Modeling Solar Systems

AiS Challenge
Final Report
4-3-2002

Team 009
Albuquergque Academy
Team Members:
Shaun Ballou
Paul Boyle
Joshua Langsfeld
Ryan McGowan
Matt Strange
Sponsoring Teacher:
Jim Mims
Mentors:

Jim Mims

Table of Contents:

LI = = o =T 1
EXECULIVE SUMIMIAIY ... et et e e e e et et e e et et e e e eae e te et r e e e a e e reanene aens 3
Problem SEAIEMENT. e e s 4
OUIN MEBINOU. e e e e e e e e et e e e et e e e aenn 5
(000] 3101 111 o o PP PP 8

(@0 o= AN a2V 101 0| T 9

ACKNOWIEOGEMENTS.o e e e e e et e e e e e e e 11
APPENAIX A (COUE). ... ettt et e e e e e et e e e e e 12

APPENAIX B (PICIUMES) ettt e et e e e e e et e e e neee e 21

Executive Summary:

This year, our super-computing team chose to do a project involving the simulation of
solar systems. More specifically, we wanted to make a program that could take the positions and
masses and velocities of some planets, and by calculating their gravitational influences, find out
where they would move. Inthe end, we wanted to simulate an entire solar system, and find out
how long it took to fall apart. To turn thisideainto areality, we needed to use basic physics
equations, since none of our team members were familiar with Calculus. Our final solution was
to write a program in C++ that utilizes Newton's Law of Gravity and afew simple equations of
motion.

The program uses the abstraction that the solar system is alarge, three-dimensional,
Cartesian grid. We used simple vector addition to find the changes in accel eration between
planets, and from acceleration followed the change in velocity and then change in position. We
were able to successfully implement this method in our program and ended up with a powerful
application that could accurately simulate planetary trajectoriesin amore or less curved manner.

To display our data, we began by using the GnuPlot program to create three-dimensional
graphs. These graphs provided a view of the planets’ trgjectoriesin linear format, and showed
how volatile or stable the solar system were. Our team, however, was aiming to have a graphical
representation of the solar system, which would also account for the factor of time. Our solution
to this problem (also achieving the title goal of our project) wasto create a 3D video that would

show the simulation asit could actually be witnessed in space. Using afree 3D modeler and a

script written in the Python language, we were able to go from alinear graph to a three-

dimensional video.

Problem Statement:

There are nine planetsin our solar system, each orbiting the sun in an elliptical fashion.
This may not seem like alot to think about, but as far as science goes, this raises several
important questions. Why don’t the planets all shoot off into space or crash into the sun? Gravity
pulls them towards the sun; inertia pushes them out of the solar system. The two forces,
combined, result in an eliptical orbit typical of planets. But how balanced do the forces have to
be? Must they exist in exact proportions to create such an orbit, or is there a broad range of
relative values that will result in a stable orbit? That’s more difficult to answer without alot of
math. Do the planets really have much effect on each other at all? Definitely, but exactly how
much is hard to tell exactly. Do satellites affect the orbits of the planets they belong to? Maybe,
but probably not very much. In order to answer these and other questions completely, much
experimentation would be needed. Experiments using actual bodiesisimpractical, to say the
least. However, by creating a computer simulation of a solar system, we could easily test the
effects of various things on a solar system'’ s stability by changing afew variables.

However, the problem is not smply that of determining the interactions of multiple
bodiesin space. Programming the simulation itself presents some problems. First, we need
eguations. How do we mathematically determine the gravitational forces between bodies? How
can we combine a body’ s velocity and the gravitational effects of other bodies to determine

which direction the body will go and at what speed?

Next, we need programming skills. How can we implement the equations and cal culations
in acomputer program? Which implementation is the fastest or the most accurate? What is the

best way to convey the results to the user of the program?
Description of Method:

Three and a half centuries ago, |saac Newton devel oped away to describe the motion of
planetsin our solar system. To accurately describe the movement of these bodies, he created a
form of math, called Calculus, which could integrate planetary motions with no error. Since no
one on our team knows Calculus, we were forced to come up with another method of
implementing our project. We chose, instead, to do it the way Newton did in hisfirst
masterpiece, before Calculus. He made use of vectors to describe the instantaneous accel erations
and velocities. Thisis exactly what we did.

We made a vector class to serve as a medium for measuring the directions and the
magnitudes of the velocities of the planets. We utilized this object in what was probably the most
important function of our entire code, calculateAforce (see Appendix A). In thisfunction, we
turned Newton’s Law of Universal Gravitation into C++. Given another spacebody object, the
function returns a vector from the body the function was called on, that represents the
acceleration force the planet will feel towards the planet that was passed as a parameter.
Therefore, there were many vectors for each planet, each pointing to the other planetsin the
simulation, representing where the planet wanted to go.

Of course, a planet cannot move in five directions at once, so all the vectors pointing to
other planets had to summed to make the real vector that represented the true path of the planet.
When we had found this vector, we could change it from acceleration to a velocity vector, and

move the planet along that path for the certain time period allotted.

To record the data that this program creates, we make one file for each planet. Each line
of the file contains 3 things: the X, y, and z coordinates of the planet after each time step. We
could use these files later to make graphical representations.

We had 2 methods of representing our systems graphically. The first was the graphics
program recommended to use by the CTG, Gnuplot. We were able to plot the individual
positions of the planets as dots and when they were connected by lines, it formed a rough sketch
of the planets path. The more data coordinates that we had in the file, the “ smoother” the path of
the planet looked.

The other method we used was another free 3d modeling program called Blender.
Blender, in conjunction with a scripting language called Python, could take the data files created
by the driver program, and directly export the coordinates into frames. When the frames were

compiled, it produced a complete .avi movie of whatever smulation had been run.
Results:

After designing and debugging our simulation program and graphical script, we were able
to view complex simulations of planets as they would actually be seen if we wereto view them in
space for an extended period of time. This gave us the extraordinary possibility to witness
interplanetary gravitational reactions and therefore make some conclusions as to what factors
need to be present in a stable and life-sustaining solar system. We found that above al other
factors, the differences in mass caused the most important and violent changes in the solar
system. Observe the two dimensional graph Figure 1.

Notice the level of each planet’sreactivity. The least reactive is the Red planet, with its

great mass of 2 x 10*" kilograms. While slightly influenced by the other two planets, the Red

planet still maintains arather simple parabolic trajectory, and eventually moves out and away

from the other two planets. The Green planet has a

100

l / Fig 1. Smulation 3—A 2D
: ‘ ' model of three planets with
different masses starting in the

,] \ |eft, bottom, and right borders

1000

mass of 1 x 10" kilograms. This planet has the second most stable trajectory, drawn towards the
Red planet the majority of the time, but also assuming afew minor bumpsin its path due to the
gravitational pull of the Blue planet. The Blue planet has the smallest mass, 1 x 10™ kilograms,
and consequently, the most active trgjectory. Observe point A. Here one can see the ‘ slingshot’
motion of the Blue planet around the Red one. Due to the extreme difference in mass, the Blue
planet makes avery tight turn around the Red planet; so tight, in fact, that it appearsto be a
straight ricocheted line. After this, (as better demonstrated by the video) the Blue planet has a
moving orbit around the moving Green planet until the simulation ends.

After experimenting with simple gravitational interactions, we moved on to the move
complex ones, including an orbit. An orbit has to be set up nearly perfectly to avoid either falling
inwards to the central star, or flying away altogether. Using some well-known formulas for
orbital velocities and positions, we made a quick sim of asingle planet around a star. To proceed
farther in this direction, we had to look in our own backyard. After aquick search on the
Internet, we were able to find reasonably accurate data on our own solar system. After a number

of trials, we were finally able to simulate the entire thing (see Appendix B).

We also ended up with some graphical representations of the solar systems. There was

Gnuplot pictures (see Appendix B) as well as some Blender movies. A screenshot of one of these

moviesis displayed here:

Here is an example of
what our Blender
movies look like. This
is a model of our solar
system out to Mars. As
you can see, the sizes
of the planets are
grossly distorted in
order to see everything
better. The .avi movies

Through the many tests we conducted, we were able to make some important conclusions

regarding the nature of solar systems.
Conclusions:

In our latest test we were able to simulate our entire solar system for 20 million years.
Thistold us alot about solar systems. Our program had shown very little deviation in the orbits
of the nine planets, even after such an extended period of time. It really showed to usthe
importance of distance as well as mass in these examples. For example, the planetsin the
example in the Results above were interacting so much because they were so close together (no
more than 100 km). At that distance, even the (relatively) small masses of the planets were
enough to be overwhelming. In our solar system, however, it is not a matter of hundreds of
kilometers, but of millions of kilometers. When the planets are that far away from each other,

they practically only feel the pull of the sun. Therefore, the secondary motions that planets feel

from their neighbors are practically negligible. We also have another argument for solar systems
being stable and static very often. When we first created a simulation involving an orbit, we
made a rough estimate as to where the planet should go, and what speed it should have, based on
afew equations. But when we ran the ssmulation, it formed an obit amost instantly. Either we
got really lucky, or making an orbit is not so difficult after all.

This datafrom our program combined with what we had already known gave usthe ability to
make a generalization of all solar systems. They are very stable when the planets are far enough
apart, and have well-defined orbits. Thismeansthat it will not break apart until very far in the
future, no sooner than the time when stellar evolution is able to take over.

Our Best Achievement:

The most original accomplishment of our project would have to be using graphics. Our
computer science course during school does not cover graphics; thus we were forced to find ways
of doing it on our own. Graphicswere practically necessary for our success of the project. We
wanted to accurately display the planets and other celestial bodies at the various time frames
through the demonstration. In order to do this, we somehow needed to create amovie file with in
the program. Thiswas accomplished by using a series of programs. C++, Blender, and Python.
We used C++ to start off the Python script and to display the variables of the model. Blender isa
program designed for any type of movie graphics. It has many lighting and angle capabilities, as
well as athree-dimensional coordinate system. Python is a scripting language that can export
variables to Blender. We used our Python script for editing the coordinates of the objects (in this
case, planets) in-between every frame of the Blender moviefile. The script would take
coordinates of the planets and other variables from Blender, send them through our math model,

and send them back to Blender. Blender would then make a new frame with the updated

coordinates and other variables of the planets. Finally, Blender would export the compiled movie
file back to C++. Most of our math modeling took place in the Python script. As previously
stated, we had no instruction on graphics previous to the project. Since this complex system to
obtain amovie file of the model solar system was of our own creation, we can proudly say the

our graphics are our greatest achievement of this project.

10

References and Acknowledgements:

Delaney, Wesley. Physics Information. Accessed: 23 Oct 2001
http://www.geocities.com/wesl eydel aney/physics.html

Formulas for Rotational Motion. Accessed: 23 Oct 2001
http://cougar.slvhs.slv.k12.ca.us/~pboomer/physi csl ectures/ch5formul as.html

Formulas for Acceleration & Newton's Laws. Accessed: 23 Oct 2001
http://cougar.slvhs.slv.k12.ca.us/~pboomer/physi csl ectures/ch3formul as.html

Geodetic Reference System 1980. Accessed: 23 Oct 2001
http://www.gfy.ku.dk/~iag/HB2000/part4/grs80_corr.htm

Case Van Horsen case@ironwater.com via Usenet comp.lang.python
http://www.blenderbuch.de/tutor/python1/Pythonl.pdf

Software used:

Gnuplot
http://www.chall enge.nm.org/cta/graphi cs/gnupl ot.shtml

Blender
http://www.blender.nl

Specia Thanks to:

Zach Labry

11

http://www.blenderbuch.de/tutor/python1/Python1.pdf
http://www.challenge.nm.org/ctg/graphics/gnuplot.shtml
http://www.blender.nl/

Appendix A
(Our Code)

12

/[Team 009 - 3d Driver Program

/[File inputs are like so:

[/(# of planets) (time-step) (# of seconds to run sim) (increment to record to file)
/[Remainder is individual planet data: 1 line per planet

ll(planet mass) (radius) (velocity X) (Y) (2) (location X) (Y) (2)

//Program will make a file for each planet in the same directory this code is in
/lunder 'planetA.dat’, 'planetB.dat', etc...

#include <iostream.h>
#include <fstream.h>
#include "apstring.h"
#include "apvector.h"
#include "spacebody3d.h"
#include "vector3d.h"
#include "location3d.h"

int main()

{
int i, dt, ftime;
double mass, rad, X, Y, Z, time;
apstring file;

ifstream readData;

cout << "Enter file to read data from: ";
getline(cin, file);
readData.open(file.c_str());

readData >> i >> dt >> time >> ftime;
apvector <spacebody> solarSystem(i);
vector tempVel;

location tempLoc;

for (int j=0, k=0; j <i; j++)
{
readData >> mass >> rad;
readData >> X >> Y >> Z;
tempVel.setvector(X,Y,2);
readData >> X >>Y >> Z;
tempLoc.setlocation(X,Y,2);
solarSystem[j].setObject(mass, rad, tempVel, tempLoc);

}

[Ivector testacc = solarSystem[1].calculateAforce(solarSystem[0]);
/lcout << testacc.x() << " " << testacc.y() << " " << testacc.z() << end|;

apvector <ofstream> dataFiles(i);
apstring strl("planet"), str2(".dat");
for (j=0; j <1i; j++)
dataFiles[j].open((strl + char(j + 65) + str2).c_str());
for (j=0; j <i; j++)
dataFiles[j] << solarSystem[j].position.x() << \t' << solarSystem[j].position.y() << '\t' <<
solarSystem[j].position.z() << endl;

int etime = 0;
while (etime < time)

13

for (k=1; k <i; k++)

{
for (j=0; j < i; j++)
{
if ==Kk)
continue;
else

solarSystem[k].velocity +=
(solarSystem(k].calculateAforce(solarSystem[j]) * dt);

}
for (j=0; j <1i; j++)

solarSystem([j].position.setlocation(solarSystem[j].velocity.x() * dt +
solarSystem([j].position.x(),

solarSystem([j].velocity.y() * dt + solarSystem[j].position.y(),

solarSystem([j].velocity.z() * dt + solarSystem[j].position.z());

}

if (etime % ftime == 0)
{
for (j=0; j < i; j++)
dataFiles[j] << solarSystem([j].position.x() << \t' <<
solarSystem[j].position.y() << '\t' << solarSystem[j].position.z() << endl;

etime +=1;
}
return O;
}
/llocation.h

#ifndef LOCATION_H
#define LOCATION_H

class location

{
public:
location();
location(double, double, double);
~location();
double x() const;
double y() const;
double z() const;
void setlocation(double, double, double);
const location& operator = (const location &);
private:
double itsX;
double itsY;
double itsz;
3

14

location::location(void)
{
itsX = 0;
itsY = 0;
itsZ = 0;
}

location::location(double x, double y, double z)

{

itsX = x;
itsY = y;
itsZ = z;
}
location::~location()
{
}
double location::x(void) const
{
return itsX;
}
double location::y(void) const
{
return itsY;
}
double location::z(void) const
{
return itsz;
}

void location::setlocation(double x, double y, double z)

{

itsX = Xx;
itsY =y;
itsZ = z;
}
const location& location::operator = (const location &a)
itsX = a.x();
itsY = a.y();
itsZ = a.z();
return *this;
}
#endif
/Ispacebody.h

#ifndef SPACEBODY_H

15

#define SPACEBODY_H

#include "vector3d.h"
#include "location3d.h"
#include <math.h>

class spacebody

{

public:
spacebody();
spacebody(double, double, vector, location);
~spacebody();

double mass();
double radius();
vector velocity;
location position;

void setObject(double, double, vector, location);

vector calculateAforce(spacebody);
private:

double itsMass;

double itsRadius;

3
spacebody::spacebody(void)
{

itsMass = 0;

itsRadius = 0;

velocity.setvector(0,0,0);
position.setlocation(0,0,0);

}

spacebody::spacebody(double mass, double rad, vector a, location b)

itsMass = mass;
itsRadius = rad;

velocity = a;

position = b;
}
spacebody::~spacebody()
{
}

void spacebody::setObject(double mass, double rad, vector a, location b)

{

itsMass = mass;
itsRadius = rad;
velocity = a;
position = b;

}

double spacebody::mass(void)

16

{

return itsMass;

}
double spacebody::radius(void)
{
return itsRadius;
}

vector spacebody::calculateAforce(spacebody a)
{
double G = 6.6726E-11;
double x = (a.position).x() - position.x();
double y = (a.position).y() - position.y();
double z = (a.position).z() - position.z();
double d = sgrt(x*x + y*y + z*z);
double A = G * a.mass() / (d*d);
return vector((A/d)*x, (A/d)*y, (A/d)*z);
}

#endif

/Ivector.h

#ifndef VECTOR_H
#define VECTOR_H
#include <math.h>

class vector

{

public:
vector();
vector(double, double, double);
~vector();

double x() const;
double y() const;
double z() const;
double magnitude() const;

void setvector(double, double, double);
const vector& operator = (const vector &);
const vector& operator += (const vector &);
vector operator + (const vector &);

const vector operator * (double);

private:

double itsX;

double itsY;

double itsZ;
double itsMagnitude;

h

vector::vector(void)

{

17

itsX = 0;
itsY = 0;
itsZ = 0;
itsMagnitude = 0;
}

vector::vector(double x, double y, double z)

{

itsX = x;
itsY =y;
itsZ = z;

itsMagnitude = sqrt((x*x)+(y*y)+(z*z));
}
vector::~vector()
{
}
double vector::x(void) const
{

return itsX;
}
double vector::y(void) const
{

return itsY;
}
double vector::z(void) const
{
return itsZ;

}
double vector::magnitude(void) const
{

return itsMagnitude;
}

void vector::setvector(double x, double y, double z)
{
itsX = x;
itsY =y;
itsZ = z;
itsMagnitude = sqrt((x*x)+(y*y)+(z*z));
}

const vector& vector::operator = (const vector &a)
{
itsX = a.x();
itsY = a.y();
itsZ = a.z();
itsMagnitude = a.magnitude();
return (*this);

}

const vector& vector::operator += (const vector &a)

{

setvector(itsX + a.x(), itsY + a.y(), itsZ + a.z());
return *this;

}
vector vector::operator + (const vector &rhs)
{
vector temp(itsX + rhs.x(), itsY + rhs.y(), itsZ + rhs.z());
return temp;
}
const vector vector::operator * (double factor)
{
vector temp(itsX * factor, itsY * factor, itsZ * factor);
return temp;
}
#endif
/[3dpscript.py

3dpscript.py by Matt Strange

Version 2.4

Now Radii come from the PlanetData.txt file and Coords are loaded dynamically
ASCII data loaded into Lists

Initialize

import sys

import Blender

from array import array

number of planets from planetdata.txt#
if Blender.Get("curframe”) == 1:
temp = map(float, open("C:\\scc\\planetdata.txt").read().split())
n = int(temp[0])
print "Number of Planets: " , n
del temp

#number of frames (x,y,z coords) we want to run #
#numframes = 1000
if Blender.Get("curframe") == 1:
temp = map(float, open("C:\\scc\\planet0.dat").read().split())
numframes = (len(temp) / 3)
print "Number of Frames: " , numframes
del temp

#cnt holds the position in that big coordinate list #

cnt = (Blender.Get("curframe") - 1) #start at 0, like a list

if cnt > (numframes - 1): #stop going at the last frame
cnt = (numframes-1)

#get a string of length N for use with for loops #
length = range(n)

#make sure you only do this the first time #

19

if Blender.Get("curframe") == 1:

#make an list of Blender Object Handles #
obj=[1]*n

#assign handles i.e. Planet.0 --> obj[0] #
for counter in length:
obj[counter] = Blender.Object.Get("Planet."+(str(counter)))

#make an list for the radii (FLOATS) planet[x] = radii[x]#
data = map(float, open("c:\scc\planetdata.txt").read().split())

#apply radii to planets and skew the size
for counter in length:

radius = data[3 + counter*8 + 2]

obj[counter].SizeX = (radius / 100)
obj[counter].SizeY = (radius / 100)
obj[counter].SizeZ = (radius / 100)

del data

#make a list of double arrays for each planet
coord = [array('d)] * n

#for every planet, load it's data into a temp list, then map it to

#the appropriate array.

for counter in length:
temp = map(float, open("c:\\scc\\planet"+str(counter)+".dat").read().split())
coord[counter] = array('d’,map(float,temp))

#normal execution... #

#loop to tell which planet we're working on #
for counter in length:

#now get the XYZ for the current frame and store it in X,Y,Z
X = coord[counter][cnt * 3]

y = coord[counter][(cnt * 3) + 1]

z = coord[counter][(cnt * 3) + 2]

#reposition the planet at this new location devided by 1000
obj[counter].LocX = (x / 1000)
obj[counter].LocY = (y / 1000)
obj[counter].LocZ = (z / 1000)

sys.stdout.flush()
Blender.Redraw()

20

Appendix B
(Pictures)

21

100000 | ' ' " testzoPl.dat’ —— 4
*testodPZ dat’ ——

50000 .

o i

50000 | -

100000 | -
1 1 1 1 1

100000 50000 o 50000 100000

Our original two-dimensional test. Two planets of different masses are launched from the left and right
sides of the grid, and the planet with the lesser mass loops around the other. Range -100 000 to 100 000.

22

23

100000 | | ' ' | tSytzPl.dat’ -
*tedt 7Pz dat”
*tekt 7P dat”
So000 -]
ot |
—Hoo00]
—100000 1
1 1 1 1 1
100000 50000 o B0000 100000

This was our second and more advanced 2D test. We advanced to a 3-body project, and launched all the
planets towards the center from the bottom, left and right sides of the graph. The extreme masses of
these planets made them spiral around each other before launching into outer space. Range —100 000 to
100 000.

24

"planetf.dat” ¢
“planetB.dat”

200000
150000
100000
F0O000

0 -
=S00a0
=100000
=1 50000
= 200000

This 3D plot shows the results of our first orbit. Notice how the Green Planet makes an elliptical orbit
around the Red Sun. Range —200 000 to 200 000.

25

26

‘planetA.dat”
‘planetE.dat”
‘planetC.dat” ——
‘planetD.dat”

‘planetF . dat”

‘planetH.dat”
‘planetl.dat”
‘planett.dat”

fe+(ls -
de+Qls -
2e+0ls -

a b
—2e+0lZ
e+l 2
-G+l Z

Our master simulation: all nine planets and the sun of our solar system. Note the pitched up orbit of Pluto
and the great change in scale between the inner solar system and outer solar system. Range —6e12 to
6el2.

27

	Modeling Solar Systems
	AiS Challenge
	Jim Mims

	Next, we need programming skills. How can we implement the equations and calculations in a computer program? Which implementation is the fastest or the most accurate? What is the best way to convey the results to the user of the program?
	Description of Method:

