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Executive Summary:

This year, our super-computing team chose to do a project involving the simulation of

solar systems.  More specifically, we wanted to make a program that could take the positions and

masses and velocities of some planets, and by calculating their gravitational influences, find out

where they would move.  In the end, we wanted to simulate an entire solar system, and find out

how long it took to fall apart. To turn this idea into a reality, we needed to use basic physics

equations, since none of our team members were familiar with Calculus. Our final solution was

to write a program in C++ that utilizes Newton’s Law of Gravity and a few simple equations of

motion. 

The program uses the abstraction that the solar system is a large, three-dimensional,

Cartesian grid.  We used simple vector addition to find the changes in acceleration between

planets, and from acceleration followed the change in velocity and then change in position.  We

were able to successfully implement this method in our program and ended up with a powerful

application that could accurately simulate planetary trajectories in a more or less curved manner.

To display our data, we began by using the GnuPlot program to create three-dimensional

graphs.  These graphs provided a view of the planets’ trajectories in linear format, and showed

how volatile or stable the solar system were.  Our team, however, was aiming to have a graphical

representation of the solar system, which would also account for the factor of time.  Our solution

to this problem (also achieving the title goal of our project) was to create a 3D video that would

show the simulation as it could actually be witnessed in space.  Using a free 3D modeler and a
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script written in the Python language, we were able to go from a linear graph to a three-

dimensional video.

Problem Statement:

There are nine planets in our solar system, each orbiting the sun in an elliptical fashion.

This may not seem like a lot to think about, but as far as science goes, this raises several

important questions. Why don’t the planets all shoot off into space or crash into the sun? Gravity

pulls them towards the sun; inertia pushes them out of the solar system. The two forces,

combined, result in an elliptical orbit typical of planets. But how balanced do the forces have to

be? Must they exist in exact proportions to create such an orbit, or is there a broad range of

relative values that will result in a stable orbit? That’s more difficult to answer without a lot of

math. Do the planets really have much effect on each other at all? Definitely, but exactly how

much is hard to tell exactly. Do satellites affect the orbits of the planets they belong to? Maybe,

but probably not very much. In order to answer these and other questions completely, much

experimentation would be needed. Experiments using actual bodies is impractical, to say the

least. However, by creating a computer simulation of a solar system, we could easily test the

effects of various things on a solar system’s stability by changing a few variables. 

However, the problem is not simply that of determining the interactions of multiple

bodies in space. Programming the simulation itself presents some problems. First, we need

equations. How do we mathematically determine the gravitational forces between bodies? How

can we combine a body’s velocity and the gravitational effects of other bodies to determine

which direction the body will go and at what speed?
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Next, we need programming skills. How can we implement the equations and calculations

in a computer program? Which implementation is the fastest or the most accurate? What is the

best way to convey the results to the user of the program?

Description of Method:

Three and a half centuries ago, Isaac Newton developed a way to describe the motion of

planets in our solar system.  To accurately describe the movement of these bodies, he created a

form of math, called Calculus, which could integrate planetary motions with no error.  Since no

one on our team knows Calculus, we were forced to come up with another method of

implementing our project.  We chose, instead, to do it the way Newton did in his first

masterpiece, before Calculus.  He made use of vectors to describe the instantaneous accelerations

and velocities.  This is exactly what we did. 

We made a vector class to serve as a medium for measuring the directions and the

magnitudes of the velocities of the planets.  We utilized this object in what was probably the most

important function of our entire code, calculateAforce (see Appendix A).  In this function, we

turned Newton’s Law of Universal Gravitation into C++.  Given another spacebody object, the

function returns a vector from the body the function was called on, that represents the

acceleration force the planet will feel towards the planet that was passed as a parameter.

Therefore, there were many vectors for each planet, each pointing to the other planets in the

simulation, representing where the planet wanted to go.

Of course, a planet cannot move in five directions at once, so all the vectors pointing to

other planets had to summed to make the real vector that represented the true path of the planet.

When we had found this vector, we could change it from acceleration to a velocity vector, and

move the planet along that path for the certain time period allotted.
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To record the data that this program creates, we make one file for each planet.  Each line

of the file contains 3 things: the x, y, and z coordinates of the planet after each time step.  We

could use these files later to make graphical representations.

We had 2 methods of representing our systems graphically.  The first was the graphics

program recommended to use by the CTG, Gnuplot.  We were able to plot the individual

positions of the planets as dots and when they were connected by lines, it formed a rough sketch

of the planets path.  The more data coordinates that we had in the file, the “smoother” the path of

the planet looked.

The other method we used was another free 3d modeling program called Blender.

Blender, in conjunction with a scripting language called Python, could take the data files created

by the driver program, and directly export the coordinates into frames.  When the frames were

compiled, it produced a complete .avi movie of whatever simulation had been run.

Results:

After designing and debugging our simulation program and graphical script, we were able

to view complex simulations of planets as they would actually be seen if we were to view them in

space for an extended period of time.  This gave us the extraordinary possibility to witness

interplanetary gravitational reactions and therefore make some conclusions as to what factors

need to be present in a stable and life-sustaining solar system.  We found that above all other

factors, the differences in mass caused the most important and violent changes in the solar

system.  Observe the two dimensional graph Figure 1:

Notice the level of each planet’s reactivity.  The least reactive is the Red planet, with its

great mass of 2 x 1017 kilograms.  While slightly influenced by the other two planets, the Red
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We also ended up with some graphical representations of the solar systems.  There was

Gnuplot pictures (see Appendix B) as well as some Blender movies.  A screenshot of one of these

movies is displayed here:
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from their neighbors are practically negligible.  We also have another argument for solar systems

being stable and static very often.  When we first created a simulation involving an orbit, we

made a rough estimate as to where the planet should go, and what speed it should have, based on

a few equations.  But when we ran the simulation, it formed an obit almost instantly.  Either we

got really lucky, or making an orbit is not so difficult after all.

This data from our program combined with what we had already known gave us the ability to

make a generalization of all solar systems.  They are very stable when the planets are far enough

apart, and have well-defined orbits.  This means that it will not break apart until very far in the

future, no sooner than the time when stellar evolution is able to take over.

Our Best Achievement:

The most original accomplishment of our project would have to be using graphics.  Our

computer science course during school does not cover graphics; thus we were forced to find ways

of doing it on our own.  Graphics were practically necessary for our success of the project.  We

wanted to accurately display the planets and other celestial bodies at the various time frames

through the demonstration.  In order to do this, we somehow needed to create a movie file with in

the program.  This was accomplished by using a series of programs: C++, Blender, and Python.

We used C++ to start off the Python script and to display the variables of the model.  Blender is a

program designed for any type of movie graphics.  It has many lighting and angle capabilities, as

well as a three-dimensional coordinate system.  Python is a scripting language that can export

variables to Blender.  We used our Python script for editing the coordinates of the objects (in this

case, planets) in-between every frame of the Blender movie file.  The script would take

coordinates of the planets and other variables from Blender, send them through our math model,

and send them back to Blender.  Blender would then make a new frame with the updated
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coordinates and other variables of the planets.  Finally, Blender would export the compiled movie

file back to C++.  Most of our math modeling took place in the Python script.  As previously

stated, we had no instruction on graphics previous to the project.  Since this complex system to

obtain a movie file of the model solar system was of our own creation, we can proudly say the

our graphics are our greatest achievement of this project.
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//Team 009 - 3d Driver Program

//File inputs are like so:
//(# of planets) (time-step) (# of seconds to run sim) (increment to record to file)
//Remainder is individual planet data: 1 line per planet
//(planet mass) (radius) (velocity X) (Y) (Z) (location X) (Y) (Z)

//Program will make a file for each planet in the same directory this code is in
//under 'planetA.dat', 'planetB.dat', etc...

#include <iostream.h>
#include <fstream.h>
#include "apstring.h"
#include "apvector.h"
#include "spacebody3d.h"
#include "vector3d.h"
#include "location3d.h"

int main()
{

int i, dt, ftime;
double mass, rad, X, Y, Z, time;
apstring file;
ifstream readData;
cout << "Enter file to read data from: ";
getline(cin, file);
readData.open(file.c_str());
readData >> i >> dt >> time >> ftime;
apvector <spacebody> solarSystem(i);
vector tempVel;
location tempLoc;

for (int j=0, k=0; j < i; j++)
{

readData >> mass >> rad;
readData >> X >> Y >> Z;
tempVel.setvector(X,Y,Z);
readData >> X >> Y >> Z;
tempLoc.setlocation(X,Y,Z);
solarSystem[j].setObject(mass, rad, tempVel, tempLoc);

}

//vector testacc = solarSystem[1].calculateAforce(solarSystem[0]);
//cout << testacc.x() << " " << testacc.y() << " " << testacc.z() << endl;

apvector <ofstream> dataFiles(i);
apstring str1("planet"), str2(".dat");
for (j=0; j < i; j++)

dataFiles[j].open((str1 + char(j + 65) + str2).c_str());

for (j=0; j < i; j++)
dataFiles[j] << solarSystem[j].position.x() << '\t' << solarSystem[j].position.y() << '\t' <<

solarSystem[j].position.z() << endl;

int etime = 0;
while (etime < time)
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{
for (k=1; k < i; k++)
{

for (j=0; j < i; j++)
{

if (j == k)
continue;

else
solarSystem[k].velocity +=

(solarSystem[k].calculateAforce(solarSystem[j]) * dt);
}

}
for (j=0; j < i; j++)
{

solarSystem[j].position.setlocation(solarSystem[j].velocity.x() * dt +
solarSystem[j].position.x(), 

solarSystem[j].velocity.y() * dt + solarSystem[j].position.y(),
solarSystem[j].velocity.z() * dt + solarSystem[j].position.z());

}

if (etime % ftime == 0)
{

for (j=0; j < i; j++)
dataFiles[j] << solarSystem[j].position.x() << '\t' <<

solarSystem[j].position.y() << '\t' << solarSystem[j].position.z() << endl;
}
etime += 1;

}
return 0;

}

//location.h

#ifndef LOCATION_H

#define LOCATION_H

class location
{
public:
        location();
        location(double, double, double);
        ~location();

        double x() const;
double y() const;
double z() const;

void setlocation(double, double, double);
        const location& operator = (const location &);
private:
        double itsX;

double itsY;
double itsZ;

};
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location::location(void)
{
        itsX = 0;

itsY = 0;
itsZ = 0;

}

location::location(double x, double y, double z)
{
        itsX = x;

itsY = y;
itsZ = z;

}

location::~location()
{
}

double location::x(void) const
{
        return itsX;
}

double location::y(void) const
{

return itsY;
}

double location::z(void) const
{

return itsZ;
}

void location::setlocation(double x, double y, double z)
{
        itsX = x;

itsY = y;
itsZ = z;

}

const location& location::operator = (const location &a)
{
        itsX = a.x();

itsY = a.y();
itsZ = a.z();
return *this;

}

#endif

//spacebody.h

#ifndef SPACEBODY_H
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#define SPACEBODY_H

#include "vector3d.h"
#include "location3d.h"
#include <math.h>

class spacebody
{
public:
        spacebody();
        spacebody(double, double, vector, location);
        ~spacebody();

        double mass();
        double radius();
        vector velocity;
        location position;

void setObject(double, double, vector, location);

        vector calculateAforce(spacebody);
private:
        double itsMass;
        double itsRadius;
};

spacebody::spacebody(void)
{
        itsMass = 0;
        itsRadius = 0;
        velocity.setvector(0,0,0);
        position.setlocation(0,0,0);
}

spacebody::spacebody(double mass, double rad, vector a, location b)
{
        itsMass = mass;
        itsRadius = rad;
        velocity = a;
        position = b;
}

spacebody::~spacebody()
{
}

void spacebody::setObject(double mass, double rad, vector a, location b)
{
        itsMass = mass;
        itsRadius = rad;
        velocity = a;
        position = b;
}

double spacebody::mass(void)
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{
        return itsMass;
}

double spacebody::radius(void)
{
        return itsRadius;
}

vector spacebody::calculateAforce(spacebody a)
{

double G = 6.6726E-11;
double x = (a.position).x() - position.x();
double y = (a.position).y() - position.y();
double z = (a.position).z() - position.z();
double d = sqrt(x*x + y*y + z*z);
double A = G * a.mass() / (d*d);
return vector((A/d)*x, (A/d)*y, (A/d)*z);

}

#endif

//vector.h

#ifndef VECTOR_H

#define VECTOR_H

#include <math.h>

class vector
{
public:
        vector();
        vector(double, double, double);
        ~vector();

        double x() const;
double y() const;
double z() const;

        double magnitude() const;

        void setvector(double, double, double);
        const vector& operator = (const vector &);
        const vector& operator += (const vector &);
        vector operator + (const vector &);

const vector operator * (double);
private:
        double itsX;

double itsY;
double itsZ;

        double itsMagnitude;
};

vector::vector(void)
{
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        itsX = 0;
itsY = 0;
itsZ = 0;

        itsMagnitude = 0;
}

vector::vector(double x, double y, double z)
{
        itsX = x;

itsY = y;
itsZ = z;

        itsMagnitude = sqrt((x*x)+(y*y)+(z*z));
}

vector::~vector()
{
}

double vector::x(void) const
{
        return itsX;
}

double vector::y(void) const
{

return itsY;
}

double vector::z(void) const
{

return itsZ;
}

double vector::magnitude(void) const
{
        return itsMagnitude;
}

void vector::setvector(double x, double y, double z)
{
        itsX = x;

itsY = y;
itsZ = z;

        itsMagnitude = sqrt((x*x)+(y*y)+(z*z));
}

const vector& vector::operator = (const vector &a)
{
        itsX = a.x();

itsY = a.y();
itsZ = a.z();
itsMagnitude = a.magnitude();
return (*this);

}

const vector& vector::operator += (const vector &a)
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{
    setvector(itsX + a.x(), itsY + a.y(), itsZ + a.z());
    return *this;
}

vector vector::operator + (const vector &rhs)
{
        vector temp(itsX + rhs.x(), itsY + rhs.y(), itsZ + rhs.z());

return temp;
}

const vector vector::operator * (double factor)
{

vector temp(itsX * factor, itsY * factor, itsZ * factor);
return temp;

}

#endif

//3dpscript.py

# 3dpscript.py by Matt Strange
# Version 2.4
# Now Radii come from the PlanetData.txt file and Coords are loaded dynamically
# ASCII data loaded into Lists

# Initialize #
import sys
import Blender
from array import array

# number of planets from planetdata.txt#
if Blender.Get("curframe") == 1:

temp = map(float, open("C:\\scc\\planetdata.txt").read().split() )
n = int(temp[0])
print "Number of Planets: " , n
del temp

#number of frames (x,y,z coords) we want to run #
#numframes = 1000
if Blender.Get("curframe") == 1:

temp = map(float, open("C:\\scc\\planet0.dat").read().split() )
numframes = (len(temp) / 3 )
print "Number of Frames: " , numframes
del temp

#cnt holds the position in that big coordinate list #
cnt = (Blender.Get("curframe") - 1) #start at 0, like a list
if cnt > (numframes - 1): #stop going at the last frame

cnt = (numframes-1)

#get a string of length N for use with for loops #
length = range(n)

#make sure you only do this the first time #
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if Blender.Get("curframe") == 1:

#make an list of Blender Object Handles #
obj = [1] * n

#assign handles i.e. Planet.0 --> obj[0] #
for counter in length:

obj[counter] = Blender.Object.Get("Planet."+(str(counter)))

#make an list for the radii (FLOATS) planet[x] = radii[x]#
data = map(float, open("c:\scc\planetdata.txt").read().split())

#apply radii to planets and skew the size
for counter in length:

radius = data[3 + counter*8 + 2]

obj[counter].SizeX = (radius / 100)
obj[counter].SizeY = (radius / 100)
obj[counter].SizeZ = (radius / 100)

del data

#make a list of double arrays for each planet
coord = [array('d')] * n

#for every planet, load it's data into a temp list, then map it to
#the appropriate array.
for counter in length:

temp = map(float, open("c:\\scc\\planet"+str(counter)+".dat").read().split())
coord[counter] = array('d',map(float,temp))

#normal execution... #

#loop to tell which planet we're working on #
for counter in length:

#now get the XYZ for the current frame and store it in X,Y,Z
x = coord[counter][cnt * 3]
y = coord[counter][(cnt * 3) + 1]
z = coord[counter][(cnt * 3) + 2]

#reposition the planet at this new location devided by 1000
obj[counter].LocX = (x / 1000)
obj[counter].LocY = (y / 1000)
obj[counter].LocZ = (z / 1000)

sys.stdout.flush()
Blender.Redraw()
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Appendix B
(Pictures)
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Our original two-dimensional test.  Two planets of different masses are launched from the left and right
sides of the grid, and the planet with the lesser mass loops around the other.  Range -100 000 to 100 000.
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This was our second and more advanced 2D test.  We advanced to a 3-body project, and launched all the
planets towards the center from the bottom, left and right sides of the graph.  The extreme masses of

these planets made them spiral around each other before launching into outer space.  Range –100 000 to
100 000.
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This 3D plot shows the results of our first orbit.  Notice how the Green Planet makes an elliptical orbit
around the Red Sun.  Range –200 000 to 200 000.
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Our master simulation: all nine planets and the sun of our solar system.  Note the pitched up orbit of Pluto
and the great change in scale between the inner solar system and outer solar system.  Range –6e12 to

6e12. 
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