
 
 

Cipher This 
Category A: Competitive 

 
 

New Mexico High School 
Supercomputing Challenge 

Final Report 
April 4, 2001 

 
029 

Highland 
 
 
 
 
 
 
 
 
 
 
 

      Team Members 
Dawud Shakir 

Candice Woodard 
Yousuf Shakir 

Robert Jones 
 

Teacher 
J. K. Raloff 

 
Project Mentor 

D. Downs 



 1 

 
 
 
 
 
Table of Content 
 
 
1.   Executive Summary        2 
 
2.   The History of Cryptography       3 
  
3.   Introduction         3 
 
4.   Statement of Problem        4 
 
5.   The RSA Public-Key Encryptosystem      4 
 
6.   Breaking the RSA Cryptosystem       5 
 
7.   Previous Attempts to Factor n       6 
 
8.   Our Method of Solution        7 
 
9.   Future Considerations        10 
 
10.   Conclusion         12 
 
11.   References         12  
 
 
Appendix A � Catalog of classes and structures 
 
Appendix B � Program Description and Listing 
 
 
 
 



 2 

 
 
 
1. Executive Summary  
 
 
 
 
 
 
 
 
 
 

An Efficient Method For RSA Decryption 
 
 
Security of information is a national security issue in addition to being of commercial 
importance. It is very important to test the security of encryption methods used such as 
the RSA encryption technique. The RSA represents a class of encryption methods called 
public key systems where a key, n, is publicly known. We have developed an original  
method of factoring  the public key n, to find out the prime numbers p and q which 
effectively allows us to break the encryption. We show that the method is efficient when 
p and q are close. The number of trials needed to factor the public key is quadratic and is  

given by 
2(   )

8
p q

n
− . We wrote a computer program using the C++ language. The program 

can handle integers of any length, which is necessary since the RSA method usually uses 
huge integers larger than 100 digits. 
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2. The History of Cryptography 
 
The use of encryption can be traced back to 2000 BC  to the Egyptians and their use of 
hieroglyphics.  Hieroglyphics were meant to be cryptic however, they were not intended 
to hide text, rather they were used for Kings because they were thought to look more regal 
and prestigious.  Much like the Egyptians the Mayans also used a language system based 
on the use of pictures.  These early encrypted languages served the purpose of being a 
basis of communication rather than a means for concealing information.  Julius Caesar 
and his substitution cipher, the Caesar Cipher, is one of the earliest encryption�s that had 
the sole purpose of concealing information as he used it to protect private 
communications between Roman legions that were scattered over Europe, Africa and the 
Middle East.  The Caesar Cipher, as previously stated, was a substitution or additive 
cipher that worked by replacing each letter of the alphabet with the third letter that came 
after it.  Similar to Caesar�s Cipher, the One Time Pad developed by AT&T engineer, 
Gilbert Vernam, was also an additive cipher.  Developed to aid the war effort, like most 
of the advancements in cryptology were, the One Time Pad was used as a new perfect 
security to replace the failed codebook system.  With this system each plaintext is 
enciphered using an additive cipher shift, but the catch and element that made this system 
so secure was that for every letter the shift is different, hence the name One Time.  
During the nineteenth century an approach using statistics was favored.  Using the 
frequency average of each letter of the alphabet codebreakers were able to devise a 
system in which they would go through a document, count the letter frequencies and then 
compare them to those of the alphabet.  Throughout history there were dozens of 
advancements made.  The Arabs, Greek, English and Americans all came up with their 
own ciphering methods that were more or less effective. 
 
3. Introduction 
 
RSA, named after it�s inventors (Rivest, Shamir, and Adleman) is an encryption system 
made public in the mid seventies.  Since RSA�s advent  the government and big 
businesses have used the system to encrypt some of their most sensitive information.  
Today with so much of the world�s population owning a computer and using the internet, 
it was only a matter of time before the internet branched out and became the world�s 
forum for marketing.  In today�s society it has become second nature for people to do 
shopping over the internet.  There are no limits as to what type of business one can find.  
One can buy a car, do their banking, find clothing, purchase food, or find and purchase a 
home.  The list has really become endless.  However, the comfort of shopping at home 
does come at a price.  Security.  Home addresses, social security numbers, telephone 
numbers, full names, background history as well as credit card numbers are all 
information that a consumer can be required to send over the internet in order to make 
purchases.  This very personal and sensitive information when in the wrong hands could 
mean a major dishevelment of a person�s life.  Lately, there have been numerous news 
reports of hackers breaking into the hard drive of big businesses and even the 
government.  Security is an issue of major importance right now.  With so many 
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businesses relying on the inability to decode RSA, it is important to test the strength of 
this encryption program.   
 
4. Statement of the problem 
 
The problem we are investigating concerns finding a method to break an RSA encryption. 
We assume that we know the public key n for an RSA encryption and we try to find the 
two prime number factors p and q such that n = p ⋅ q. We first describe the RSA 
encryption method, then we explain our method of solution. 
 
5. The RSA public-key encryptosystem 
 
A user (say, Alice) of the RSA public-key cryptosystem selects two large primes p and q, 
and computes their product n, which is known as her public modulus. She also selects an 
integer e > 2 such that 
 

   gcd(e, (p � 1)(q � 1)) = 1      (1) 
 
e is known as her encryption exponent. Alice publishes the pair (e, n) as her public  keys. 
She then computes d, or her decryption exponent, using the Euclidean formula, such that 
  

         de ≡ 1 (mod φ(n))    (2) 
 
where,                        φ(n) = (p � 1)(q � 1)    (3) 
 
φ(n) is referred to as Euler�s totient function, 
 
    φ(n) = | {a : 0 < a ≤ n and gcd(a, n) = 1}| 

which for n = p⋅ q is φ(n) = (p � 1)(q � 1). Actually, eq. (2) can be improved slightly to 

     de ≡ 1 (mod λ(n)) 
 
where,                        λ(n) = lcm(p � 1, q � 1) 
 
After solving for d, she retains the pair (d, n) as her private keys. 
 
Another user (say, Bob) can send Alice an encrypted message M, where  
0 < M < n, by sending her the ciphertext 
 

C = Me (mod n)    (4) 
 
computed using Alice's public keys (e, n). When Alice receives C she can  
decipher it using the equation 
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M = Cd (mod n)    (5) 
 
computed using her private keys (d, n). Since no one but Alice possesses d, no one but 
Alice should be able to compute M from C. 
 
A text message would first be transformed to a number before the RSA cryptosystem 
could be used. For example,  
 
(1) Suppose Alice chooses three primes p = 17, q = 11, and e = 7. Normally, these 

primes would be much larger.  
 

(2) That means n = p x q = (17)(11) = 187. She then publishes her public keys (n, e) 
which are now n = 187 and e = 7.  

 
(3) Bob wishes to send the letter �X� securely to Alice, which is equivalent to 88 in 

ASCII. He looks up her public keys and encrypts his message 
 

 C = Me mod n 
    C = 887mod 187   
    C = 11 
 
 Thus, he sends the encrypted message C = 11 to Alice. 
 
(4) Alice now wants to decrypt Bob�s message. She proceeds by then 

finding her decryption exponent as follows 
 
                                         de = 1 (mod (p � 1) x (q � 1)) 

      d x 7 = 1 (mod (17 � 1) x (11 � 1)) 
    d x 7 = 1 (mod 160) 
    d x 7 = 161 
          d = 23 
 
(d is found using the Euclidean formula) 
 

(5) Decrypting Bob�s message is now simple 
 

M = Cdmod n 
M = 1123mod 187   
M = 88 = X in ASCII                       

 
6. Breaking the RSA cryptosystem 
 
For an encrypted message to be safe, p, q, e, and even the message itself, must be large in 
order to protect against someone decrypting it. With sufficiently large values of p and q, 
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RSA is impregnable. For a cryptanalyst (say, Eve) to crack an encrypted message, she 
must first know p or q. To do this, she must first factor Alice�s public key n since  
n = p x q. 
 
 
7. Previous attempts to factor n 
 
There are various methods used to factor n. The obvious approach would be to divide 
every odd integer up to √n into n until either p or q were found. This method is 
inadequate, due to the enormous time1 it would take to factor large numbers. Therefore, 
cryptanalysts needed a faster, more efficient way to factor n. All current methods to factor 
n depend on a �condition� to be able to finish in a feasible amount of time. For example, 
 
1.) Algorithms whose running time depends mainly on the size of n 
 
2.) Algorithms whose running time depends mainly on the size of p and the size of q 
 
3.) Algorithms whose running time depends on the size of p � 1, p � 2, or p + 1 
 
4.) Algorithms whose running time depends on the �closeness� of p and q 
 

As seen later, our proposed method is based on condition four. 
 
Since the RSA system was invented, people have been trying to find efficient methods to 
factor n. Some of these where, 
 
7.1  Pollard’s p – 1 Method for Factoring 
 
Pollard�s p � 1 method is a technique for splitting a given composite number n that is 
divisible by at least two distinct primes, using any given multiple m of p � 1, for some 
prime factor p of n. 
 
1. Choose an element a at random for Z = {1, 2, �, n � 1}. 
2. Compute d = gcd(a, n). If d > 1, report that d is a factor of n and halt. 
3. Compute x = ammod n. 
4. Compute d = gcd(x � 1, n). If d > 1, report that d is a factor of n and halt. 
5. If x = 1 and m is even, set m ← m/2 and return to step 3. 
6. Report failure to find a factor. Halt. 
                                                           
1 At n = 10308, the combined effort of a hundred million personal computers would take 
more then one thousand years to crack such a cipher. 
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7.2 The Elliptic Curve Method for Factoring 
 
A generalization of the p � 1 method, the elliptic curve method is considered one of the 
most efficient methods of factoring. We will not discuss the theory of the method here, 
but will mention that the success of the elliptic curve method depends on the likely 
situation that an integer �close to� p has only �small� prime factors. 
 
7.3 Cycling Attacks 
 
Not involving any factorization of n, this method involves taking an  
encrypted message and cycling values for the cyphertext until 
the correct value is attained 
 
  M = Ce  mod n 
 
 
8. Our Method of Solution 
 
Our proposed method utilizes the two defining equations 
 

n = p ⋅ q     (1) 
 

      φ(n) = (p � 1)(q � 1)                                         (2) 
 
where p and q are prime numbers. The number n is the public key and φ(n) is a quantity 
called the Totient function. Therefore using eqs. (1) and (2) we have, 
 

φ(n) = (p � 1)( n
p

 � 1) 

φ(n) = n � p � n
p

 + 1 

                                                φ(n) ⋅ p = n ⋅ p � p2 � n + 1 
 

                                                         0 = p2 � (n � φ(n) + 1)p + n   (3) 
 

Using the solution for a quadratic equation we get,  
 

2( φ(n) + 1) ( φ(n) + 1) 4p, q  2
n n n− ± − −=    (4)  

 
Hence, the difference between p and q is 
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| p � q | = 2( φ(n) + 1) 4n n− −  

 
Therefore, if we set L to 

 
L = 1

2
(n � φ(n) + 1) 

 
and j equal to the average difference between p and q;   j = 1 (p - q)2 ; we get 

  
     j2 = 1

4
(n � φ(n) + 1)2 � n 

 
                                                        j =  - 2 L n      (5) 
 
 
Thus, we need to solve for L such that L2-n is a complete square. It is more convenient to 
write L as (m + r), where m = Int(√n). Hence, the working equation is 
 
   j =  - 2 (m +  r) n ;  r ∈  {0, 1, 2 � n }   (6) 
 
When the correct value for r is found, (L2 � n) will be a complete square. 
 
Both p and q can now be found  
 
   p, q = (m + r)     -2 (m + r)  n±      (7) 
 
Where       m = Int( n ) 
 
The maximum number of trials needed can be estimated in terms of p and q by rewriting 
eq. (6) as  
  
   n + j2 = (m + r) 2 
 

And   r = 2jn(1 + )  - mn  

 

We may assume j
n

<< 1, hence we can use binomial series expansion to expand the square 

root so that 
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2Lr ( n - Int(n)) + 

2 n
≈  

 

Since L = (p - q)
2

and n = p ⋅ q, we have 

 

   r 
2(p - q) 

8 n
≈        (8) 

 
For example, if (p � q) ≈ .001 p, then j ≈ .0000001 p. If p is a 100 digit prime number and 
(p � q) is a 40 digit number, then r = 1. Which means the solution can be found in one 
trial in this case. In conclusion, our method is quite efficient for prime numbers p and q 
which differ by less then 10% in value. 
 
To see how efficient the method is, we chose a prime number p = 99991 and a second 
variable prime number q. We calculated n = p ⋅ q and used n to factor the original prime 
numbers p and q using our method. The number of trial integers (r) needed to factor n 
was noted. A plot of the number of trials as a function of the difference (p - q) is plotted 
below. The plot shows very clearly the efficiency of the method when (p - q) is relatively 
small. In many cases requiring a single trial number. The dependence on (p - q) is 
essentially quadratic. We have found the same behavior with huge integers of orders more 
than 128 digits.  
 

Figure (1a) The dependence of the number of trials (r) vs the difference (p - q) 
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In figure (1b) we plot the results of running the computer program on the supercomputer. 
We plot time taken by the computer as a function of (p - q). Notice that the behavior is 
again quadratic near the origin and becomes linear for large (p - q) .  
 

              Figure (1b) Supercomputer factoring time vs (p - q)  
 
 
 
 
9. Future Considerations 
 
If given a chance to continue our project, several step could be taken to further enhance 
our research.  
 
1) A plausible way to speed up our factorization method would be to choose random 

points for r, and scan the area at which j approaches a complete square 
 

Choose a random value r from a set of Z ∈  {0, 1, 2 � n } 
 

ji =  - 2 (m +  r) n  
 
Points at which j approaches an integer, scan that area 
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    j =  - 2 (m +  r) n ;  r = {ji-100, ji-99 � ji+99, ji+100} 

 
2) We would like to improve on the method so that it will work on more general cases of 

prime numbers p and q. We noticed that the efficiency of the method can be 
understood graphically as follows, 

 
n + j2 = L2 

 

              where L = p - q p + q     and       = 2 2L  

 
      Let us replace L7 by x and j by y and divide through by n, we get 
 

  
22 yx - = 1  n n  

 
      
      This is the equation of a hyperbola as shown in the figure (Fig. 2)  
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Notice that the slope of the curve represents the efficiency which is very high near the x-
axis when y is small. As y becomes large, the slope approaches unity which means that 
the efficiency of the method becomes relatively small. If we could find a way to make this 
region of high efficiency extend over a large region or make a position variable, then we 
can slide the region of high efficiency at will. We hope to find a way to take advantage of 
this observation. 
 
3) Compare our factoring method against other methods for factoring n such as the p � 1, 
elliptic curve, and quadratic sieve method (not mentioned in this report, yet currently 
considered the most successful algorithm). 
 
10. Conclusion 
 
In conclusion, we created an original factoring method which can be used to decrypt an 
RSA encryption by factoring the unknown prime numbers p and q from the known public  
key n. Perhaps our research will caution ciphers to provide a safe distance between p and 
q when choosing supposedly �safe� primes.  
We hope to extend our method to more general cases of prime numbers. As seen in our 
research, utilizing a super computer greatly increased our method�s efficiency. Our 
program overcame the language limitations imposed on the size of integers used and can 
handle numbers of any size. In addition to factoring n, the program also provides some 
useful functions to encode and decode information using the RSA method. 
 
This project has been an excellent learning experience and we would like to thank the 
teachers and supervisors who helped us overcome so many problems in this challenge. 
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Appendix A - Catalog of classes and structures 
 
Key  
 
   #include “key.h” 
 
   The Key structure holds a set of keys used in encryption and decryption 
     
   struct Key { 
 mpz_t key1; 
 mpz_t key2; 
 mpz_t key3; 
 bool initialized; 
   }; 
     
KeyGenerator 
 

#include “key.h” 

               

The KeyGenerator class supports initialization and destruction of a Key structure. 

    
Construction — Public Members 
 
KeyGenerator(void)   Constructs a KeyGenerator object. 
KeyGenerator(int)   Constructs a KeyGenerator object (algorithm specifies which 
form of encryption to use when initializing Key structures. Potential values are 
KeyGenerator::UNINITIALIZED, KeyGenerator::RSA) 

 

Other Functions — Public Members 
 
initialize(unsigned)  Creates the random seed 
generateKey(unsigned)   Returns a Key structure with random values (if max_size 

isn�t specified, the default is 1) 
generateKey(const char*, const char *, const char *)   Returns a Key structure 

with specified values 
destroyKey(Key)  Releases memory for a Key structure 
getInstance(int)  Returns an instance of KeyGenerator  
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Cipher  
 
   #include “cipher.h” 
    
   The Cipher class is used to encrypt and decrypt data 
 
   Construction -- Public Members 
   
   Cipher(void)  Constructs a Cipher object 
    
   Other Functions – Public Members 
 
   getState(void)  Returns the current state (encrypt or decrypt) 
   blockSize(void)  Returns the size of a Cipher block 
   initEncrypt(Key key)  Initializes this cipher for encryption 
   initDecrypt(Key key)  Initializes this cipher for decryption 
   convert(mpz_t&, const char*)  Converts a string to a number (base 10) 
   convert(mpz_t&, const char*)  Converts a number to a string (base 255) 
   crypt(mpz_t& rop, mpz_t nData)  Encrypts or Decrypts a data block and places it in             
      rop (returns 1 on success, 0 on failure) 
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Appendix B - Program 
 
// eve.cpp (dShakir)  Last Update: March 29, 2001 
// Demonstrates our proposed method for factoring N (see report) 
 
#include <time.h> 
#include <fstream.h> 
#include "key.h"        // nextprime(mpz_t, const char*) 
 
const char* N = "11000000077"; 
 
ostream& operator<<(ostream&, mpz_t);    // create the ability to output mpzs 
 
void main(int argc, char* argv[]) 
{ 
 ofstream output("out.dat", ios::app); 
 mpz_t n, m, j, l, p, q; 
 
 // initialize mpz 
 mpz_init(j); 
 mpz_init(m); 
             mpz_init(l);      
 
 mpz_init_set_str(n, N, 10); 
 
             output << "N:" << mpz_get_str(0, 10, n) << endl;    
 
 mpz_sqrt(m, n);      // m = int(n) 
 
 mpz_init_set(j, m);     // j = m 
 
 mpz_sub_ui(j, j, 1);     // start j = 0 in while loop 
 
 clock_t start, finish; 
 start = clock(); 
 
 do { 
              mpz_add_ui(j, j, 1);     // j = j + 1 
  mpz_mul(l, j, j);     // l = j ^ 2    
  mpz_sub(l, l, n);     // l = l - n 
 
 } while(!mpz_perfect_square_p(l)); 
  
 finish = clock(); 
 
 // p or q = (j + m) +/- sqrt((j + m) ^ 2 - n) 
 
 mpz_sqrt(l, l);      // l = sqrt((j + m) ^ 2 - n) 
  
 mpz_init_set(p, j);     // p = (j + m) 
 mpz_init_set(q, j);     // q = (j + m) 
 
 mpz_sub(p, p, l);      // p = p - l 
 mpz_add(q, q, l);      // q = q - l 
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 mpz_sub(j, j, m);      // j - m = total iterations 
 
 output << "time duration (sec): " << (double)(finish - start) / CLOCKS_PER_SEC << endl; 
 
 output << "j: " << mpz_get_str(0, 10, j) << endl; 
 output << "p: " << mpz_get_str(0, 10, p) << endl; 
 output << "q: " << mpz_get_str(0, 10, q) << endl; 
 
 // release mpz 
 mpz_clear(n); 
 mpz_clear(l); 
 mpz_clear(m); 
 mpz_clear(j); 
 mpz_clear(p); 
 mpz_clear(q); 
 
 output.close(); 
}  
 
ostream& operator<<(ostream& os, mpz_t op) 
{ 
        os << mpz_get_str(0, 10, op); 
        return os; 
} 
 
/* 
/////////// Program Output (out.dat) //////////////////// 
 
N:11000000077 
time duration (sec): 470.64 
j: 499895129 
p: 11 
q: 1000000007 
*/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
// bob.cpp (dShakir)  Last Update: March 29, 2001 
// Demonstrates the Cipher and KeyGenerator classes 
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#include <iostream.h> 
#include <stdio.h> 
#include "cipher.h" 
 
const char* MESSAGE = "helloalice"; 
 
ostream& operator<<(ostream&, mpz_t);   // create the ability to output mpzs 
 
void main(void) 
{ 
 Cipher cipher; 
  KeyGenerator generator(KeyGenerator::RSA); 
    mpz_t c, n, result; 
 
    generator.initialize(unsigned(time(NULL))); 
    Key keys = generator.generateKey(9);  // generate a set of random keys 
 
   cout << "p - " << keys.key1 << endl; 
    cout << "q - " << keys.key2 << endl; 
    cout << "e - " << keys.key3 << endl << endl; 
 
    mpz_init(result);  
    mpz_init(n); 
 
    mpz_mul(n, keys.key1, keys.key2);   // find n (n = p x q) 
    cout << "N - " << n << endl << endl; 
 
    cout << "Message(text) - " << MESSAGE << endl; 
    cipher.convert(c, MESSAGE);   // convert message to ASCII 
    cout << "Message(ascii) - " << c << endl << endl; 
 
    cipher.initEncrypt(keys);    // initialize encryption 
    bool out = cipher.crypt(result, c);     // encrypt message 
    cout << "Encrypted Message - " << result << endl; 
 
    cipher.initDecrypt(keys); 
    out = cipher.crypt(result, result); 
    cout << "Decrypted Message - " << result << endl;     
 
   cout << "Decrypted Message(text) - " << cipher.convert(result) << endl; 
 
 generator.distroyKey(keys); 
 
   mpz_clear(c); 
    mpz_clear(result); 
} 
ostream& operator<<(ostream& os, mpz_t op) 
{ 
 os << mpz_get_str(0, 10, op); 
 return os; 
} 
 
/* 
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/////////// Program Output /////////////////////////////////////////////////////////////////// 
 
p - 7767159204022160317694640711879129210331162089377414496387575659854494861762 
3160808199 
q - 7178045237321459295219473181898271558811008640356741998257631819809970933871 
6179199447 
e - 1327340545478027228044859866734844310308616980089034465285746599771806441668 
01860045523 
 
N - 5575302013194880463446083054725055770159080465377540402310639550228338898861 
47341718492627809885498953014115647876783658357910518742506779748804086907017188 
5803705333865953 
 
Message(text) - helloalice 
Message(ascii) - 77753349573733071041774 
 
Encrypted Message - 458081130320691812096459448817318414491514465402582586183258 
53085959661612616215560937530999828938737271270374993502391064337517953618105581 
0726533235148762353340548760974 
Decrypted Message - 77753349573733071041774 
Decrypted Message(text) - helloalice   
 
*/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
// Key.h (dShakir)  Last Updated: March 29, 2001 
// Key - holds a set of keys which can be used in several forms of encryption including RSA/DES  
// KeyGenerator - initializes and destroys keys. It may gives random values to a set of keys 
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#ifndef _KEY_H 
#define _KEY_H 
 
#include <gmp.h> 
#include <time.h> 
#include <stdlib.h> 
#include <limits.h> 
 
void mpz_nextprime(mpz_t, mpz_t);   // find the next occuring prime number  
void mpz_nextprime(mpz_t, const char*);             
 
struct Key 
{ 
 mpz_t key1; 
 mpz_t key2; 
 mpz_t key3; 
 bool initialized; 
}; 
 
class KeyGenerator 
{  
public: 
 // Construction 
 KeyGenerator(void);  
 KeyGenerator(int);  
  
 // Operations  
 void initialize(unsigned);     // initialize random seed   
 Key generateKey(unsigned =1); // create a set of random keys of specified size 
(max_size~size*8) 
 Key generateKey(const char*, const char*, const char*);  // assign values for a set of keys 
         void destroyKey(Key);     // release memory for a set of keys 
 static KeyGenerator getInstance(int);   // create an instance of 
KeyGenerator 
 
//       static bool isPrime(int);          // obsolete after gmp.h  
// unsigned generatePrime(mpz_t);    // obsolete after gmp.h  
 
         // Implementation  
         enum key_algorithm { 
             KEY_START = 0x00, 
                 UNINITIALIZED = 0x00, 
                 RSA = 0x01, 
                 KEY_END = 0x01 
         }; 
 
private:  
 int m_nAlgorithm;     // specifies which algorithm to use 
}; 
 
///////////////////////////////////////////////////////////////////////////////////////////////////////////// 
// KeyGenerator out-of-line functions 
 
KeyGenerator::KeyGenerator(void)  
{ 
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 m_nAlgorithm = UNINITIALIZED; 
} 
 
KeyGenerator::KeyGenerator(int nAlgorithm)  
{ 
 if(nAlgorithm < KEY_START || nAlgorithm > KEY_END) 
  throw("NoSuchAlgorithmException"); 
 
 m_nAlgorithm = nAlgorithm; 
} 
 
// obsolete after gmp.h  
// bool KeyGenerator::isPrime(int nPrime) 
// { 
// 
//        const unsigned iterations = 3; 
// 
//        for(unsigned i = 0; i < iterations; i++) 
//        { 
//           if(fnModule(rand()%(nPrime-1), nPrime-1, nPrime)!=1) 
//              return 0x0; 
//        }        
// 
//        return 0x1;    
//} 
// obsolete after gmp.h 
//unsigned KeyGenerator::generatePrime(unsigned nPrime)  
//{ 
// throw("PrimeGenerationException"); 
// 
//        while(!KeyGenerator::isPrime(++nPrime)) ;     
// 
// return nPrime; 
//} 
 
void KeyGenerator::initialize(unsigned seed)  
{ 
 srand(seed); 
} 
 
Key KeyGenerator::generateKey(const char* p, const char* q, const char* e) 
{ 
 Key key; 
 mpz_init_set_str(key.key1, p, 10); 
 mpz_init_set_str(key.key2, q, 10); 
 mpz_init_set_str(key.key3, e, 10); 
 key.initialized = 1; 
 return key; 
} 
 
Key KeyGenerator::generateKey(unsigned max_size)   // max_size ~ max_size * 8 
{ 
 if(m_nAlgorithm < KEY_START&&m_nAlgorithm > KEY_END) 
  throw("NoSuchAlgorithmException"); 
 else if(m_nAlgorithm & UNINITIALIZED) 
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  throw("AlgorithmUninitializedException"); 
 
 Key key = {0, 0, 0, 0}; 
 
 if(m_nAlgorithm & RSA) 
         { 
          mpz_t tbprime; 
          mpz_init(tbprime); 
 
          // initialize key  
          mpz_init(key.key1); 
          mpz_init(key.key2); 
          mpz_init(key.key3);        
          
  // create random key values (primes) 
          mpz_random(tbprime, max_size); 
          mpz_nextprime(key.key1, tbprime); 
         mpz_random(tbprime, max_size); 
          mpz_nextprime(key.key2, tbprime); 
          mpz_random(tbprime, max_size); 
          mpz_nextprime(key.key3, tbprime); 
 
         if(!mpz_cmp(key.key1, key.key2))   // p and q cannot be equal  
              key = generateKey(max_size); 
 
  pz_t product, op1, op2, result; 
   
  mpz_init(product); 
  mpz_init(op1);  
  mpz_init(op2); 
  mpz_init(result);  
 
   // prove e is relatively prime to p and q if gcd(e, (p - 1)(q - 1)) = 1  
 
  while(1) 
     { 
           mpz_sub_ui(op1, key.key1, 1); 
           mpz_sub_ui(op2, key.key2, 1); 
        mpz_mul(product, op1, op2); 
           mpz_gcd(result, key.key3, product); 
           if(!mpz_cmp_ui(result, 1)) 
                   break; 
   key = generateKey(max_size); 
   }   
          
  key.initialized = 0x01; 
   
  mpz_clear(tbprime);   
 } 
 
         return key;          
} 
 
void KeyGenerator::destroyKey(Key key) 
{ 
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 mpz_clear(key.key1); 
 mpz_clear(key.key2); 
 mpz_clear(key.key3); 
} 
 
KeyGenerator KeyGenerator::getInstance(int nAlgorithm)  
{  
 if(nAlgorithm < KEY_START || nAlgorithm > KEY_END) 
  throw("NoSuchAlgorithmException"); 
 
 return KeyGenerator(nAlgorithm); 
} 
 
void mpz_nextprime(mpz_t rop, const char* str) 
{ 
 const int reps = 10;      
 
         mpz_t op; 
        mpz_init_set_str(op, str, 10); 
 
         while(1) 
         { 
              if(mpz_probab_prime_p(op, reps)) 
                 {  
   mpz_set(rop, op);  
   return;  
  } 
  mpz_add_ui(op, op, 1); 
         }  
} 
 
void mpz_nextprime(mpz_t rop, mpz_t op) 
{ 
 const int reps = 10; 
 
         while(1) 
         { 
             if(mpz_probab_prime_p(op, reps)) 
                 {  
   mpz_set(rop, op);  
   return;  
  } 
                 mpz_add_ui(op, op, 1); 
        }  
} 
 
#endif 
// Cipher.h (dShakir)  Last Updated: March 29, 2001 
// Cipher - using a set of keys, can encrypt and decrypt a given value, using the RSA  
// algorithm (see report) 
 
#ifndef _CIPHER_H 
#define _CIPHER_H 
 
#include "project.h" 
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#include "key.h" 
#include <gmp.h> 
#include <stddef.h> 
 
class Cipher  
{ 
public: 
 // Constructors 
         Cipher(void); 
  
 // Attributes 
 int getState(void);        // returns the current state 
 int blockSize(void);       // returns the size of a cipher block 
 void initEncrypt(Key);     // initializes this cipher for encryption 
 void initDecrypt(Key);     // initializes this cipher for decryption 
         
 void convert(mpz_t&, const char*);  // convert a string to a number (base 10) 
 char* convert(mpz_t);    // convert a number to a string (base 255) 
  
 // Operations 
 bool crypt(mpz_t&, mpz_t);   // encrypts or decrypts the specified data 
 
 enum cipher_state{ 
  CIPHER_START = 0x00, 
  UNINITIALIZED = 0x00, 
  ENCRYPT = 0x01, 
  DECRYPT = 0x02,  
  CIPHER_END = 0x02 
 }; 
        
private: 
 // Implementation  
 Key m_pKeys;  
 int m_nState; 
}; 
 
///////////////////////////////////////////////////////////////////////////////////////////////////////////// 
// Cipher inline functions 
 
inline int Cipher::getState(void)  
 { return m_nState; } 
inline int Cipher::blockSize(void)  
 { return sizeof(int); } 
 
 
///////////////////////////////////////////////////////////////////////////////////////////////////////////// 
// Cipher out-of-line functions 
 
Cipher::Cipher(void)  
{ 
 m_nState = UNINITIALIZED; 
} 
 
void Cipher::initEncrypt(Key rKeys)  
{ 
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 m_pKeys = rKeys; 
 m_nState = ENCRYPT; 
} 
 
void Cipher::initDecrypt(Key rKeys)  
{ 
 m_pKeys = rKeys; 
 m_nState = DECRYPT; 
} 
 
char* Cipher::convert(mpz_t op) 
{ 
 return mpz_get_str(0, 255, op); 
} 
 
void Cipher::convert(mpz_t& rop, const char* str) 
{ 
 mpz_t temp; 
 mpz_init_set_str(temp, str, 255); 
 mpz_init_set(rop, temp); 
} 
 
bool Cipher::crypt(mpz_t& nResult, mpz_t nData)  
{ 
         mpz_t product; 
         mpz_init(product); 
 mpz_mul(product, m_pKeys.key1, m_pKeys.key2);   // N = p * q 
 
 if(m_nState < CIPHER_START || m_nState > CIPHER_END) 
  throw "StateOutOfBoundsException"; 
 
 if(mpz_cmp(nData, product) > 0)     // M must be < N 
                 return 0x00; 
 
         if(m_nState & ENCRYPT)     // C = M^e mod N  
 { 
  mpz_powm(nResult, nData, m_pKeys.key3, product); 
                 return 0x01; 
 } 
 else if(m_nState & DECRYPT)     // M = C^d mod N  
 {        // d is found using the 
Euclidean 
  mpz_t euclidean, op1, op2, product2;   // algorithm, which 
essentially 
  mpz_init(euclidean);     // finds the least common 
multiplier 
  mpz_init(op1);      // between p - 1 and q - 1 
  mpz_init(op2);      // d = lcm(p - 1, q - 1) 
  mpz_init(product2); 
  mpz_sub_ui(op1, m_pKeys.key1, 1); 
  mpz_sub_ui(op2, m_pKeys.key2, 1); 
  mpz_mul(product2, op1, op2); 
                 mpz_euclidean(euclidean, product2, m_pKeys.key3); 
  mpz_powm(nResult, nData, euclidean, product); 
  return 0x01;                   
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 } 
 else  
 { 
  return 0x00; 
 } 
} 
 
#endif 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
// Project.h (dShakir)  Last Updated: March 29, 2001 
// Most functions in this header became obsolete after we found gmp.h (with the mpz data types) 
 
#ifndef _PROJECT_H 
#define _PROJECT_H 
 
#include <gmp.h> 
#include <math.h> 
 
double fnModule(int, int, int); 
int fnEuclidean(int, int); 
void mpz_euclidean(mpz_t, mpz_t, mpz_t);  
 
int fnEncryptInteger(int, int, int, int); 
int fnDecryptInteger(int, int, int, int); 
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// Encrypts an integer M using the RSA algorithm   
int fnEncryptInteger(int p, int q, int e, int m)    // C = M^e mod N  
{         // N = p * q 
 return int(fnModule(m, e, p * q)); 
} 
 
// Decrypts an integer C using the RSA algorithm   
int fnDecryptInteger(int p, int q, int e, int c)    // M = C^d mod N 
{        // N = p * q  
 int euclidean;      // (d is found using Euclid�s 
algorithm) 
 
 if(!(euclidean = fnEuclidean((p-1)*(q-1), e))) 
 { 
  return -1; 
 } 
  
 return int(fnModule(c, euclidean, p * q)); 
} 
 
// This function returns the result of x^y mod z  
// Its really ingenious how this function operates. 
// It utilizes the fact that you may split up y in modular math. For example, 
// M^10 mod z = (M^2 mod z * M^3 mod z * M^5 mod z) mod z (2 + 3 + 5 = 10) 
// What this function does is use recursion to divide y by 2 again and again, 
// until y is small enough to accurately handle the math.  
// (x^y mod z (x^y/2 mod z * (x^(y/3) mod z(x^y/n mod z)))) mod z 
// where y/n is smaller then 10^16, the maximum before accuracy is lost. 
 
double fnModule(int x, int y, int z) 
{  
 double t = 1.0, d; 
  
 if(fmod(y, 2) != 0)     // checks if y is odd 
 { 
  t = fmod(x, z);        
  y = y - 1;  
 }  
  
 if(y * log(x) > 16)     // log x^y > log 10^16  
  d = fnModule(x, y / 2, z);     
 else 
  d = fmod(pow(x, y / 2), z); 
  
   return fmod(fmod(d, z) * fmod(d, z) * t, z);   // ((d mod z)^2 * t) mod z 
} 
 
// Returns the least common multiplier (lcm) of n and e 
 
void mpz_euclidean(mpz_t rop, mpz_t n, mpz_t e) 
{ 
 mpz_t temp, n0, e0; 
 mpz_t t0; 
 mpz_t t1; 
 mpz_t negone; 
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 mpz_init(temp); 
 mpz_init_set(n0, n); 
 mpz_init_set(e0, e); 
 
 mpz_init_set_str(t0, "0", 10); 
 mpz_init_set_str(t1, "1", 10); 
 mpz_init_set_str(negone, �-1�, 10); 
 
 mpz_t q, r; 
 
 mpz_init(q); 
 mpz_init(r); 
 
 mpz_tdiv_q(q, n0, e0);     // q = int(n0 / e0) 
 
 mpz_mul(r, q, e0);     // r = n0 - q * e0 
 mpz_sub(r, n0, r); 
 
 while(mpz_cmp_ui(r, 0)) 
 { 
  // temp = t0 - q * t1; 
  mpz_mul(temp, q, t1); 
  mpz_sub(temp, t0, temp); 
 
  if(mpz_cmp_ui(temp, 0) >= 0) 
   mpz_mod(temp, temp, n);   // temp = (temp % n) 
  if(mpz_cmp_ui(temp, 0) < 0)   
  { 
   mpz_mul(temp, temp, negone);  // temp = n - ((-1 * temp) % n) 
   mpz_mod(temp, temp, n); 
   mpz_sub(temp, n, temp); 
  } 
 
  mpz_set(t0, t1);     // t0 = t1 
  mpz_set(t1, temp);    // t1 = temp 
  mpz_set(n0, e0);     // n0 = e0 
  mpz_set(e0, r);     // e0 = r 
  mpz_tdiv_q(q, n0, e0);    // q = int(n0 / e0) 
  mpz_mul(r, q, e0);    // r = n0 - q * e0  
  mpz_sub(r, n0, r); 
 }  
 
 if(mpz_cmp_ui(e0, 1)) 
 { 
  mpz_set_ui(rop, 0);    // no result found  
 } 
 else 
 { 
  mpz_mod(rop, t1, n);    // return int(t1 % n); 
 } 
} 
 
#endif 
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