peak3; 

    peakSum2+=peak3; 

    if (peak3>peakPrev) 

     upDown+=1; 

    if (peak3<peakPrev) 

     upDown-=1; 

    peakPrev=peak3; 

    } 

    

   peakCount+=1; 

   } 

    else 

    { 

            transform[k]=0; 

  //cut out to peaks only above threshold 

    

         } 

 

 } 
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 //end of loop through fourier data 

  

 for (int j=0; j<totalPeaks; j++) 

 { 

 

  if ((int)(peaks[j]/peaks[0])!=(int)((peaks[j]/peaks[0])+0.9)) 

   

   roundedFreq=(int)((peaks[j]/peaks[0])+0.9); 

   

  else 

   roundedFreq=(int)(peaks[j]/peaks[0]); 

   

   if (roundedFreq!=roundedFreqPrev) 

  { 

   peakSeparate[0][instrument1count]=peaks[j]; 

   instrument1count+=1; 

   cout<<"peakSep[0]:"<<peakSeparate[0][instrument1count]<<""; 

     

 

  } 

 

  else 

  { 

   outCount+=1; 

   if (abs(peaks[j]/peaks[0]-roundedFreq)>abs(peaks[j-  

   1]/peaks[0]-roundedFreq)) 

   //if previous is closer to ratio than current peak 

   { 

   peakSeparate[1][instrument2count]=peaks[j]; 

    cout<<"peakSep[0]: 

"<<peakSeparate[0][instrument1count]<<"  "; 

    cout<<"peakSep[1]: 

"<<peakSeparate[1][instrument1count]<<endl; 

     

    instrument2count+=1; 

   } 

   else 

   { 

    peakSeparate[0][instrument1count-1]=peaks[j]; 

    peakSeparate[1][instrument2count]=peaks[j-1]; 

    cout<<"peakSep[0]: 

"<<peakSeparate[0][instrument1count]<<"  "; 

    cout<<"peakSep[1]: 

"<<peakSeparate[1][instrument1count]<<endl; 

    instrument1count+=1; 

   } 

  } 

  roundedFreqPrev=roundedFreq; 

  

 

 } 

  

 if (peakCount>2) 

 { 

  transformData[i][0]=peak1/(peakSum1/(peakCount-1)); 

  //ratio of first peak to average of rest 

  transformData[i][2]=peak2/(peakSum2/(peakCount-1)); 
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  transformData[i][3]=peak3/(peakSum3/(peakCount-1)); 

 } 

 else 

 { 

  transformData[i][0]=peak1/(peakSum1); 

  transformData[i][2]=peak2/(peakSum2); 

  transformData[i][3]=peak3/(peakSum3); 

 } 

 

  

 if (upDown>0) 

 //general up or down trend 

  transformData[i][1]=1; 

 if (upDown<0) 

  transformData[i][1]=-1; 

 if (upDown==0) 

  transformData[i][1]=0; 

 

 peak1=0; 

  peak2=0; 

  peak3=0; 

 peakSum1=0; 

  peakSum2=0; 

 peakSum3=0; 

 peakCount=0; 

 peakPrev=0; 

 upDown=0; 

} 

//end of loop through all notes 

 

//combine information from each note 

const int instrumentCount=4; 

const int factors=5; 

double instruments[instrumentCount][factors]; 

const int chunklength=2048; 

const int wavesegs=length/chunklength; 

const int sweeps=(int)(log((long double)chunklength)/log((long double)2)); 

//flute data 

instruments[0][0]=1.75; 

instruments[0][1]=0; 

instruments[0][2]=1.25; 

instruments[0][3]=0.8; 

instruments[0][4]=1.4; 

 

 

//oboe data 

instruments[1][0]=0.30; 

instruments[1][1]=1; 

instruments[1][2]=1.55; 

instruments[1][3]=2.0; 

instruments[1][4]=1.0; 

 

 

//trumpet data 

instruments[2][0]=3.80; 

instruments[2][1]=-1; 

instruments[2][2]=0.5; 
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instruments[2][3]=0.3; 

instruments[2][4]=1.7; 

 

 

 

//clarinet data 

 

instruments[3][0]=2.9;  

instruments[3][1]=-1; 

instruments[3][2]=0.4; 

instruments[3][3]=1.0; 

instruments[3][4]=0.7; 

 

double ratioAvg1=0; 

double ratioAvg2=0; 

double ratioAvg3=0; 

double upDownTotal=0; 

 

 for (int i=0; i< segmentcount; i++) 

 { 

  ratioAvg1+=transformData[i][0]; 

  ratioAvg2+=transformData[i][2]; 

  ratioAvg3+=transformData[i][3]; 

  upDownTotal+=transformData[i][1]; 

   

 } 

  

 upDownTotal=0; 

 if (upDownTotal>0) 

   upDownTotal=1; 

 if (upDownTotal<0) 

   upDownTotal=-1; 

 if (upDownTotal==0) 

   upDownTotal=0; 

 

  ratioAvg1=ratioAvg1/(segmentcount); 

 ratioAvg2=ratioAvg2/(segmentcount); 

 ratioAvg3=ratioAvg3/(segmentcount); 

  

//make comparisons to instruments 

 int instrumentPoints[instrumentCount];  

 double diffSums[instrumentCount]; 

 double diffSumMin=1000; 

 int diffSumMinindex=0; 

 int closestRatioIndex1=0; 

 int closestRatioIndex2=0; 

 int closestRatioIndex3=0; 

 for (int i=0; i<instrumentCount; i++) 

 { 

  diffSums[i]=0; 

  instrumentPoints[i]=0; 

  

 if (upDownTotal==instruments[i][1]) 

//give "point" for same trend 

   instrumentPoints[i]+=8; 
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 diffSums[i]+=abs(ratioAvg1-instruments[i][0]); 

 diffSums[i]+=abs(ratioAvg1-instruments[i][2]); 

 diffSums[i]+=abs(ratioAvg1-instruments[i][3]); 

 if (diffSums[i]<diffSumMin) 

 { 

   diffSumMinindex=i; 

   diffSumMin=diffSums[i]; 

 } 

 

 } 

  

instrumentPoints[diffSumMinindex]+=5; 

 

double positiveMax=-100; 

double negativeMin=1000; 

double plusMinusRatio=0; 

double waveletClosest=100; 

int waveletIndex=0; 

 

 

for (int i=0; i<wavesegs; i++) 

{ 

 for (int j=0; j<chunklength; j++) 

 { 

  dataTemp[j]=data[j+(chunklength*i)]; 

 } 

 linearWavelets(dataTemp, transform, chunklength,sweeps); 

//use of wavelet characteristics to identify instrument 

  

  for (int g=(chunklength/32); g<(chunklength/16); g++) 

  { 

  dataTemp[g-(chunklength/32)]=transform[g]; 

  if (transform[g]>positiveMax) 

   positiveMax=transform[g]; 

  if (transform[g]<negativeMin) 

   negativeMin=transform[g]; 

    

    

  } 

 

} 

 

plusMinusRatio=abs(positiveMax)/abs(negativeMin); 

for (int i=0; i<instrumentCount; i++) 

{ 

 if (abs(plusMinusRatio-instruments[i][4])<waveletClosest) 

 { 

  waveletClosest=abs(plusMinusRatio-instruments[i][4]); 

  waveletIndex=i; 

 } 

 

} 

instrumentPoints[waveletIndex]+=2; 

 

 int bestInstrument=0; 

//set to closest instrument by finding instrument with most points 

 for (int i=0; i<instrumentCount; i++) 
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 { 

  if (instrumentPoints[i]>instrumentPoints[bestInstrument]) 

  { 

   bestInstrument=i; 

  

 

  } 

  } 

  

 const int numVolumeLevels=6; 

 double instrumentAmps[instrumentCount][numVolumeLevels]; 

 double amplitudeAverage[wavesegs]; 

 int amplitudeAverageCount[wavesegs]; 

 int volumeLevel[wavesegs]; 

 fundamentalFreqAvg=fundamentalFreqAvg/segmentcount; 

 int volumeTrend[wavesegs]; 

 int volumeLevelAvg=0; 

 

//flute dynamics 

instrumentAmps[0][0]=0.0007; //pp 

instrumentAmps[0][1]=0.00125; //mp 

instrumentAmps[0][2]=0.0018; //mf 

instrumentAmps[0][3]=0.00238; //f 

instrumentAmps[0][4]=0.0029;//ff 

instrumentAmps[0][5]=1;  //top bound 

 

//oboe dynamics 

instrumentAmps[1][0]=0.000225; // p 

instrumentAmps[1][1]=0.0002863; //mp 

instrumentAmps[1][2]=0.0003475; //mf 

instrumentAmps[1][3]=0.00040875; //f 

instrumentAmps[1][4]=0.00047;  //ff 

instrumentAmps[1][5]=1; //topbound 

 

//trumpet dynamics 

instrumentAmps[2][0]=0.0008;// p 

instrumentAmps[2][1]=0.00165; //mp 

instrumentAmps[2][2]=0.0025; //mf 

instrumentAmps[2][3]=0.00335; //f 

instrumentAmps[2][4]=0.0042; //ff 

instrumentAmps[2][5]=0.012; //topbound 

 

//clarinet dynamics 

instrumentAmps[3][0]=0.0037; // p 

instrumentAmps[3][1]=0.00385; //mp 

instrumentAmps[3][2]=0.004; //mf 

instrumentAmps[3][3]=0.00415; //f 

instrumentAmps[3][4]=0.0043; //ff 

instrumentAmps[3][5]=1; //topbound 

 

for (int i=0; i<wavesegs; i++) 

{ 

 

 amplitudeAverage[i]=0; 

 amplitudeAverageCount[i]=0; 

 volumeTrend[i]=0; 

 for (int j=0; j<chunklength; j++) 
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 { 

  dataTemp[j]=data[j+(chunklength*i)]; 

 } 

 linearWavelets(dataTemp, transform, chunklength,sweeps); 

  

 

 

 for (int k=(chunklength/8); k<(chunklength/4); k++) 

//a level of the wavelet transform 

 { 

  dataTemp[k-(chunklength/8)]=abs(transform[k]); 

 

  if (dataTemp[k-(chunklength/8)]!=0 && dataTemp[k-   

  (chunklength/8)]!=-1) 

//over boundary- so it doesn't include between notes 

  { 

   amplitudeAverage[i]+=dataTemp[k-(chunklength/8)]; 

 

   amplitudeAverageCount[i]+=1; 

    

  } 

 

 } 

 

  

 amplitudeAverage[i]=(amplitudeAverage[i]/amplitudeAverageCount[i])/fund

 amentalFreqAvg; 

  

  

 volumeLevel[i]=0; 

 for (int m=0; m<(numVolumeLevels-1); m++) 

 { 

  if (amplitudeAverage[i]>instrumentAmps[bestInstrument][m] &&  

  amplitudeAverage[i]<instrumentAmps[bestInstrument][m+1]) 

    volumeLevel[i]=m; 

//best range-range is space above set mark 

   volumeLevelAvg+=volumeLevel[i]; 

 } 

 

 

 

 for (int g=(chunklength/32); g<(chunklength/16); g++) 

 { 

  dataTemp[g-(chunklength/32)]=abs(transform[g]); 

    

   if (dataTemp[g-(chunklength/32)]>dataTemp[g-

(chunklength/32)-1]) 

   { 

    volumeTrend[i]+=1; 

   } 

   if (dataTemp[g-(chunklength/32)]<dataTemp[g-

(chunklength/32)-1]) 

   { 

    volumeTrend[i]-=1; 

   } 

    

 } 
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 } 

 

if (volumeLevel[0]==volumeLevel[wavesegs-1]) 

{ 

  int x=1; 

} 

else 

{ 

 for (int i=1; i<wavesegs; i++) 

 { 

  volumeTrend[0]+=volumeTrend[i]; 

 } 

  

} 

 

//write data to file 

outfile<<segmentcount<<endl; 

cout<<"Number of notes: "<<segmentcount<<endl; 

volumeLevelAvg=volumeLevelAvg=wavesegs; 

outfile<<volumeLevelAvg<<endl; 

cout<<"Volume level (out of 4): "<<volumeLevelAvg<<endl; 

if (volumeTrend[0]> -10 && volumeTrend[0]<10) 

 volumeTrend[0]=0; 

outfile<<volumeTrend[0]<<endl; 

cout<<"Volume trend: "<<volumeTrend[0]<<endl; 

outfile<<bestInstrument<<endl; 

cout<<"Instrument (0=flute, 1=oboe, 2=trumpet, 3=clarinet): 

"<<bestInstrument<<endl; 

int smallestNote=100000000; 

for (int i=0; i<segmentcount; i++) 

{ 

 if (seglength[i]<smallestNote) 

   smallestNote=seglength[i]; 

} 

for (int i=0; i<segmentcount; i++) 

{ 

 outfile<<(int)fundamentalFreq[i]<<endl; 

 cout<<"Note number "<<(i+1)<<" 

 frequency:"<<(int)fundamentalFreq[i]<<endl; 

 outfile<<1<<endl; 

 cout<<"note length: "<<seglength[i]<< 

 (int)(seglength[i]/smallestNote)<<endl; 

  

} 

 return 0; 

 

} 
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Fourier Transform Program 

#include  <cmath> 

#include <stdio.h> 

#include <iostream> 

#include <stdlib.h> 

#include <fstream> 

#include <string> 

#define SWAP(a,b)tempr=(a);(a)=(b);(b)=tempr 

#define _USE_MATH_DEFINES 

#include <math.h> 

using namespace std; 

int fourier (double* dataComplex, double* transform, int n) 

{ 

  const int isign=-1; 

  //const int n=256; 

  unsigned long mmax,m,j,istep,i; 

  double wtemp,wr,wpr,wpi,wi,theta,tempr,tempi; 

  double swapTemp; 

  n=n/2; 

  int number_of_complex_samples=n/2; 

  j=0; 

 

    for (int i=0;i<n/2;i+=2)  

 {  

        if (j > i)  

  { 

            //swap the real part  

    SWAP(dataComplex[j],dataComplex[i]); 

            //swap the complex part 

            SWAP(dataComplex[j+1],dataComplex[i+1]); 

          

        } 

   

        m=n/2; 

  while (m >= 2 && j >= m) 

  { 

   j -= m; 

   m = m/2; 

  } 

  j += m; 

    } 

 

    mmax=2; 

    //external loop 

    while (n > mmax) 

    { 

        istep = mmax<<  1; 

        theta=isign*(2*3.14159265358979323/mmax); 

        wtemp=sin(0.5*theta); 

        wpr = -2.0*wtemp*wtemp; 

        wpi=sin(theta); 

        wr=1.0; 

        wi=0.0; 

        //internal loops 

        for (m=1;m<mmax;m+=2)  
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  { 

            for (i= m;i<=n;i+=istep)  

  { 

                j=i+mmax; 

                tempr=wr*dataComplex[j-1]-wi*dataComplex[j]; 

                tempi=wr*dataComplex[j]+wi*dataComplex[j-1]; 

                dataComplex[j-1]=dataComplex[i-1]-tempr; 

                dataComplex[j]=dataComplex[i]-tempi; 

                dataComplex[i-1] += tempr; 

                dataComplex[i] += tempi; 

            } 

  wtemp=wr; 

            wr=wtemp*wpr-wi*wpi+wr; 

            wi=wi*wpr+wtemp*wpi+wi; 

        } 

        mmax=istep; 

    } 

 

 

 int datamax=0; 

 int imax=0; 

 int r=0;  

 for (int i=0; i<(n/2); i+=2)  

 { 

 

 transform[r]=sqrt((dataComplex[i]*dataComplex[i])+(dataComplex[i+1]*dat

 aComplex[i+1])); 

 transform[0]=0; 

 if (transform[r]>datamax) 

 { 

  datamax=transform[r]; 

  imax=datamax; 

 } 

 r+=1; 

    

     

 } 

return imax; 

} 
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Wavelet Transform Program 

 

 

#include <iostream> 

#include <fstream> 

#include <string> 

#include <sstream> 

#include <vector> 

#include <cstdlib> 

#include <cmath> 

using namespace std; 

 

void linearWavelets(double* data, double* transform, int n, int sweeps) 

{ 

 const int size=19; 

 const int length=2048; 

 double cof[size][length]; 

 int k=0; 

 for (int i=0; i<length; i++) 

 cof[0][i]=data[i]; 

   for (int j=1; j<=sweeps; j++) 

    { 

        k=0; 

        for (int i=0;  i<(length*2); i+=2        

  {  

            if (i<((length/(int)(pow(2.,(double)(j-1)))))) 

            { 

             cof[j][k]=(cof[j-1][i]+cof[j-1][i+1])/2; 

               cof[j][k+(length/(int)pow(2.,(double)j))]=(cof[j-1][i]- 

   cof[j-1][i+1])/2; 

            } 

            else 

            { 

                cof[j][k+(length/(int)pow(2.,(double)j))]=cof[j-   

   1][k+(length/(int)pow(2.,(double)j))]; 

                 

                 

            } 

                 

             

            k+=1; 

        } 

    }      

 for (int i=0; i<length; i++) 

  transform[i]=cof[sweeps][i]; 

 

 

     

} 
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Java Sheet Music Notation Program 

import java.awt.*;  

import java.awt.geom.*;   

import javax.swing.*;  

import java.util.*;  

import java.lang.Math.*; 

import java.io.*; 

class main extends JFrame 

{ 

 

     public static void main( String[] args ) 

    { 

      main graphicsObject = new main(); 

 graphicsObject.setBackground(Color.white); 

 graphicsObject.setDefaultCloseOperation( JFrame.EXIT_ON_CLOSE ); 

    } 

     main()  

    { 

 super("Graph of .wav File"); 

 setSize(1300,1200);                        

 setVisible(true);                         

    } 

    public void paint (Graphics g)  

    { 

 Graphics2D g2d = (Graphics2D) g; 

 g2d.translate (0.0,500.0); //make 0 where graph is 0,0 

 g2d.scale (1.0, -1.0); //make positive up, to the right 

 g.setColor(Color.black); 

 g.drawLine(50, 0, 1225, 0);//horizontal lines 

 g.drawLine(50, 25,1225, 25); 

 g.drawLine(50, 50,1225,50); 

 g.drawLine(50, 75,1225, 75); 

 g.drawLine(50, 100,1225, 100); 

 //********** importing 

 double max=0; 

 double min=100000; 

 int dataCount=0; 

 int oldX; 

 int oldY=0; 

 int size; 

 int secondRow=0; 

  

  try{ 

      // Open the file that is the first  

      FileInputStream fstream = new        

          fileInputStream("waveform_analysis.txt"); 

      // Get the object of DataInputStream 

      DataInputStream in = new DataInputStream(fstream); 

          BufferedReader br = new BufferedReader(new     

      InputStreamReader(in)); 

      

      //Read File Line By Line 

   String strLine; 

   size=15; 
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   int numberNotes; 

   int trend=0; 

   int startVolume=10; 

   int endVolume=10; 

   int averageVolume; 

        int bestInstrument; 

   int instrument; 

   int smallestIndex; 

   int[] relativeLengths=new int[15]; 

   int[] frequencies=new int[15]; 

     

      

      

      strLine=br.readLine(); 

      numberNotes=Integer.parseInt(strLine); 

        

      strLine=br.readLine(); 

      averageVolume=Integer.parseInt(strLine); 

      

      strLine=br.readLine(); 

       if (Integer.parseInt(strLine)>0) //trend up 

       { 

        trend=1; 

        strLine=br.readLine(); 

        startVolume=Integer.parseInt(strLine); 

        strLine=br.readLine(); 

         endVolume=Integer.parseInt(strLine); 

 

       } 

       if (Integer.parseInt(strLine)<0) //trend down 

       { 

        trend=-1; 

        strLine=br.readLine(); 

        startVolume=Integer.parseInt(strLine); 

        strLine=br.readLine(); 

        endVolume=Integer.parseInt(strLine); 

       } 

       if (Integer.parseInt(strLine)==0) //trend down 

       { 

        trend=0; 

        startVolume=averageVolume; 

        endVolume=averageVolume; 

          

       } 

   strLine=br.readLine(); 

       instrument=Integer.parseInt(strLine); 

       g2d.scale (1.0, -1.0); //make positive up, to the right 

       Font font = new Font("Arial", Font.PLAIN, 75); 

       g2d.setFont(font); 

 

       if (trend==0) 

       { 

        if (averageVolume==0) 

         g.drawString("pp",30, 80); 

        if (averageVolume==1) 

         g.drawString("p", 30, 80); 

        if (averageVolume==2) 
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         g.drawString("mp",30, 80); 

        if (averageVolume==3) 

         g.drawString("mf", 30, 80); 

        if (averageVolume==4) 

         g.drawString("f", 30, 80); 

        if (averageVolume==5) 

         g.drawString("ff", 30, 80); 

         

       } 

       else 

       { 

         

       } 

       if (instrument==0) 

        g.drawString("flute", 50, -200); 

      if (instrument==1) 

       g.drawString("oboe", 50, -400); 

      if (instrument==2) 

       g.drawString("trumpet", 50, -400); 

      if (instrument==3) 

       g.drawString("clarinet", 50, -400); 

      g2d.scale (1.0, -1.0); //make positive up, to the right 

       

        

      g2d.translate (200.0,0.0); //make 0 where graph is 0,0 

       

       for (int i=0; i<numberNotes; i++) 

       { 

        strLine=br.readLine(); 

        frequencies[i]=Integer.parseInt(strLine); 

        strLine=br.readLine(); 

        relativeLengths[i]=Integer.parseInt(strLine); 

        if (relativeLengths[i]==1) 

          smallestIndex=i; 

       } 

       int xPosition=0; 

       int halfSteps=0; 

       int octave=0; 

       double yPosition=0; 

 

       for (int i=0; i<numberNotes; i++) 

       { 

        System.out.println("freq:" +frequencies[i]); 

           

 halfSteps=(int)(Math.log((double)(frequencies[i]/329 

628))Math.log((double)1.059463));//steps from e 

       if (halfSteps<13) 

            octave=1; 

       if (halfSteps>12 && halfSteps<25) 

        octave=2; 

       if (halfSteps>24 ) 

        octave=3;  

       if ((double)((int)(halfSteps/2))< halfSteps/2) 

         yPosition=25*((int)(halfSteps/2)+octave)\ 

12; 

       else 

         yPosition=25*(halfSteps/2+octave)-12; 
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        System.out.println("ypos: "+yPosition); 

        System.out.println("half steps: "+halfSteps); 

        xPosition+=75; 

       // g.fillRect(xPosition, (int)yPosition, 50, 50); 

        if (relativeLengths[i]==1) 

        { 

         System.out.println("quarter note"); 

         g.fillOval(xPosition, (int)yPosition, 30, 25); 

         g.fillRect(xPosition+26, (int)yPosition+12,2,100 ); 

        } 

        if (relativeLengths[i]>1 && relativeLengths[i]<2.2)//twice 

smallest 

        { 

         System.out.println("half note"); 

         g.drawOval(xPosition, (int)yPosition, 30, 25); 

        } 

        if (relativeLengths[i]>=2.2 && relativeLengths[i]<3.2) 

        { 

         System.out.println("dotted quarter"); 

         g.fillOval(xPosition, (int)yPosition, 30, 25); 

         g.fillOval(xPosition+28, (int)yPosition, 8, 8); 

        } 

        if (relativeLengths[i]>=3.2) 

        { 

         g.drawOval(xPosition, (int)yPosition, 30, 25); 

         System.out.println("whole note"); 

        } 

         

         

       } 

        

       

      //Close the input stream 

      in.close(); 

      }catch (Exception e){//Catch exception if any 

        System.err.println("Error: " + e.getMessage()); 

      } 

  

 

    } 

} 

 


