
Computer Simulation of Dark Matter Effects

on Galaxy Rotation

New Mexico

Supercomputing Challenge

Final Report

April 5, 2011

Team Number 72

Los Alamos Middle School

Team Members

Cole Kendrick

Teachers

Brian Kendrick

Project Mentor

Brian Kendrick
1

Summary

The main goal of this project is to develop a computer program to model the rotation of a

galaxy including dark matter. The computer program will be used to answer these

questions: (1) How does dark matter affect rotational curves in galaxies; (2) how

accurately can this be modeled; (3) what will happen when the dark matter and galaxy

masses are changed; and (4) How well can this method work for different galaxies. The

computer program was built-up over time. The first step was writing a computer program

using Python to model a mass attached to a spring. This model was extended to two-

dimensions and then to a solar system model with both sun and interplanetary gravity

interactions. Finally, the galaxy program was constructed using C by adding hundreds of

“stars” to my solar system model in place of the planets and replacing the sun’s mass

with a large central galaxy “core” mass. Dark matter is implemented in this model by

treating it as an additional large mass point located at the center of the galaxy. Newton’s

laws of motion were solved using a velocity Verlet method. The forces due to gravity

were computed using two different methods: (1) nearest neighbor, a method that

decreases calculation time by drawing a circle around each star and seeing whether a star

is inside or not. Only the force due to gravity between the star and its neighbors will be

computed (with the exception of the central mass); and (2) N-body, a method that

computes the gravitational force between the current star and every other star in the

galaxy and the central mass. The N-body approach is very slow. Both methods gave the

essentially the same results but nearest neighbor is much faster and capable of using more

stars. Five different calculations were run for the Andromeda galaxy. Nearest neighbor

with dark matter, without dark matter, and less dark matter using 4400 stars, and N-body

with and without dark matter using 520 stars. Two other galaxies NGC 2403 and NGC

3198 were also modeled using 4400 stars with dark matter. From these simulations I was

able to successfully match the experimental data measured for Andromeda, NGC 2403

and 3198. My results show that dark matter is needed to maintain a stable galaxy. Dark

matter also causes the galaxy to rotate much faster so that the rotational velocity remains

constant out to the edge of the galaxy. These “flat” rotational curves are experimentally

observed for nearly all spiral galaxies.

2

Table of Contents

Introduction…………………………………… 4

Problem………………………………………… 5

Galaxy Model …………………………………. 6

Results ………………………………………… 7

OpenCL………………………………………... 21

Conclusion…………………………………….. 22

Future Work…………………………………… 22

References……………………………………... 24

Appendix 1……………………………………... 25

Appendix 2 …………………………………….. 27

3

Introduction
What is dark matter and why do we need it?
 No one knows what dark matter really is, although it has been one of the many

theories that exist to help explain the flat rotational curve of all galaxies. Dark matter was

first introduced in the 1930’s but many people did not really support it until later in the

1970’s. In the 1970’s people had begun collecting experimental data from galaxies by

taking the brightness of the galaxy. They also made computer programs to test the dark

matter theory. According to Newton’s laws of motion, a galaxy rotation curve should dip

down towards the edge of the galaxy. However, the experimental curve is relatively flat

(see Fig. 1). Dark matter is one of the theories to resolve the difference between the two

curves. Another theory that exists is called MOND (Modified Newtonian Dynamics)

which changes Newton’s laws of gravity to fit the flat rotational curve. By using the dark

matter and MOND theory we can better understand how galaxies function and learn more

about our tiny section of the universe.

 Figure 1: Rotational curves and experimental data for NGC 3198

How are galaxy rotational curves measured?
Galaxy rotational curves are measured from the Doppler shifts of the Hydrogen 21 cm

line. The shift is broken down into red and blue, the red shift is going away and blue shift

is coming towards you.
4

Figure 2: Schematic showing the blue and red Doppler shifts which
are used to measure a galaxy’s rotational velocity.

Problem
 Can I successfully create a computer model to simulate dark matter effects on a

galaxy’s rotation? How accurately can I model the effects? These are the two primary

questions that my project will address. The dark matter model is based on the Navarro-

Frenk-White mass distribution. It is a static, spherically symmetric mass distribution (see

Figure 3 below). Newton’s law of motion F=m a (total force = mass times acceleration)

will be used to move the visible matter (“stars”) in my simulations. The force is due to

gravity acting between all of the visible matter plus a large central force at the center of

the galaxy due to dark matter. The force between any two mass points m1 and m2 is

given by Newton’s law of gravity F=G m1m2/r2 where G is the universal gravitational

constant and r is the distance between the two points. My simulation will be based on the

Python and C programming languages.

5

Figure 3: Schematic showing how dark matter is treated in the computer model.

Galaxy Model
My galaxy model is very similar to our solar system, instead of planets orbiting the sun,

stars orbit the dark matter and black hole of the galaxy. Also, instead of 8 planets, there

are trillions of stars. My galaxy model takes those stars and represents many stars as one

because doing a trillion stars on single computer will take forever. My galaxy model

calculates the mass of the stars by taking the total mass of the core or disk (Mcore or

Mdisk) and dividing that by the number of stars in the core (N-N0) or disk (N0). The total

number of stars is N. The formula in my model is M = Mdisc/N0 or Mcore/ (N -N0) to

get the mass of a star. The figure 4 below shows how my galaxy model is similar to a

solar system.

6

Results
Figure 4: Schematic showing how my galaxy model resembles the solar system.

Eleven simulations were run using nearest neighbor and N-body methods both with and

without dark matter. Nearest neighbor creates a radius around each star and determines

whether or not another star is in that radius. If the star is inside of the radius then the

program stores that stars ID in an index and computes the gravitational force between it

Figure 5: Schematic showing how the nearest neighbor method works.

7

and the star i (red point). If the star is not inside the radius, then the program does not

compute the gravitational force between it and the star (see Figure 5). The force due to

the central mass is included plus all of the points outside the nearest neighbor radius and

less than the star’s radius are grouped together and treated as a single mass point at the

center of the galaxy (using Newton’s shell theorem). Also, the nearest neighbor radius

increases as the distance from the center of the galaxy increases. The typical values

varied between 1 and 11 kpc so that the number of neighbors was always around 100.

The N-body method calculates the gravitational force between itself and every single star.

Since the N-body method is so computationally demanding, the N-body simulations have

only 520 mass points. Nearest neighbor is a much more efficient because it speeds up the

calculation greatly compared to N-body. Figure 6 below shows how the CPU time scales

for N-body and nearest neighbor methods.

 Figure 6: CPU time vs the number of particles for N-body and nearest neighbor
methods for a 1 million year simulation with a time step dt = 10 years. Rn is the
nearest neighbor radius which increases linearly with the distance from the center of
the galaxy.

Nearest neighbor gave similar results as N-body simulations did and was more stable

without dark matter than N-body because of its 4400 mass points. Although nearest

neighbor is not a standard method for gravity computations there are similar methods like

the tree algorithm, which are designed to work especially for galaxy related objects.

8

The initial mass distribution was chosen based on the experimentally measured visible

light intensity which is well described by an exponential function (see Ref. [1]). The

initial velocities for each star were chosen based on setting the centripetal force for

uniform circular motion equal to the gravitational force: m1v2/r = G m1 M /r2 where M is

the total mass enclosed within the star’s radius r (it includes both the galaxy’s visible and

dark matter). A small random velocity was also added to the initial v (see Ref. [1]).

Newton’s equations of motion were then solved as a function of time using the velocity

Verlet method. Other methods were also tried (see Appendix 1). The flow chart of my

galaxy simulation program is shown if Figure 7 and the corresponding Python code is in

Appendix 2. In order to speed up the calculations, Shedskin was used initially to convert

the Python code to C but the translated C code was not always compatible with other

subroutines (especially OpenCL). So, the galaxy code was rewritten in C and the C

version was used in all of my final galaxy simulations.

 Figure 7: Flow chart of the main computational loop used in all simulations to
calculate the force due to gravity and store the data every million years.

Nearest neighbor results are plotted in Figs. 8 and 9 for the Andromeda galaxy simulation.

The results with dark matter show that dark matter causes the galaxy to rotate faster (red

points) because of the large mass in the center. Nearest neighbor results without dark

9

matter shows that the galaxy rotates slower (black points) than dark matter and does not

have as much structure. The N-body results plotted in Figs. 10 and 11 with dark matter

show essentially the same results as nearest neighbor which proves that the nearest

neighbor method works respectably. The N-body results without dark matter become

unstable quickly due to the smaller number of particles and the lack of a large central

mass (no dark matter). In Fig. 11 the galaxy splits into two different galaxies.

Figure 8: Nearest Neighbor, with dark matter, 1 billion years, 4400 mass
points. Red (black) points correspond to high (low) rotational velocities.

10

Figure 9: Nearest Neighbor, without dark matter, 1 billion years, 4400 mass
points. Red (black) points correspond to high (low) rotational velocities.

Figure 10: N-body, with dark matter, 1 billion years, 520 mass points. Red
(black) points correspond to high (low) rotational velocities.

11

Figure 11: N-body, without dark matter, 1 billion years, 520 mass points. Red
(black) points correspond to high (low) rotational velocities.

The rotational curves for each of the nearest neighbor and N-body simulations for

Andromeda are plotted in Figs. 12-15. The rotational velocity at a radius r was calculated

by adding up the velocities of all of the stars that lie within a range of r + 0.5 and r – 0.5

kpc and then dividing by the total number of stars in that band. The rotational velocities

are plotted at every 10 myr (open squares). The average over all these time steps is

plotted as a solid black curve. The experimental results are plotted on the figure in red

with error bars. My simulation results with dark matter match the experimental data well.

The reduced number of points used in the N-body simulation results (Figs. 14 and 15)

cause the scatter in the calculated rotational velocities to increase. The unstable case (Fig.

15) without dark matter has a very large amount of scatter. Figure 15 shows how

unstable the N-body simulation is without dark matter. Normally the rotational curve

would dip just below the experimental data (red), like in Fig. 13. Since the galaxy split

into two different bodies, the rotational curve is way off from the experimental data and

where it would normally be without dark matter.

12

Figure 12: The rotational velocities for Andromeda from the nearest neighbor
simulation, with dark matter, 1 billion years, 4400 mass points. The black data
points and average solid curve are the calculated results and the red data with
error bars are the experimental data.

Figure 13: The rotational velocities for Andromeda from the nearest neighbor
simulation, without dark matter, 1 billion years, 4400 mass points. The black
data points and average solid curve are the calculated results and the red data
with error bars are the experimental data.

13

Andromeda
Computed Rotational Velocity vs Radius R

V
 (k

m
/s

)

Figure 14: The rotational velocities for Andromeda from the N-body simulation,
with dark matter, 1 billion years, 520 mass points. The black data points and
average solid curve are the calculated results and the red data with error bars are
the experimental data.

R (kpc)

Andromeda
Computed Rotational Velocity vs Radius R

V
 (k

m
/s

)

Figure 15: The rotational velocities for Andromeda from the N-body simulation,
without dark matter, 1 billion years, 520 mass points. The black data points and
average solid curve are the calculated results and the red data with error bars are
the experimental data.

R (kpc)

14

The effect of decreasing the amount of dark matter and increasing the disk mass in

Andromeda is shown in Figures 16 - 17. The reduced dark matter causes slight

instabilities to occur which produces spiral arm structure. The rotational curve in Figure

17 is still in good agreement with the experimental data but this model is ruled out since

Andromeda does not have prominent spiral arms.

 Figure 16: Mass distributions for the nearest neighbor simulation, 4400 mass
points. The reduced dark matter and increased disk mass produces spiral arms.

15

Figure 17: The velocity rotation curve for the nearest neighbor simulation,
4400 mass points with reduced dark matter. The black data points and average
solid curve are the calculated results and the red data with error bars are the
experimental data.

NGC 3198 & 2403
 Additional nearest neighbor simulations using 4400 mass points were run for

NGC 3198 and 2403 to test my galaxy simulation code for other galaxies as well.

Simulations with these galaxies matched experimental data well. Figure 18 plots the mass

distribution of NGC 3198 and 2403. Both galaxies have much smaller mass and therefore

rotate slower than Andromeda. In NGC 2403, the core is not packed in because of its

small mass. However NGC 3198 has more mass than 2403 so its core is denser. Figures

19 and 20 plot the corresponding rotational curves which are in good agreement with the

experimental data (especially 3198). In Fig. 20 the rotational curve from 5 – 10 kpc is

shifted down slightly because there may not be enough mass in the core of the galaxy.

Additional simulations with increased core mass might correct this.

16

y
(k

pc
)

Figure 18: The calculated mass distribution plots for NGC 2403 and 3198 at 400
myr. Red (black) data points represent higher (lower) rotational velocities.

 Figure 19: The velocity rotation curve for the nearest neighbor simulation,
4400 mass points with dark matter. The black data points and average solid
curve are the calculated results and the red data with error bars are the
experimental data.

17

 Figure 20: The velocity rotation curve for the nearest neighbor simulation,
4400 mass points with dark matter. The black data points and average solid
curve are the calculated results and the red data with error bars are the
experimental data.

Parameter Optimization Studies
In both the nearest neighbor and N-body methods a variable called drmin (the force cut

off distance) is used to limit the force between two stars. If one star is less than 1 kpc

from another star the gravitational force between the two stays the same. This stops 2-

body interactions between stars as seen in Figs. 21 and 22 from becoming too large.

Several calculations were run to determine which value conserved the most energy.

Figure 21 shows that the pink curve (drmin=1kpc) is optimal because it conserves the

most energy (En/Eo is closest to 1, E0 is the initial energy at time zero).

18

Figure 21: The normalized energy is plotted for different drmin values vs time. Blue –
0.25kpc, Black – 4kpc, Red – 0.5kpc, Orange – 2kpc, Pink – 1kpc (optimal – used in all
simulations).

Figure 21 also shows that the fast oscillations in the blue curve (.25kpc) has dominate 2-

body interactions which are shown in the figure below (Fig. 22). A drmin value of .25 is

not optimal because 2-body interactions cannot be “tracked” accurately enough with a

10yr time step. Also, because of these errors the energy is not conserved as well. The

interactions seen below are due to two stars becoming close to each other and the

gravitational force greatly increases and causes the stars to become a double star and orbit

each other. Drmin is basically like a switch, when two stars get within the drmin distance

from each other the gravitational force cannot grow until they move apart again.

19

Figure 22: The star trajectories are plotted for the drmin=0.25 case. These dominate 2-
body interactions take place mainly in the core where stars are closer together.

The optimal time step (dt) was determined by running several calculations with different

dt and comparing the positions and velocities to those using a much smaller time step.

Figure 23 plots the velocity error as a function of dt. The error decreases quadratically

since the velocity Verlet method is a 2nd-order method. An optimal value of dt=10 yr was

determined and this value was used in all of the simulations. The effect of increasing the

nearest neighbor radius was also studied. The results using rn = 1 – 11kpc were

essentially the same as those using rn = 2 -22kpc. So rn = 1 – 11kpc was used in all of the

simulations.

20

Figure 23: The optimal time step was determined by plotting the velocity error as a
function of dt.

OpenCL

OpenCL is a program written by the Khronos group to enable certain programs to be run

on GPUs (Graphical Processing Unit). Since graphics cards today have many processors,

running a program on a GPU is much more time efficient. OpenCL does not only focus

on GPUs however, they can also enable multi-threading (the use of multiple CPU cores)

so instead of just utilizing one core you can use two or more. OpenCL works for both

Nvidia and ATI graphics cards. The cards used in this project were the ATI Raedon

HD4870 (x2) – 1GB vram (512mb global, 512mb local) and the Nvidia GeForce G210M

– 512MB (256mb global, 256mb local). The GPUs work by sending kernels (the program

you want to run) to all of its threads. The threads then carry out the problem as if it were

a CPU. Synchronization can be a problem with GPUs but OpenCL has functions such as

global and local memory fences, this waits for everyone to finish to a point (global) or

waits for a specific workgroup to finish to a point in the code (local). Each processor has

21

access to private, local, and global memory. Private memory is up to 100x faster than

global memory. This diagram below shows and explains how GPUs are structured and

how to OpenCL utilizes them.

(From Brown Deer Technology, “GPU-Accelerated Computing for Chemistry and Material Simulations

using ATI Stream Technology”, David Richie, 2010.)

When running the galaxy program on the GPUs a factor of 30-100x speed increase was

noticed. This means that when running a N-body 512 star run it would take about 16.6

hours to complete. On the CPU however, a N-body 230 star run would take 3 days just

for a 230 star run. Both of these benchmarks ran to 1 billion years. However, while

running on the GPU may sound very promising currently double precision is not entirely

supported so single precision is required for OpenCL. Single precision does cause a lot of

error when doing this type of problem. When doing N-body with 4096 stars it takes about

10 minutes per timestep of 1 myr (million years). This means that the GPU can do about

60 myr in one hour and 1,200 myr (1.2 by) in one day. A N-body with 8192 stars takes

about 12-16 minutes per timestep of 1 myr.

Conclusions

I was able to successfully create a galaxy simulation code using Python and C. My results

for Andromeda are consistent with the experimental data and similar to professional

22

models which show that dark matter is needed to explain the observed flat rotational

curves in galaxies. The simulations also showed that dark matter helps to stabilize the

galaxy’s rotation. Simulations can be run for longer periods to see how dark matter can

effect the galaxy rotation over many billions of years. Using my simulation code, I can do

these tests with other galaxies not just Andromeda. In conclusion this project can be used

to help understand how dark matter affects galaxies and what it really is.

Future Work

Future work includes using OpenCL to make the program run on the graphics card

(GPUs – Graphical Processing Unit) and also using OpenCL to do multi-threading

(running the program on multiple CPUs). Although some work has been done on

OpenCL, work is still needed to be able to get results from the GPUs. Also future work

includes adding more mass points and seeing how my results might change. Adding 3D

to the program will help make my model more realistic and also more accurate. More

tests can be run to find the optimal cutoff distances, time step values, and number of mass

points in the galaxy. Also, seeing how different calculation methods such as the predictor

corrector and Runga-Kutta affect the results (especially in the core region). Although

using these methods could come at a disadvantage because the predictor corrector method

requires an additional force calculation (a total of 2) at each time step and the Runga-

Kutta method requires three additional force calculations (a total of 4).

23

References
1) Widrow M. Laurence, Perrett M. Kathryn, and Suyu H. Sherry. “Disk-Bulge-Halo

Models for the Andromeda Galaxy.” The Astrophysical Journal 588 (2003): 311-

325. Print.

2) Carignan Claude, Chemin Laurent, Huchtmeier K. Walter, and Lockman J. Felix.

“The Extended H I Rotation Curve and Mass Distribution of M31.” The

Astrophysical Journal 641 (2006): L109-L112. Print.

3) Bahcall N. John, and Soneira M. Raymond. “On the Interpretation of Rotation

Curves Measured at Large Galactocentric Distances.” The Astrophysical Journal

258 (1982): L23-L27. Print.

4) Sellwood A. J. “The global stability of our Galaxy.” Royal Astronomical Society

217 (1985): 127-148. Print.

5) Ostriker P. J., and Peebles E. J. P. “A Numerical Study of the Stability of

Flattened Galaxies: or, can Cold Galaxies Survive?” The Astrophysical Journal

186 (1973): 467-480. Print.

6) Hernquist Lars. “An Analytical Model for Spherical Galaxies and Bulges.” The

Astrophysical Journal 356 (1990): 359-364. Print.

7) Williams R. P and Nelson H. A. “Numerical simulation of the formation of a

spiral galaxy.” Astronomy & Astrophysics 374 (2001): 839-860. Print.

8) Navarro J. F., Frenk C.S, and White S.D. “A Universal Density Profile from

Hierarchical Clustering.” The Astrophysical Journal 490 (1997): 493-508. Print.

9) Begeman, K.G., “HI Rotation Curves of Spiral Galaxies. I. NGC 3198”,

Astronomy and Astrophysics 223 (1989), 47-60.Print.

10) Zwicky, F., “Die Rotverschiebung von extragalaktischen Nebeln”, Helvetica

 Physica Acta 6 (1933): 110–127.Print.

11) Milgrom, M., "A modification of the Newtonian dynamics as a possible

alternative to the hidden mass hypothesis". Astrophysical Journal 270 (1983):

365–370.Print.

12) Bennett, J.O., Donahue, M., Schneider, N., and Voit, M., “The Essential Cosmic

Perspective”, Pearson; Addison Wesley, (3 edition) 2005.Print. rd

24

Appendix 1

Four N-body simulations were run at different dt’s; 10, 20, 50, 100, 200, and 400 years.

Each simulation ran to 10 million years using a different method to determine the optimal

method for galaxy simulations. Method A is Euler’s method, B is Symplectic Euler, C is

Velocity Verlet, and D is Predictor Corrector. The velocity and position errors were

computed for each simulation relative to the Predictor Corrector with dt=10yr. Figure A1

shows the position error vs. dt (timestep). The second graph (Fig. A2) shows the velocity

error for the different methods vs. dt (timestep). The velocity Verlet method C was

essentially identical to the Predictor Corrector but is two times faster. So the velocity

Verlet (method C) was chosen for all of my simulations.

25

Figure A1: Plots the position error (for each method) as a function of the time step dt.

Figure A2: Plots the velocity error (for each method) as a function of the time step dt.

26

Appendix 2
#PYTHON Main Computational Loop
while t<tmax: #Run while time is less than the final time
 t=t+dt #Increment time in program

 for j in range(0,n): #Loops over stars with j counter
 rsq = x[j]**2 + y[j]**2
 r[j]=sqrt(rsq) #Distance to galaxy’s center
 rkpc=r[j]/kpc #Converts from meters to kpc

#NFW CDM Mass (Basically Linear Mass, see CDM M(r) in Fig)
 mcdm[j]=mcdm0*(-rkpc/(A + rkpc)-log(A) +log(A+rkpc))

#Total mass =black hole + core + disk + CDM
 mass=m0 + mt[j] + mcdm[j]

#Velocity-Verlet (Method C):
#Compute positions & velocities at current Ax,Ay (steps 2,3)

x[j] = x[j] + vx[j]*dt + 0.5*Ax*dt*dt #Position of jth
y[j] = y[j] + vy[j]*dt + 0.5*Ay*dt*dt
vxn[j] = vx[j] + 0.5*Ax*dt #Velocity of jth star in X
vyn[j] = vy[j] + 0.5*Ay*dt #Velocity of jth star in Y

#Compute new values for Ax and Ay at new x and y (step 4)
 f = (g*m[j]*mass)/rsq #Force due to Gravity
 ex = x[j] / r[j] #Cosine
 ey = y[j] / r[j] #Sine

#Compute NEAREST NEIGHBOR force INTERACTIONS
 Fintx=0.0 #Initialize to zero
 Finty=0.0

 if (nn[j] != 0):#Check number of nearest neighbors
#Loops over nearest neighbor stars with i counter

 for i in range(0,nn[j]):
 ind=j*n + i #Index for ith neighbor of j
 iv=jn[ind] #Global index for ith neighbor

#Computes distance2 between stars; drmin keeps distance nonzero
 dr2=(x[j]-x[iv])**2+(y[j]-y[iv])**2+drmin

#Computes gravitational force between star j and neighbor iv
 fint=g*m[j]*m[iv]/dr2
 dr=sqrt(dr2) #The distance
 exi = (x[j]-x[iv]) / dr #Cosine
 eyi = (y[j]-y[iv]) / dr #Sine

#Add up interactions between j and iv in x and y directions
 Fintx=-fint*exi + Fintx
 Finty=-fint*eyi + Finty

#Compute Total Gravitational force including NN interactions
 Fx = -f * ex + Fintx #Total Force on jth star in X
 Fy = -f * ey + Finty #Total Force on jth star in Y
 Ax = Fx / m[j] #Acceleration in X (Newton’s law)
 Ay = Fy / m[j] #Acceleration in Y

#Update velocity with new accelerations (step 5)
 vx[j] = vxn[j] + 0.5*Ax*dt #Velocity of jth star in X
 vy[j] = vyn[j] + 0.5*Ay*dt #Velocity of jth star in Y

27

