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Executive Summary: 
 
The planets in the solar system are subject to multiple gravitational perturbations from other 
solar system bodies including those from general relativity, solar oblateness, other planets, large 
asteroids (as discrete point masses), and small asteroids (cumulatively). The largest uncertainty 
in our knowledge of the orbits of the inner planets, Mercury, Venus, Earth, and Mars, is due to 
perturbations from the complicated and uneven mass distribution within the asteroid belt. 
 
The goals of this project are to analyze this distribution and to computationally model the effects 
of its perturbations on the orbits of the inner planets; specifically, this project looks to 
characterize the perturbative effects as a noise problem. In order to do this, we have created first 
a flexible, object-oriented framework in Python for the integration of dynamical systems. This 
generalized ODE solver was then adapted to address several questions regarding planetary 
motions as subject to asteroid belt perturbations. 
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1 Introduction: 

The planets of the solar system are subject to various gravitational perturbations from other 

bodies. These perturbations include the other planets, large asteroids (as discrete point masses), 

small asteroids (cumulatively), solar oblateness, and those caused by relativistic effects. 

Although spacecraft range and range-rate observations have led to the development of high 

accuracy ephemerides, especially for the inner solar system planets (Newhall et al. 1983) there 

are still uncertainties of up to 1km (Standish and Fienga 2002) in inner solar system planetary 

positions. Currently, the largest uncertainty is believed to be due to the asteroids (Standish and 

Fienga 2002). As of this writing, there are approximately 541,000 known asteroids (Bowell 

2010) in the main asteroid belt, unevenly distributed between the orbits of Mars and Jupiter. 

 

A large range in the masses of the objects further complicates this uneven distribution. Most of 

the mass of the asteroid belt is contained within four bodies, meaning that almost all other 

individual asteroids perturb the planets by small to negligible amounts. However, the collective 

influence of small asteroids on the orbits of the planets is significant to some extent, which has 

yet to be investigated in future research. The accuracy of current orbital predictions is limited 

largely because of these perturbations from the asteroid belt. This presents the challenge of how 

to accurately navigate the solar system, without an accurate knowledge of the orbits. 

 

1.1 Previous Work: 

There have been several studies that have analyzed the effects of asteroid belt perturbations; 

these have focused primarily on the refinement of high-precision ephemerides, on the increase of 

the accuracy of asteroid models, and on the determination of the most significant perturbers and 

their effects, among other things. 

 

Notably, Fienga and Simon (2005) consider the perturbative effects of 300 asteroids on the orbits 

of the inner planets. Their primary motivations were to develop in parallel an improved 

analytical model and an accurate numerical integration for the inner solar system. To come to 

their conclusions, they use two separate approaches in their study, analytical, and direct 



numerical integration, and compare their accuracy to that found in the JPL ephemerides. They 

find that: 

• Asteroid perturbations on Mercury and Venus are non-negligible. 

• The accuracy of their analytical model is comparable to that of high-precision 

numerical integrations. 

• Inner asteroid (Apollo-Aten-Amor) perturbations are “quite-negligible” for short-

term inner solar system dynamics.

 

 

Later, Kuchynka et al. (2010) assess the ability of a ring model of the small mass asteroids to 

successfully model perturbations from the main asteroid belt. They estimate the asteroid 

perturbations by comparing results from integrations including and excluding the ring; in order 

to evaluate the ring’s capacity to model many individual objects, they compare it against many 

test models, each containing a different set of individual asteroid masses. Such Monte-Carlo 

experiments can provide estimates as to how many asteroids need to be individually modeled in 

order to maintain accurate results. 
 

 

1.2 This Project: 

Thus, the focus of this project is to characterize the perturbative effect of the asteroids on the 

motions of the inner planets rather than to further refine ephemerides; specifically, this project 

looks to characterize the perturbative effects as a noise problem, which is a novel and promising 

approach. However, at the current stage of research, only qualitative data is presented; this data 

is the first step though to noise characterizations.

 

 

2 Computational Model: 

The computational model that we implement has a complex structure, which, without a starting 

framework to build off of, would be very difficult to create and debug from scratch. The 

framework must be flexible and object-oriented in order to be easily adaptable in the future. As 

well, it must properly integrate the equations of motion to give accurate results; we will thus 

have to prove that it is behaving correctly. Throughout the research, this framework has evolved 

significantly and is in fact completely different from the initial design. 

 



2.1 Framework Development Using a Test Problem: 

We created first a program that integrates the equations of motions to find the trajectory of an 

earth bound projectile in the presence of air resistance and a steady wind from an arbitrary 

direction. This is a very simple physics problem (Figure 1), and without air resistance, can be 

solved analytically, allowing confirmation that the integrating machinery is working properly. 

The user can set the initial environmental conditions, launch conditions, and modeling 

conditions, to achieve different types of trajectories. This allows the model to more realistically 

approximate what we actually observe. 

 

A useful experiment that I preformed was to determine the effect of step-size on ODE integration 

accuracy. I observed errors due both to very small and to very large step-sizes. At very small 

step-sizes, the accuracy fluctuates in the range, which appears to be the numerical round-off 

noise floor. Above a certain threshold, the accuracy degrades exponentially until a step- size of 

significant magnitude causes fluctuations in the accuracy at the upper end as well (figure 2). This 

pattern of an exponential increase in error as a function of step-size, with upper and lower 

bounds is what is expected. 



 

 

The error at large step-sizes is due to series expansions inherent in the numerical integration 

algorithm being truncated at each iteration, leading to an accumulation of error by the end of the 

integration. For very small step-sizes, I saw round off error present in the end conditions. This 

error was caused by the limited number of floating point decimals available on my machine, and 

the inability to produce values with infinite precision each step. However, having a machine with 

infinite precision, we would still suffer from truncation error. Numerical issues such as this must 

be kept in mind for any dynamical computation. Being able to implement an ODE solver, and 

understand how it works, requires knowing the mathematical concepts behind the problem at 

hand. Thus, in order to create the ODE solver framework, I have been learning about vectors and 

vector algebra; differentiation, series expansions, and integral calculus; particle dynamics in two 

and three dimensions; ODEs and numerical techniques for solving ODEs.

 

 

To control such numerical errors from entering the integration, the solar system framework 

makes use of an adaptive step size integration method, which can control for error terms.

 



 

2.2 The Solar System Problem

 

All of the data used in this project is either calculated or obtained from a database. Specifically, 

planet orbital elements are calculated within the framework for a specific date. All asteroid data 

however is obtained from the Bowell asteroid database, which contains over 541, 000 objects. 

The ten asteroids that are integrated in this project are the ten largest asteroids in the asteroid 

belt: Ceres, Pallas, Juno, Vesta, Astraea, Hebe, Iris, Flora, Metis, Hygiea. Whenever only one 

asteroid is integrated it is always Ceres.

 

 

In this study, we implement a high-precision, short-timescale (102 - 104 years) numerical 

integration of the planets and asteroids, and in the future will determine the applicability and 

dynamical importance of various methods of approximating the main-belt asteroid mass 

distribution. Although this implementation is based on the generalized framework presented in 

2.1, it has been vastly modified and improved from its original state.
 

 

The equations of motion for the solar system model, with the coordinate origin coincident with 

the sun, and addressing only the point masses within the asteroid belt, are: 

 

 

 

 

where N is the number of discrete masses other than the sun, m0 is the mass of the sun, and mk 

and mi are the masses of bodies k and i, respectively. To make this equation unit less, we put m 

in solar masses, r in Astronomical Units, and t in Earth periods. This not only simplifies the 

equation, but also improves the robustness of numerical computations; now we model with solar 

masses, Astronomical Units, and Earth years (instead of kilograms, meters, and seconds.) Doing 

this, we obtain, for the kth body: 



 

 



 
 

where μk and μi are the scaled masses of the kth and ith bodies, respectively, and μE= ME /MSun. 

Our knowledge of the value of G and, separately, of the masses of objects in the solar system is 

not very accurate. Fortunately, this issue is partly resolved due to the way in which we measure 

the masses of solar system objects. Because of the nature of Newton’s equations, and specifically 

Kepler’s third law, 

 

 

 

when we measure the period and the semi-major axis of mass m1 interacting with mass m2 <m1, 

the resulting measurement is actually of the product Gm1 and is more precise than our knowledge 

of G or m1 separately. To obtain μ, we divide the mass of the object by the mass of the sun; 

because both of these values are measured in Gm, we retain the measurement precision of Gm in 

the values of μ. During the integration, the positions and velocities of all of the bodies in the 

model are stored in a large state vector array; the first half contains the x, y, and z positions, and 

the second half contains the x, y, and z velocities for all bodies in a consistent order. All 

information about the state of the model can be derived from this state vector and from the 

independent variable, time.

 

 

The integration framework advances the system via an adaptive step-size 8th order Runge-Kutta 

method (Press et al. 2007). It has three interaction parameters that define how solar system 

objects interact with each other. 

 

1 All – all bodies interact with other bodies. 

2 Partial – all bodies interact with other bodies, except asteroids do not feel other asteroids 



3 Restricted – all bodies interact with other bodies, except asteroids do not feel other 

asteroids and planets do not feel asteroids. This is known as the semi-restricted N body 

problem.

 

 

In the final results calculations, all bodies interacted other bodies. However, by looking at the 

residuals of identical all and partial runs, it was determined that there is no significant difference 

between the two. In fact, figure 3 shows a residual plot for partial vs. all runs, and it is seen that 

the difference is only very small, but also advances in a way indicative of numerical noise. 

 

Initially, baseline integrations of planets with and without perturbers were preformed in order to 

qualitatively analyze the behavior of planets under varying circumstances. These test included 

both asteroid and planetary perturbers. The results from these can be seen in figures 4-6. Figure 7 

shows the residuals for a 10, 000 year integration of the 8 planets and 10 largest asteroids. 

 

1 The analysis of asteroid perturbations on planetary motion employed two analysis 

techniques. Examine the residuals of chosen orbital elements of two separate integrations, 

differing only in that one included perturbing asteroids while the other did not. The 

residuals provided an idea of the scale of the perturbations. The residuals in the semi-

major axis of Earth and Mars were noted to be in the 1x10-8 AU region.

 

2 Power spectra for the residuals of no asteroid-asteroid integrations were calculated. These 

are the first step in characterizing gravitational perturbations as a noise problem.  

Furthermore, they can reveal planet-planet and planet-asteroid resonances.

 

 

During the course of this research, it was also assumed that an absolute error tolerance of 1x10-7 

was sufficient and at the level of the uncertainties in initial conditions. This was later verified by 

running two identical integrations, differing only in the absolute tolerance parameter, and 

looking at the residuals from one orbital element. The characteristic expansion of the residuals as 

a function of t2 and a comparatively small difference between Absolute Tolerance = 10-8 and 10-7 

vs. Absolute Tolerance = 10-6 and 10-8 confirmed that the differences were due to numerical 

noise and that Absolute Tolerance = 10-7was sufficient. Plots comparing absolute tolerances can 

be seen in figures 8 and 9. 



 

2.3 Numerical Techniques 

The internal optimization of our program consists of removing all unnecessary calculations of 

square roots, which is used in order to calculate distances between objects, as well as making use 

of specialized Python libraries (numpy, cython) for numerically intensive sections of code. Thus, 

we retain the functionality and ease of use of Python, an interpreted language, while achieving 

numerical speeds comparable to those of compiled languages. In order to calculate the 

accelerations on an object from the other bodies, we use nested for loops. In the calculation of 

this acceleration, the distances between bodies are actually used twice per pair; once from object 

k to i, and once from i to k. Thus, we simply calculate the distances to and from all bodies once, 

up front, and then use these values within the body interaction for-loop. As well, we implement 

an 8th order adaptive step-size Runge-Kutta algorithm (Press et. al, 2007), which not only allows 

us to control error terms, but also increases integration speeds.

 

 

3 Results

 

The residual plots are the first step to characterizing perturbations as a noise problem; using 

these perturbation power spectra can be calculated using an FFT. This takes a signal in the time 

domain and re-expresses it in the frequency domain, showing at which frequencies the power of 

the signal is located. In an ideal situation, where we have an infinite signal, the Fourier 

Transform would produce delta function spikes at the peak power frequencies. However, in the 

real world we do not have infinite data sets and so the output of the Fourier Transform is in fact a 

sin cardinal function, which produces secondary lobes that radiate outwards from the central 

peak at any frequency. Interpreting whether what we see in our spectral plots is just noise or real 

effects is thus difficult. 

 

 

Because asteroid perturbations are all cyclical, each one operates at a certain frequency in the 

motion of any particular body. This shows up a cyclical variation of the orbital elements, and the 

power spectra reveal the density of perturbation frequencies.

 

 

The magnitude of the perturbations is seen on the y-axis, and it demonstrates to what extent the 

planets, and more importantly planetary orbital elements, are jostled by each other and by the 



asteroids, at peak frequencies. The power spectra are the first step to characterizing gravitational 

perturbations as a noise problem since we can contrast the power spectra of some of the standard 

noise types against what is seen in planetary motion to see similarities.

 

 

The large spikes in the power spectra suggest that the gravitational perturbations caused by the 

inclusion of asteroids are largest at the frequencies at which one sees the spikes. That is to say 

that where a spike is observed, gravitational perturbations jostle the planet’s given orbital 

element most at that frequency.

 

 

Figures 10 and 11 show the power spectra for 10, 000 year integrations of the 8 planets and 10 

asteroids or Ceres, respectively. 

 

4 Conclusions 

The so-far qualitative analysis of the power spectra for the gravitational perturbations caused by 

asteroids on the orbits of the inner planets show that there are certain frequencies at which a 

planet’s orbital elements are perturbed at most. Having the power spectra for certain critical 

orbital elements, such as eccentricity and semi-major axis, is the first step to actually 

characterizing the perturbations as a noise problem, and to being able to calculate orbital 

probabilities for planets. 

 

The most significant original achievement of the project is thus analyzing the power spectra of 

asteroid perturbations in an effort to classify them as noise.  

 

5 Future Work

 

Currently, asteroid gravitational perturbations are modeled by only the ten most massive 

asteroids. This is sufficient for gaining an understanding of the underlying characteristics of 

gravitational perturbations, but is not enough to begin accurate noise characterization. In order to 

more accurately model the interactions between the inner planets and the asteroids, I plan to 

simulate the latter using three distinct groups: the roughly half dozen largest asteroids which 

directly perturb the inner planets, the several hundred asteroids of smaller but still significant 



mass, and the rest of the asteroids whose masses are individually not large enough to perturb the 

planets, but whose cumulative effects are not negligible.

 

 

There are also several interesting questions which come out of this initial research: 
 

 

• Fienga and Simon (2005) state that asteroid perturbations on Mercury and Venus are non-

negligible. Are second order perturbations from these planets significant?
 

• Which coordinate system is most advantageous, barycentric or heliocentric?
 

• Can asteroid masses be extrapolated from the results and from measured planetary 

perturbations? If not, can bounds be placed on some masses?
 

• Which components of the solar system model are most influential? 

• At what level does chaos prevent the knowledge of planetary positions? 

• Does the gravitational noise that we see look like any of the standard noise 

types?

These questions will be addressed in later research.
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Appendix A: Figures 

 

Figure 1: This figure diagrams the forces acting on an earth-bound projectile. Air resistance will almost 
always act against the x, y, and z components of velocity; additionally, gravity will always act on the projectile 
in the y direction. 
 

 
 
Figure 2: This plots shows the exponential decrease in accuracy with increasing integration step-size. 
(elevation=45deg, wind=0, m=0.5kg, c=0.005) 
 
 
 
 
 
 
 
 



 
Figure 3: A partial vs. all residual plot. It is seen that there appear to be no large variations at first, but after 
6000 years and oscillation starts up and grows as a function of t2. This indicates that the oscillation is not real 
and is only due to noise. 
 

 
 
Figure 4: Plotted are the residuals in Mars’ semi-major axis from an integration of only Mars vs. one of 
Earth, Mars and Jupiter. This was a baseline test, to qualitatively determine the perturbative effects of 
planets on each other. 



 

 
 
Figure 5: Plotted are the residuals in Mars’ semi-major axis from an integration with Earth, Mars, and 
Jupiter, and compared to the same integration with 1 or 10 asteroids. This shows the degree to which the 
gravitational perturbations increased with an increase in perturbing bodies. 
 

 
 
Figure 6: Plotted are the residuals in semi-major axis for Earth, Mars and Jupiter for integrations including 
either 1 asteroid or 10 asteroids. This shows the large differences between the perturbations on the three 
planets. 
 
 
 
 
 
 
 



 
 
Figure 7: A residuals plot for a 10, 000 year integration of the 8 planets and Ceres, the largest asteroid. This 
shows the relative effects that Ceres has on planetary motion, and that Mars is the most heavily affected 
among the inner solar system planets. 
 



 
 
Figure 8: A plot of the residuals from two runs with different absolute tolerances. Compare this scale to that 
of figure 9 to find it is an order of magnitude smaller. This indicates that an error tolerance of 1x10-7 is 
sufficient. 
 
 
 



 
Figure 9: A plot of the residuals between two different levels of absolute tolerance. Compare to figure 8. This 
scale is an order of magnitude larger. 
 
 
 



 
 
Figure 10: Plotted are the power spectra for Venus, Earth, and Mars from a 10,000 year integration with all 8 
planets and 10 asteroids. It is clearly visible that the perturbations on Mars are the largest and that the 
frequency peak occurs at ~0.9, which is once every 1.11 years. This means that Mars’ semi-major axis is 
perturbed the most at a frequency ~0.9, and that the perturbations on Earth and Venus are significantly 
smaller. Also observed are two large wings on either side of the Mars spike. These are either cause by 
numerical noise, or by chaos. The magnitude of these perturbations on Mars is on the order of 153 m. 
 



 
 
Figure 11: Plotted are the power spectra for a 10,000 year integration with all 8 planets and only Ceres, the 
largest asteroid in the asteroid belt. The power spectra here, as compared to those seen in figure 4, are not 
significantly different but do show the influence of multiple asteroids on planetary motion. 
 


