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Summary 
 

The main goal of this project is to develop a computer program to model the rotation of a 

galaxy including dark matter.  The computer program will be used to answer these 

questions:  (1) How does dark matter affect rotational curves in galaxies; (2) how 

accurately can this be modeled; (3) what will happen when the dark matter and galaxy 

masses are changed; and (4) How well can this method work for different galaxies. The 

computer program was built-up over time. The first step was writing a computer program 

using Python to model a mass attached to a spring. This model was extended to two-

dimensions and then to a solar system model with both sun and interplanetary gravity 

interactions. Finally, the galaxy program was constructed using C by adding hundreds of 

“stars” to my solar system model in place of the planets and replacing the sun’s mass 

with a large central galaxy “core” mass. Dark matter is implemented in this model by 

treating it as an additional large mass point located at the center of the galaxy.  Newton’s 

laws of motion were solved using a velocity Verlet method.  The forces due to gravity 

were computed using two different methods:  (1) nearest neighbor, a method that 

decreases calculation time by drawing a circle around each star and seeing whether a star 

is inside or not. Only the force due to gravity between the star and its neighbors will be 

computed (with the exception of the central mass); and (2) N-body, a method that 

computes the gravitational force between the current star and every other star in the 

galaxy and the central mass. The N-body approach is very slow. Both methods gave the 

essentially the same results but nearest neighbor is much faster and capable of using more 

stars. Five different calculations were run for the Andromeda galaxy. Nearest neighbor 

with dark matter, without dark matter, and less dark matter using 4400 stars,  and N-body 

with and without dark matter using 520 stars. Two other galaxies NGC 2403 and NGC 

3198 were also modeled using 4400 stars with dark matter. From these simulations I was 

able to successfully match the experimental data measured for Andromeda, NGC 2403 

and 3198. My results show that dark matter is needed to maintain a stable galaxy. Dark 

matter also causes the galaxy to rotate much faster so that the rotational velocity remains 

constant out to the edge of the galaxy.  These “flat” rotational curves are experimentally 

observed for nearly all spiral galaxies. 
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Introduction 
What is dark matter and why do we need it? 
 No one knows what dark matter really is, although it has been one of the many 

theories that exist to help explain the flat rotational curve of all galaxies. Dark matter was 

first introduced in the 1930’s but many people did not really support it until later in the 

1970’s. In the 1970’s people had begun collecting experimental data from galaxies by 

taking the brightness of the galaxy. They also made computer programs to test the dark 

matter theory. According to Newton’s laws of motion, a galaxy rotation curve should dip 

down towards the edge of the galaxy. However, the experimental curve is relatively flat 

(see Fig. 1).  Dark matter is one of the theories to resolve the difference between the two 

curves. Another theory that exists is called MOND (Modified Newtonian Dynamics) 

which changes Newton’s laws of gravity to fit the flat rotational curve. By using the dark 

matter and MOND theory we can better understand how galaxies function and learn more 

about our tiny section of the universe. 

 Figure 1:  Rotational curves and experimental data for NGC 3198 

How are galaxy rotational curves measured? 
Galaxy rotational curves are measured from the Doppler shifts of the Hydrogen 21 cm 

line. The shift is broken down into red and blue, the red shift is going away and blue shift 

is coming towards you.  
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Figure 2:  Schematic showing the blue and red Doppler shifts which 
are used to measure a galaxy’s rotational velocity.  

Problem 
 Can I successfully create a computer model to simulate dark matter effects on a 

galaxy’s rotation? How accurately can I model the effects? These are the two primary 

questions that my project will address.  The dark matter model is based on the Navarro-

Frenk-White mass distribution. It is a static, spherically symmetric mass distribution (see 

Figure 3 below).  Newton’s law of motion F=m a (total force = mass times acceleration) 

will be used to move the visible matter (“stars”) in my simulations. The force is due to 

gravity acting between all of the visible matter plus a large central force at the center of 

the galaxy due to dark matter.   The force between any two mass points m1 and m2 is 

given by Newton’s law of gravity F=G m1m2/r2 where G is the universal gravitational 

constant and r is the distance between the two points.  My simulation will be based on the 

Python and C programming languages. 
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Figure 3:  Schematic showing how dark matter is treated in the computer model. 

Galaxy Model 
My galaxy model is very similar to our solar system, instead of planets orbiting the sun, 

stars orbit the dark matter and black hole of the galaxy. Also, instead of 8 planets, there 

are trillions of stars. My galaxy model takes those stars and represents many stars as one 

because doing a trillion stars on single computer will take forever. My galaxy model 

calculates the mass of the stars by taking the total mass of the core or disk (Mcore or 

Mdisk) and dividing that by the number of stars in the core (N-N0) or disk (N0). The total 

number of stars is N. The formula in my model is M = Mdisc/N0 or Mcore/ (N -N0) to 

get the mass of a star. The figure 4 below shows how my galaxy model is similar to a 

solar system. 
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Results 
Figure 4:  Schematic showing how my galaxy model resembles the solar system. 

Eleven simulations were run using nearest neighbor and N-body methods both with and 

without dark matter. Nearest neighbor creates a radius around each star and determines 

whether or not another star is in that radius. If the star is inside of the radius then the 

program stores that stars ID in an index and computes the gravitational force between it 

Figure 5:  Schematic showing how the nearest neighbor method works. 
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and the star i (red point). If the star is not inside the radius, then the program does not 

compute the gravitational force between it and the star (see Figure 5).  The force due to 

the central mass is included plus all of the points outside the nearest neighbor radius and 

less than the star’s radius are grouped together and treated as a single mass point at the 

center of the galaxy (using Newton’s shell theorem).  Also, the nearest neighbor radius 

increases as the distance from the center of the galaxy increases. The typical values 

varied between 1 and 11 kpc so that the number of neighbors was always around 100.  

The N-body method calculates the gravitational force between itself and every single star. 

Since the N-body method is so computationally demanding, the N-body simulations have 

only 520 mass points.  Nearest neighbor is a much more efficient because it speeds up the 

calculation greatly compared to N-body. Figure 6 below shows how the CPU time scales 

for N-body and nearest neighbor methods. 

 Figure 6:  CPU time vs the number of particles for N-body and nearest neighbor 
methods for a 1 million year simulation with a time step dt = 10 years. Rn is the 
nearest neighbor radius which increases linearly with the distance from the center of 
the galaxy. 

  

 

Nearest neighbor gave similar results as N-body simulations did and was more stable 

without dark matter than N-body because of its 4400 mass points. Although nearest 

neighbor is not a standard method for gravity computations there are similar methods like 

the tree algorithm, which are designed to work especially for galaxy related objects.  
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The initial mass distribution was chosen based on the experimentally measured visible 

light intensity which is well described by an exponential function (see Ref. [1]).  The 

initial velocities for each star were chosen based on setting the centripetal force for 

uniform circular motion equal to the gravitational force: m1v2/r = G m1 M /r2 where M is 

the total mass enclosed within the star’s radius r (it includes both the galaxy’s visible and 

dark matter).  A small random velocity was also added to the initial v (see Ref. [1]).  

Newton’s equations of motion were then solved as a function of time using the velocity 

Verlet method. Other methods were also tried (see Appendix 1). The flow chart of my 

galaxy simulation program is shown if Figure 7 and the corresponding Python code is in 

Appendix 2.  In order to speed up the calculations, Shedskin was used initially to convert 

the Python code to C but the translated C code was not always compatible with other 

subroutines (especially OpenCL). So, the galaxy code was rewritten in C and the C 

version was used in all of my final galaxy simulations. 

 

 Figure 7:  Flow chart of the main computational loop used in all simulations to 
calculate the force due to gravity and store the data every million years.  

 

Nearest neighbor results are plotted in Figs. 8 and 9 for the Andromeda galaxy simulation. 

The results with dark matter show that dark matter causes the galaxy to rotate faster (red 

points) because of the large mass in the center. Nearest neighbor results without dark 
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matter shows that the galaxy rotates slower (black points) than dark matter and does not 

have as much structure. The N-body results plotted in Figs. 10 and 11 with dark matter 

show essentially the same results as nearest neighbor which proves that the nearest 

neighbor method works respectably.  The N-body results without dark matter become 

unstable quickly due to the smaller number of particles and the lack of a large central 

mass (no dark matter). In Fig. 11 the galaxy splits into two different galaxies.  

 

Figure 8:  Nearest Neighbor, with dark matter, 1 billion years, 4400 mass 
points. Red (black) points correspond to high (low) rotational velocities. 
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Figure 9:  Nearest Neighbor, without dark matter, 1 billion years, 4400 mass 
points. Red (black) points correspond to high (low) rotational velocities. 

 

Figure 10:  N-body, with dark matter, 1 billion years, 520 mass points. Red 
(black) points correspond to high (low) rotational velocities. 
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Figure 11:  N-body, without dark matter, 1 billion years, 520 mass points. Red 
(black) points correspond to high (low) rotational velocities. 

 

The rotational curves for each of the nearest neighbor and N-body simulations for 

Andromeda are plotted in Figs. 12-15.  The rotational velocity at a radius r was calculated 

by adding up the velocities of all of the stars that lie within a range of r + 0.5 and r – 0.5 

kpc and then dividing by the total number of stars in that band.  The rotational velocities 

are plotted at every 10 myr (open squares). The average over all these time steps is 

plotted as a solid black curve. The experimental results are plotted on the figure in red 

with error bars. My simulation results with dark matter match the experimental data well.  

The reduced number of points used in the N-body simulation results (Figs. 14 and 15) 

cause the scatter in the calculated rotational velocities to increase.  The unstable case (Fig. 

15) without dark matter has a very large amount of scatter.  Figure 15 shows how 

unstable the N-body simulation is without dark matter. Normally the rotational curve 

would dip just below the experimental data (red), like in Fig. 13. Since the galaxy split 

into two different bodies, the rotational curve is way off from the experimental data and 

where it would normally be without dark matter. 
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Figure 12:  The rotational velocities for Andromeda from the nearest neighbor 
simulation, with dark matter, 1 billion years, 4400 mass points. The black data 
points and average solid curve are the calculated results and the red data with 
error bars are the experimental data. 

Figure 13:  The rotational velocities for Andromeda from the nearest neighbor 
simulation, without dark matter, 1 billion years, 4400 mass points. The black 
data points and average solid curve are the calculated results and the red data 
with error bars are the experimental data. 
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Figure 14:  The rotational velocities for Andromeda from the N-body simulation, 
with dark matter, 1 billion years, 520 mass points. The black data points and 
average solid curve are the calculated results and the red data with error bars are 
the experimental data. 
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Figure 15:  The rotational velocities for Andromeda from the N-body simulation, 
without dark matter, 1 billion years, 520 mass points. The black data points and 
average solid curve are the calculated results and the red data with error bars are 
the experimental data. 
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The effect of decreasing the amount of dark matter and increasing the disk mass in 

Andromeda is shown in Figures 16 - 17.  The reduced dark matter causes slight 

instabilities to occur which produces spiral arm structure.  The rotational curve in Figure 

17 is still in good agreement with the experimental data but this model is ruled out since 

Andromeda does not have prominent spiral arms. 

 

 Figure 16:  Mass distributions for the nearest neighbor simulation, 4400 mass 
points.  The reduced dark matter and increased disk mass produces spiral arms.  
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Figure 17:  The velocity rotation curve for the nearest neighbor simulation, 
4400 mass points with reduced dark matter. The black data points and average 
solid curve are the calculated results and the red data with error bars are the 
experimental data. 

 

 

 

  

NGC 3198 & 2403 
 Additional nearest neighbor simulations using 4400 mass points were run for 

NGC 3198 and 2403 to test my galaxy simulation code for other galaxies as well. 

Simulations with these galaxies matched experimental data well. Figure 18 plots the mass 

distribution of NGC 3198 and 2403. Both galaxies have much smaller mass and therefore 

rotate slower than Andromeda. In NGC 2403, the core is not packed in because of its 

small mass. However NGC 3198 has more mass than 2403 so its core is denser. Figures 

19 and 20 plot the corresponding rotational curves which are in good agreement with the 

experimental data (especially 3198).  In Fig. 20 the rotational curve from 5 – 10 kpc is 

shifted down slightly because there may not be enough mass in the core of the galaxy. 

Additional simulations with increased core mass might correct this. 
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Figure 18:  The calculated mass distribution plots for NGC 2403 and 3198 at 400 
myr.  Red (black) data points represent higher (lower) rotational velocities. 

 Figure 19:  The velocity rotation curve for the nearest neighbor simulation, 
4400 mass points with dark matter. The black data points and average solid 
curve are the calculated results and the red data with error bars are the 
experimental data. 
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 Figure 20:  The velocity rotation curve for the nearest neighbor simulation, 
4400 mass points with dark matter. The black data points and average solid 
curve are the calculated results and the red data with error bars are the 
experimental data. 

 

 

 

Parameter Optimization Studies 
In both the nearest neighbor and N-body methods a variable called drmin (the force cut 

off distance) is used to limit the force between two stars. If one star is less than 1 kpc 

from another star the gravitational force between the two stays the same. This stops 2-

body interactions between stars as seen in Figs. 21 and 22 from becoming too large.  

Several calculations were run to determine which value conserved the most energy. 

Figure 21 shows that the pink curve (drmin=1kpc) is optimal because it conserves the 

most energy (En/Eo is closest to 1, E0 is the initial energy at time zero). 
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Figure 21: The normalized energy is plotted for different drmin values vs time. Blue – 
0.25kpc, Black – 4kpc, Red – 0.5kpc, Orange – 2kpc, Pink – 1kpc (optimal – used in all 
simulations). 

 

Figure 21 also shows that the fast oscillations in the blue curve (.25kpc) has dominate 2-

body interactions which are shown in the figure below (Fig. 22). A drmin value of .25 is 

not optimal because 2-body interactions cannot be “tracked” accurately enough with a 

10yr time step. Also, because of these errors the energy is not conserved as well. The 

interactions seen below are due to two stars becoming close to each other and the 

gravitational force greatly increases and causes the stars to become a double star and orbit 

each other. Drmin is basically like a switch, when two stars get within the drmin distance 

from each other the gravitational force cannot grow until they move apart again.  
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Figure 22:   The star trajectories are plotted for the drmin=0.25 case.  These dominate 2-
body interactions take place mainly in the core where stars are closer together. 

The optimal time step (dt) was determined by running several calculations with different 

dt and comparing the positions and velocities to those using a much smaller time step. 

Figure 23 plots the velocity error as a function of dt.  The error decreases quadratically 

since the velocity Verlet method is a 2nd-order method. An optimal value of dt=10 yr was 

determined and this value was used in all of the simulations. The effect of increasing the 

nearest neighbor radius was also studied.  The results using rn = 1 – 11kpc were 

essentially the same as those using rn = 2 -22kpc. So rn = 1 – 11kpc was used in all of the 

simulations. 
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Figure 23:   The optimal time step was determined by plotting the velocity error as a 
function of dt. 

 

OpenCL 

  

OpenCL is a program written by the Khronos group to enable certain programs to be run 

on GPUs (Graphical Processing Unit). Since graphics cards today have many processors, 

running a program on a GPU is much more time efficient. OpenCL does not only focus 

on GPUs however, they can also enable multi-threading (the use of multiple CPU cores) 

so instead of just utilizing one core you can use two or more. OpenCL works for both 

Nvidia and ATI graphics cards. The cards used in this project were the ATI Raedon 

HD4870 (x2) – 1GB vram (512mb global, 512mb local) and the Nvidia GeForce G210M 

– 512MB (256mb global, 256mb local). The GPUs work by sending kernels (the program 

you want to run) to all of its threads. The threads then carry out the problem as if it were 

a CPU. Synchronization can be a problem with GPUs but OpenCL has functions such as 

global and local memory fences, this waits for everyone to finish to a point (global) or 

waits for a specific workgroup to finish to a point in the code (local). Each processor has 
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access to private, local, and global memory. Private memory is up to 100x faster than 

global memory. This diagram below shows and explains how GPUs are structured and  

how to OpenCL utilizes them.  

 
(From Brown Deer Technology, “GPU-Accelerated Computing for Chemistry and Material Simulations 

using ATI Stream Technology”, David Richie, 2010.) 

 

When running the galaxy program on the GPUs a factor of 30-100x speed increase was 

noticed. This means that when running a N-body 512 star run it would take about 16.6 

hours to complete. On the CPU however, a N-body 230 star run would take 3 days just 

for a 230 star run. Both of these benchmarks ran to 1 billion years. However, while 

running on the GPU may sound very promising currently double precision is not entirely 

supported so single precision is required for OpenCL. Single precision does cause a lot of 

error when doing this type of problem. When doing N-body with 4096 stars it takes about 

10 minutes per timestep of 1 myr (million years). This means that the GPU can do about 

60 myr in one hour and 1,200 myr (1.2 by) in one day. A N-body with 8192 stars takes 

about 12-16 minutes per timestep of 1 myr.  

 

 

Conclusions 
 

I was able to successfully create a galaxy simulation code using Python and C. My results 

for Andromeda are consistent with the experimental data and similar to professional 
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models which show that dark matter is needed to explain the observed flat rotational 

curves in galaxies. The simulations also showed that dark matter helps to stabilize the 

galaxy’s rotation.  Simulations can be run for longer periods to see how dark matter can 

effect the galaxy rotation over many billions of years. Using my simulation code, I can do 

these tests with other galaxies not just Andromeda. In conclusion this project can be used 

to help understand how dark matter affects galaxies and what it really is. 
 

 

Future Work  
 

Future work includes using OpenCL to make the program run on the graphics card 

(GPUs – Graphical Processing Unit) and also using OpenCL to do multi-threading 

(running the program on multiple CPUs). Although some work has been done on 

OpenCL, work is still needed to be able to get results from the GPUs. Also future work 

includes adding more mass points and seeing how my results might change. Adding 3D 

to the program will help make my model more realistic and also more accurate. More 

tests can be run to find the optimal cutoff distances, time step values, and number of mass 

points in the galaxy. Also, seeing how different calculation methods such as the predictor 

corrector and Runga-Kutta affect the results (especially in the core region). Although 

using these methods could come at a disadvantage because the predictor corrector method 

requires an additional force calculation (a total of 2) at each time step and the Runga-

Kutta method requires three additional force calculations (a total of 4). 
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Appendix 1 

 
Four N-body simulations were run at different dt’s; 10, 20, 50, 100, 200, and 400 years. 

Each simulation ran to 10 million years using a different method to determine the optimal 

method for galaxy simulations.  Method A is Euler’s method, B is Symplectic Euler, C is 

Velocity Verlet, and D is Predictor Corrector.  The velocity and position errors were 

computed for each simulation relative to the Predictor Corrector with dt=10yr. Figure A1 

shows the position error vs. dt (timestep). The second graph (Fig. A2) shows the velocity 

error for the different methods vs. dt (timestep).  The velocity Verlet method C was 

essentially identical to the Predictor Corrector but is two times faster.  So the velocity 

Verlet (method C) was chosen for all of my simulations. 
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Figure A1:  Plots the position error (for each method) as a function of the time step dt. 

 
Figure A2:  Plots the velocity error (for each method) as a function of the time step dt. 
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Appendix 2 
#PYTHON Main Computational Loop 
while t<tmax: #Run while time is less than the final time 
     t=t+dt #Increment time in program 

  for j in range(0,n): #Loops over stars with j counter 
       rsq = x[j]**2 + y[j]**2 
       r[j]=sqrt(rsq) #Distance to galaxy’s center  
       rkpc=r[j]/kpc #Converts from meters to kpc 

#NFW CDM Mass (Basically Linear Mass, see CDM M(r) in Fig) 
     mcdm[j]=mcdm0*(-rkpc/(A + rkpc)-log(A) +log(A+rkpc)) 

#Total mass =black hole + core + disk + CDM 
       mass=m0 + mt[j] + mcdm[j]   

#Velocity-Verlet (Method C): 
#Compute positions & velocities at current Ax,Ay (steps 2,3) 

x[j] = x[j] + vx[j]*dt + 0.5*Ax*dt*dt #Position of jth 
y[j] = y[j] + vy[j]*dt + 0.5*Ay*dt*dt 
vxn[j] = vx[j] + 0.5*Ax*dt #Velocity of jth star in X 
vyn[j] = vy[j] + 0.5*Ay*dt #Velocity of jth star in Y 

#Compute new values for Ax and Ay at new x and y (step 4) 
       f = (g*m[j]*mass)/rsq #Force due to Gravity   
   ex = x[j] / r[j] #Cosine 
     ey = y[j] / r[j] #Sine 

#Compute NEAREST NEIGHBOR force INTERACTIONS 
        Fintx=0.0 #Initialize to zero 
        Finty=0.0 

           if (nn[j] != 0):#Check number of nearest neighbors 
#Loops over nearest neighbor stars with i counter 

             for i in range(0,nn[j]):                     
      ind=j*n + i #Index for ith neighbor of j 
      iv=jn[ind] #Global index for ith neighbor 

#Computes distance2 between stars; drmin keeps distance nonzero 
       dr2=(x[j]-x[iv])**2+(y[j]-y[iv])**2+drmin              

#Computes gravitational force between star j and neighbor iv 
       fint=g*m[j]*m[iv]/dr2  
                   dr=sqrt(dr2) #The distance 
                   exi = (x[j]-x[iv]) / dr #Cosine 
                   eyi = (y[j]-y[iv]) / dr #Sine 

#Add up interactions between j and iv in x and y directions 
                   Fintx=-fint*exi + Fintx  
                   Finty=-fint*eyi + Finty 

#Compute Total Gravitational force including NN interactions 
 Fx = -f * ex + Fintx #Total Force on jth star in X 
 Fy = -f * ey + Finty #Total Force on jth star in Y 
 Ax = Fx / m[j] #Acceleration in X (Newton’s law) 
 Ay = Fy / m[j] #Acceleration in Y 

#Update velocity with new accelerations (step 5) 
 vx[j] = vxn[j] + 0.5*Ax*dt #Velocity of jth star in X 
 vy[j] = vyn[j] + 0.5*Ay*dt #Velocity of jth star in Y 
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