

Military Combat Simulation: A study of Artificial Intelligence.

AiS Challenge
Final Report
April 3, 2002

Team # 044
Lovington High School

Team Members
Byron Buxkemper

Clayburn Griffin

Teachers
Pam Gray

Jimmy Crawford

Project Mentor
Wayne Sikes

Table of Contents
Executive Summary--1

Process---2

Problem statement ---3

Data--3

The Program--4

Future Plans--12

Conclusions--12

Acknowledgements---13

Bibliography--13

Appendices
Appendix A: Sample Game--14
Appendix B: Graphics--16

1

Executive Summary

Artificial intelligence (AI) is the concept of creating intelligent machines. Most people

are familiar with AI through the use of computer games. AI goes much farther than games. It is

a very complicated idea that many people wish to fully understand. Hollywood has realized the

fascination of people with the subject of AI. There have been several movies questioning the

possibilities of AI. Terminator is likely the most famous of them. The movie stresses the “what

if” side to AI research. What if machines make humans obsolete? What if machines learn what

humans don’t want them to learn? What if machines can learn to kill? What if machines learn to

destroy humans? Our project will answer these questions. We will create a simulation of a

character trying to find a random square.

AI is known as the creation of intelligent machines. What does this mean? Intelligent

machines must be programmed to learn. Several robots have been programmed to carry out a

certain task. These robots require human assistance to make decisions. AI robots should be able

to not only carry out tasks but also to learn the affects of choices. Computer games have been

able to simulate AI in a computerized environment. Intelligent machines should also be able to

learn about objects in the real world. In computer games, AI can be simulated by programming

an object to “understand” the programming of another object, allowing it to know what the

object can be used for. In the real world, however, objects do not have a written program that a

machine can read. AI controlled machines will have to be able to understand the use and

meaning of objects without the need of written information programmed into themselves.

2

Process

AI is known as the creation of intelligent machines. Machines must be programmed to

learn. Several robots have been programmed to carry out a certain task. These robots require

human assistance to make decisions. AI robots should be able to not only carry out tasks but to

learn the affects of choices. Computer games have been able to simulate AI in a computerized

environment. Intelligent machines should also be able to learn about objects in the real world.

In computer games, AI can be simulated by programming an object to “understand” the

programming of another object, allowing it to know what the object can be used for. In the real

world, however, objects do not have a written program that a machine can read. AI controlled

machines will have to be able to understand the use and meaning of objects without needing

written information programmed into themselves.

At the start of the year we knew little about C++. We used Visual C++ because it was

easy to understand and use. The Microsoft® Visual C++ editor provided us with an useful tool

for programming. At the start, we were planning on using graphics to play the game and have

more than one team. The graphics are in appendix B. Since we didn’t get to that point this year

we decided that it would be better to do it next year. We made a couple of trips to Albuquerque

to see Wayne Sikes who helped us with all of our programming. He taught us what we needed

to know about C++.

Our project will demonstrate how AI functions. We will provide a character with a

computerized environment. The character will be programmed with the ability to see if a square

around it is open, closed, or the winning square. The AI programmed in it will see if the square

next to it is the winning square and if it is move there. If it is not the winning square then it will

3

look around at all the other squares and find out how many are open. It will then add them up

and divide by that number to randomly choose a spot were it will go

Problem Statement

The purpose of this project is to make a computer game that will simulate a character

running around trying to find winning a square. The character will look around itself to see

which squares are open or if it is the winning square. It then will decide where to move next.

Data

In the first part of our program we defined all of the variables. Some of the variables that

we had to define were the characters for the player, walls, and winning square, the map height,

and width, and the delay between each move. After defining the variables we set up an

enumeration the cells around the ‘s’. We labeled them BOUNDINGCELL_A,

BOUNDINGCELL_B, etc. Each Bounding Cell is relative to the Player’s (s) position. For

example, Bounding Cell A is located at PlayerX – 1 and PlayerY – 1. The program checks each

of the cells and marks them ‘occupied’ or ‘available’. The ‘s’ cannot move into an occupied cell.

A cell is occupied if it contains an ‘X’ or is the last cell the player was occupying. The program

also checks for a ‘W’. If the ‘W’ is adjacent to the ‘s’ the program ends. The ‘s’ randomly

chooses an available cell to move to. The map is then redrawn with the new data sent to it. The

height and width never change, but the cell the ‘s’ chooses to move to will contain an ‘s’ and the

old ‘s’ will be deleted.

4

The Program

// AI Project.cpp : Defines the entry point for the console application.

#include "stdafx.h"
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <memory.h>
#include <time.h>
// prototypes
void DrawMap(void);
void LayoutMap(void);
void MovePlayer(void);
#defineDISPLAY_DELAY 500
#defineMAP_WIDTH 12
#define MAP_HEIGHT 12
// map characters
#defineMAP_BORDER 'X'
#defineMAP_OPEN ' '
#defineMAP_WIN 'W'
#defineMAP_PLAYER 's'
#defineUSER_EXIT_KEY 'z'
#defineBOUNDING_CELL_AVAILABLE 0
#defineBOUNDING_CELL_OCCUPIED 1
// Map[y][x]
char Map[MAP_HEIGHT][MAP_WIDTH];
enum

{
BOUNDINGCELL_A = 0, // 0
BOUNDINGCELL_B, // 1
BOUNDINGCELL_C, // 2

BOUNDINGCELL_D, // 3
BOUNDINGCELL_E, // 4
BOUNDINGCELL_F, // 5
BOUNDINGCELL_G, // 6
BOUNDINGCELL_H // 7
};

// player movement
// player bounding cells as:
// A B C
// D s E
// F G H

5
//
struct PlayerBoundingTag
{

int BoundingCell[8];
} PlayerBoundingTest;
int PlayerX, PlayerY;
int LastPlayerX, LastPlayerY;
int WinGame;
int main(int argc, char* argv[])
{

unsigned int dwCurrentTime = GetTickCount();
unsigned int dwNextDisplay = dwCurrentTime + DISPLAY_DELAY;
int count;
int GameLoopCount;
// seed the random-number generator
srand((unsigned)time(NULL));
// INITIALIZE all data
// clear the map
memset(Map, 0, MAP_HEIGHT * MAP_WIDTH);
// clear the bounding structure
for(count = 0; count < 8; ++count)

PlayerBoundingTest.BoundingCell[count] =
BOUNDING_CELL_AVAILABLE;

GameLoopCount = 0;
WinGame = 0;
// DESIGN AND SETUP MAP
// draw border into map
LayoutMap();
// BIG GAME LOOP
// loop until user-requested exit or until the soldier wins
for(;;)

{
// wait until delay done - this is our display timer
// uncomment these lines to run in normal displayed mode
while(dwNextDisplay > GetTickCount());
// next time to display
dwNextDisplay = GetTickCount() + DISPLAY_DELAY;
// increment number of loops counter
++GameLoopCount;
// do the AI
// move the player
MovePlayer();
// draw the map

// uncomment this to draw the map
DrawMap();
// did user press a key to exit?

6
if(kbhit())

{
if(_getch() == USER_EXIT_KEY)

break;
}

// game loop breaks if WinGame is set to 1
if(WinGame == 1)

break;
} // end of game loop

printf("\n\n");
printf("Took %d times to win...\n", GameLoopCount);
printf("press any key to exit...");
while(!kbhit());
return 0;

}
///////////////////////////////
// MovePlayer()
//
// AI - calculate the new player position and then
// move them
//
void MovePlayer(void)
{

int TestX, TestY, count, TotalAvailableCells, RandomCell,
MoveToCell;

// determine which cells are available
// A
TestX = PlayerX - 1;
TestY = PlayerY - 1;
if(TestX == LastPlayerX && TestY == LastPlayerY)

PlayerBoundingTest.BoundingCell[BOUNDINGCELL_A] =
BOUNDING_CELL_OCCUPIED;

else if(Map[TestY][TestX] == MAP_OPEN)
PlayerBoundingTest.BoundingCell[BOUNDINGCELL_A] =

BOUNDING_CELL_AVAILABLE;
else if(Map[TestY][TestX] == MAP_WIN)

{
WinGame = 1;
return;
}

else
PlayerBoundingTest.BoundingCell[BOUNDINGCELL_A] =

BOUNDING_CELL_OCCUPIED;
// B
TestX = PlayerX;
TestY = PlayerY - 1;

7
if(TestX == LastPlayerX && TestY == LastPlayerY)

PlayerBoundingTest.BoundingCell[BOUNDINGCELL_B] =
BOUNDING_CELL_OCCUPIED;

else if(Map[TestY][TestX] == MAP_OPEN)
PlayerBoundingTest.BoundingCell[BOUNDINGCELL_B] =

BOUNDING_CELL_AVAILABLE;
else if(Map[TestY][TestX] == MAP_WIN)

{
WinGame = 1;
return;
}

else
PlayerBoundingTest.BoundingCell[BOUNDINGCELL_B] =

BOUNDING_CELL_OCCUPIED;
// C
TestX = PlayerX + 1;
TestY = PlayerY - 1;
if(TestX == LastPlayerX && TestY == LastPlayerY)

PlayerBoundingTest.BoundingCell[BOUNDINGCELL_C] =
BOUNDING_CELL_OCCUPIED;

else if(Map[TestY][TestX] == MAP_OPEN)
PlayerBoundingTest.BoundingCell[BOUNDINGCELL_C] =

BOUNDING_CELL_AVAILABLE;
else if(Map[TestY][TestX] == MAP_WIN)

{
WinGame = 1;
return;
}

else
PlayerBoundingTest.BoundingCell[BOUNDINGCELL_C] =

BOUNDING_CELL_OCCUPIED;

// D
TestX = PlayerX - 1;
TestY = PlayerY;
if(TestX == LastPlayerX && TestY == LastPlayerY)

PlayerBoundingTest.BoundingCell[BOUNDINGCELL_D] =
BOUNDING_CELL_OCCUPIED;

else if(Map[TestY][TestX] == MAP_OPEN)
PlayerBoundingTest.BoundingCell[BOUNDINGCELL_D] =

BOUNDING_CELL_AVAILABLE;
else if(Map[TestY][TestX] == MAP_WIN)

{
WinGame = 1;
return;
}

8
else

PlayerBoundingTest.BoundingCell[BOUNDINGCELL_D] =
BOUNDING_CELL_OCCUPIED;

// E
TestX = PlayerX + 1;
TestY = PlayerY;
if(TestX == LastPlayerX && TestY == LastPlayerY)

PlayerBoundingTest.BoundingCell[BOUNDINGCELL_E] =
BOUNDING_CELL_OCCUPIED;

else if(Map[TestY][TestX] == MAP_OPEN)
PlayerBoundingTest.BoundingCell[BOUNDINGCELL_E] =

BOUNDING_CELL_AVAILABLE;
else if(Map[TestY][TestX] == MAP_WIN)

{
WinGame = 1;
return;
}

else
PlayerBoundingTest.BoundingCell[BOUNDINGCELL_E] =

BOUNDING_CELL_OCCUPIED;
// F
TestX = PlayerX - 1;
TestY = PlayerY + 1;
if(TestX == LastPlayerX && TestY == LastPlayerY)

PlayerBoundingTest.BoundingCell[BOUNDINGCELL_F] =
BOUNDING_CELL_OCCUPIED;

else if(Map[TestY][TestX] == MAP_OPEN)
PlayerBoundingTest.BoundingCell[BOUNDINGCELL_F] =

BOUNDING_CELL_AVAILABLE;
else if(Map[TestY][TestX] == MAP_WIN)

{
WinGame = 1;
return;
}

else
PlayerBoundingTest.BoundingCell[BOUNDINGCELL_F] =

BOUNDING_CELL_OCCUPIED;
// G
TestX = PlayerX;
TestY = PlayerY + 1;
if(TestX == LastPlayerX && TestY == LastPlayerY)

PlayerBoundingTest.BoundingCell[BOUNDINGCELL_G] =
BOUNDING_CELL_OCCUPIED;

else if(Map[TestY][TestX] == MAP_OPEN)
PlayerBoundingTest.BoundingCell[BOUNDINGCELL_G] =

BOUNDING_CELL_AVAILABLE;

9
else if(Map[TestY][TestX] == MAP_WIN)

{
WinGame = 1;
return;
}

else
PlayerBoundingTest.BoundingCell[BOUNDINGCELL_G] =

BOUNDING_CELL_OCCUPIED;
// H
TestX = PlayerX + 1;
TestY = PlayerY + 1;
if(TestX == LastPlayerX && TestY == LastPlayerY)

PlayerBoundingTest.BoundingCell[BOUNDINGCELL_H] =
BOUNDING_CELL_OCCUPIED;

else if(Map[TestY][TestX] == MAP_OPEN)
PlayerBoundingTest.BoundingCell[BOUNDINGCELL_H] =

BOUNDING_CELL_AVAILABLE;
else if(Map[TestY][TestX] == MAP_WIN)

{
WinGame = 1;
return;
}

else
PlayerBoundingTest.BoundingCell[BOUNDINGCELL_H] =

BOUNDING_CELL_OCCUPIED;
// now, add up total number of available cells
TotalAvailableCells = 0;
for(count = 0; count < 8; ++count)

{
if(PlayerBoundingTest.BoundingCell[count] ==

BOUNDING_CELL_AVAILABLE)
++TotalAvailableCells;

}
// pick random number from available cells
RandomCell = rand() % TotalAvailableCells;
// decide which cell to move to
TotalAvailableCells = 0;
for(count = 0; count < 8; ++count)

{
if(PlayerBoundingTest.BoundingCell[count] ==

BOUNDING_CELL_AVAILABLE)
{
if(TotalAvailableCells == RandomCell)

MoveToCell = count;
++TotalAvailableCells;
}

10
}

// calculate which cell to move to
switch(MoveToCell)

{
case BOUNDINGCELL_A:

TestX = PlayerX - 1;
TestY = PlayerY - 1;
break;

case BOUNDINGCELL_B:
TestX = PlayerX;
TestY = PlayerY - 1;
break;

case BOUNDINGCELL_C:
TestX = PlayerX + 1;
TestY = PlayerY - 1;
break;

case BOUNDINGCELL_D:
TestX = PlayerX - 1;
TestY = PlayerY;
break;

case BOUNDINGCELL_E:
TestX = PlayerX + 1;
TestY = PlayerY;
break;

case BOUNDINGCELL_F:
TestX = PlayerX - 1;
TestY = PlayerY + 1;
break;

case BOUNDINGCELL_G:
TestX = PlayerX;
TestY = PlayerY + 1;
break;

case BOUNDINGCELL_H:
TestX = PlayerX + 1;
TestY = PlayerY + 1;
break;

} // End SWITCH

// move the player!
Map[TestY][TestX] = MAP_PLAYER;
Map[PlayerY][PlayerX] = MAP_OPEN;
// update the last player position
LastPlayerY = PlayerY;
LastPlayerX = PlayerX;
// move player
PlayerY = TestY;

11
PlayerX = TestX;

}
///////////////////////////////
// DrawMap()
//
// draws the game map on the console
void DrawMap(void)
{

int WidthCount, HeightCount;
for(HeightCount = 0; HeightCount < MAP_HEIGHT; ++HeightCount)

{
for(WidthCount = 0; WidthCount < MAP_WIDTH; ++WidthCount)

{
printf("%c", Map[HeightCount][WidthCount]);
}

printf("\n");
}

}
///////////////////////////////
// LayoutMap()
//
// draws the game map on the console
void LayoutMap(void)
{

int WidthCount, HeightCount;
// setup map borders
for(HeightCount = 0; HeightCount < MAP_HEIGHT; ++HeightCount)

{
// draw top and bottom rows of the map
if(HeightCount == 0 || HeightCount == (MAP_HEIGHT-1))

{
for(WidthCount = 0; WidthCount < MAP_WIDTH;

++WidthCount)
Map[HeightCount][WidthCount] = MAP_BORDER;

}
// get here and we're only drawing the left and right sides of the map
else

{
for(WidthCount = 0; WidthCount < MAP_WIDTH;

++WidthCount)
{
if(WidthCount == 0 || WidthCount == (MAP_WIDTH-1))

Map[HeightCount][WidthCount] =
MAP_BORDER;

else
Map[HeightCount][WidthCount] = MAP_OPEN;

12
}

}
}

// add the AI-win cell
int RandomX = rand() % (MAP_WIDTH-2);
int MapBottomHalf = (MAP_HEIGHT / 2) - 1;
int RandomY = rand() % ((MAP_HEIGHT-2)-MapBottomHalf);
Map[RandomY+MapBottomHalf][RandomX+1] = MAP_WIN;
// add soldier to the map
PlayerX = LastPlayerX = 1;
PlayerY = LastPlayerY = 1;
Map[PlayerY][PlayerX] = MAP_PLAYER;

}

Future Plans

Next year we plan to add more characters and another team. We plan to make combat

simulation using Artificial Intelligence. We eventually plan to create visual graphics (see

appendix B) to simulate combat. That may take two more years.

Conclusion

Our project has been intensive in code. We not only learned how to code in C++ we

learned that we had to make a change over to Visual C++. Our initial intentions were to program

a combat simulation in top-down view. Our goal was to learn video gaming as a skill and take

this project into next year doing an isometric view. However, after visiting with our mentor in

Albuquerque, we soon discovered that even a 2-D animation would take far more programming

knowledge and time to do than we had. Even though we spent many weeks creating graphics

and characters for our military simulation video game (see appendix B) we soon discovered that

this effort was going to take more coding experience than we had. After paying another visit to

13

our mentor we decided to create a simple modified version of our game in a format that we could

both understand and complete. Our program uses the beginnings of AI by having a character

(‘s’) look for a clear path until it becomes adjacent to the winning square (W). When it become

adjacent with the winning square the game is over and it will tell you how many moves it took to

win.

Acknowledgements

We would like to thank Mrs. Gray and Mr. Crawford for letting us use the lab and

helping us in any way that we needed. We would also like to thank Wayne Sikes for helping us

understand and develop the program.

Bibliography

Bauer, Matthew; Roberge, James; Smith, George K. Engaged Learning For Programming in

C++ 2nd . 2001 Jones & Bartlett Publishers.

Brown, Beth; Corica, Tim; Presley, Bruce. A guide to programming in C++. 1997 Lawrence

Press.

Davis, Stephen R. C++ For Dummies 3rd Edition. 1998 IDG Books Worldwide.

14

Appendices

Appendix A: Game Sample

XXXXXXXXXXXX
Xs X
X X
X X
X X
X X
X X
X X
X X
X W X
X X
XXXXXXXXXXXX

The starting position in the game.

XXXXXXXXXXXX
X X
X s X
X X
X X
X X
X X
X X
X X
X W X
X X
XXXXXXXXXXXX

The character starts looking for the winning square.

XXXXXXXXXXXX
X X
X X
X X
X X
X s X
X X
X X
X X
X W X
X X
XXXXXXXXXXXX

The Character keeps looking for the winning square.

15

XXXXXXXXXXXX
X X
X X
X X
X X
X X
X X
X s X
X X
X W X
X X
XXXXXXXXXXXX

It is almost to the winning square.

XXXXXXXXXXXX
X X
X X
X X
X X
X X
X X
X X
X s X
X W X
X X
XXXXXXXXXXXX

Took 29 times to win…
Press any key to exit…

The character has found the winning square and the game is over.

16

Appendix B: Graphics

Our Tank.
Our Man Walking.
Our robot walking.
 A rock. A tree.

	Team Members
	Teachers
	Project Mentor
	1
	Executive Summary

