Talesfrom the Encrypt

AiS Challenge
Final Report
April 3, 2002

Team #050
Manzano High School

Team Members:;
Robert Cordwell
Brian Rosen

Teacher:
Stephen Schum

Table of Contents

Team 050 -- Manzano H.S. -- "Tales from the Encrypt"

EXECULIVE SUMIMEAIY ...ttt e e e e et e e e e e e e eer e e et e e ens 3
1o [Tox 1 o o PP
BaCKgroUNd. ... e e e e e e e e e e nennenee . D
Background to ENCryption..........couevieiie i i e e e e ee a0 00D
HISIOry OF AES. ... o e e 7
Mathematical Background.c.ouii oo 8
Bitdlicing INfOrmation............ooui i e e e e e 10
Scientific Method. ... A

HYPOINESIS. .. e e e e e e e e e e 12
ProCEAUIE.o e e e e e 12

ACKNOWIEAGMENES.o e e et e e e e e ie e ne e eneeeeean 1D
REFEIENCES.ot e e e 16
Appendix A: Project Code: "BitSlicel0.CpP" ... cuvvvire it i e AT
Appendix B: Project Code Explanation: (Also see comments throughout project code.)..62
Appendix C: Mathematical EQUaLIONS...........cc.ovuiiiee e v e e e e e aean 66

Executive Summary

In encryption, the lock is the encryption and the key is the method of decryption. Recently, concerns have arisen that
the old encryption standard, the Digital Encryption Standard (DES), is insufficiently secure because increased computer speeds
make a brute force attack feasible in which every possible key is checked. Also of concernisthe fact that "weak" and "semi-
weak" keys allow for a shortcut attack that takes even less processor time to break. Finally, somein the encryption community
were concerned about the possibility of a"backdoor" in DES which would enable the U.S. Government to read whatever
message was chosen. The Commerce Department's National Institute of Standards and Technology hosted an international
competition, inviting programmers to create a new encryption algorithm. The winning algorithm, chosen for its security and
speed was called Rijndael after its creators, John Daemen and Vincent Rijmen and will become effective as the Advanced
Encryption Standard (AES) on May 26, 2002.

AES s ablock-encryption algorithm. In other words, it encrypts blocks of varying bit lengths from the smallest of
128 hitsto the largest of 256 bits. We have worked with the 128-bit key version, although our work can extend to the larger bit
sizes.

In our approach to encryption, we used the same encryption algorithm as AES, but implemented it in a different way
by using atechnique called bitdlicing. Bitdicing is aprogramming technique which can be used to encrypt multiple values at
once. Instead of encrypting the first entire 128-hit block, then the second, bitslicing breaks off each of the individual bits, and
groups them into "extended bits'. Thus, one extended bit contains al of the first bits for a set of values that need encrypting.
The main disadvantage of bitdicing isthat very efficient "lookup tables", are not possible. A "lookup table" is amethod of
retrieving previously calculated solutions to a complex mathematical equation. Thus, in bitslicing, all mathematical operations
must be calculated directly using basic register operations such as XOR, AND, OR, etc.... However, bitdicing does have a
tremendous potential speed advantage because it encrypts many values simultaneously. Therefore, the speed of bitslicing may
be similar to or even surpass the speed achieved by using lookup tables.

The purpose of our project was to test the effects of bitslicing on the Advanced Encryption Standard. Our first test
program implementing AES used mathematical operations rather than lookup table to accomplish the basic, non-bitsliced
encryption. The program was slow, but it worked, leading to a second test program which used bitslicing and similar
mathematical methods to encrypt many values simultaneously. A third program, also using bitslicing but taking advantage of
faster mathematical methods and processor properties is under development.

Our hypothesis was that the bitsliced program would encrypt values about 4 times slower than the lookup-table
implementation, based on the much larger number of operations, but benefiting from the simultaneity of bitslicing. The
computer that we used had 64-bit MM X registers as the largest available. To make use of these specia registers necessitated
using assembly level instructions. Asit turned out, our hypothesis, based on counting the number of stepsin the assembly
level instructions, was quite accurate (within about 10 percent).

Most of our bitdlicing program was built using assembly level code, which allows for only basic operations. Thisis
not amgjor disadvantage, because any complicated mathematical Boolean operation can be implemented with simple
operations. Moreover, some operations, such as permutations, are much more efficient under bitslicing. The main advantage of
using the larger 64-bit MMX registers (and hence the assembly code) is the twofold speed improvement over the 32-bit regular
registers. Finally, because assembly level code istaken by the compiler at face value, it is easier to optimize by directly
changing some of the code around.

Our results showed that for 64-bit registers the speed at which the unimproved bitsliced program ran was slower, but
still comparable to the lookup-table program. We think that we can almost double the speed of the bitsliced program by taking
advantage of processor pipelining of instructions. Moreover, as register size doubles (128-bit registers are commercially
available), the amount of time taken for the bitslicing is the same, but the number of encryptions also doubles, while the time
taken for alookup table program stays the same. In a computer with 256-bit registers, the bitsliced implementation could then
potentially be twice as fast as the lookup table implementation. This hasimportant implications for future implementations of
the AES algorithm whenever large amounts of data need to be encrypted quickly, such as the streaming video from an
Unmanned Aerial Vehicle.

The size of an extended bit can be aslong as the largest register size. For an Intel Pentium 11, the normal register size
is 32 hits, but there are also 8 64-hit registers available, which we made use of. Taking an XOR operation of the first extended
bit with the second is equivalent to taking an XOR operation of the first bit with the second in all 64 blocks simultaneously.

I ntroduction

Our project is an attempt to increase the speed of the soon-to-be Advanced Encryption Standard
by using the bitslicing programming technique. Bitslicing is a programming technique which allows for
encryption of multiple values simultaneously. Our main program uses the bitslicing technique to encrypt
aset of values. The results are the same as those generated by AES, but the techinque used is radically

different.

We are a so including possible methods to make the encryption more secure, such as cipher
feedback mode. It isimportant to notice that when cipher feedback mode is used, decryption of the cipher
does not require the decryption of the AES algorithm. Thus, a decryption algorithm is entirely
unnecessary when using cipher feedback mode (and it saves space not to have a decryption algorithm).
We do not currently have a decryption algorithm but may make one by the time of the final presentation.

Possible applications range from a faster encryption of very large files to faster on-the-site
encryption of streaming video from battlefield robots and unmanned vehicles. We may aso present our
project and corresponding results at a cryptology conference. Possible further developmentsinclude
"pipelining” the code to make it more efficient, reducing the amount of code needed by creating the S-box

inverse directly, and also developing a program which can encrypt and decrypt files and pictures.

Abstract

Using Bitdlicing in the Advanced Encryption Standard

The purpose of this project isto test the effects of bitslicing, atechnique for parallel encryption, on
the Advanced Encryption Standard (AES). Theinitial idea was to write a program that would perform the
same operations as the AES, but would use mathematical operations instead of lookup tables (the current
standard) to encrypt values. Thisled to a second program, which utilized the bitslicing technique to
improve the speed.

Both programs were built using Microsoft Visual C++. All speed tests used the built-in timer
function to eliminate human error and were performed under identical conditions. Sub-functions of the
AES and of the programs (except related to the encryption key-expansion) were tested separately,
millions of times each. The final speed values were determined by combining the times taken to perform
each of the individual functions.

Thefirst program was approximately a thousand times slower than the lookup table program.
The second, bitsliced program took approximately 11.4 seconds for 10 million "rounds" (excluding key-
expansion operations) on an Intel 450 MHz Pentium I1. The standard lookup table program took about
2.5 seconds on the same processor.

This project has potentially important implications for large-scale encryption, such as for streaming video
or large program files. By using larger register sizes (special dedicated hardware), the speed could be
greatly increased. Every time the register size doubles, the number of encryptions per run does also. The
speed of future versions of the program can also be increased by making the code more efficient.

Background for Encryption

Any procedure used in cryptography to convert plain-text into cipher-text in order

to prevent any but the intended recipient from reading that data.

For the longest of times, the problem of the wrong peopl e intercepting messages not intended for
them has plagued mankind. Encryption, though it has changed over the years, was and is usually the
solution. Over time, people actually began to ‘ cipher’ messages, rather then simply using words unknown
to the enemy or hiding the message. For a cipher, the words and letters would be altered in some way,
possibly by the transposition of |etters or the substitution of other letters. Thus, the art of codebreaking
also arose. All algorithms, except for the theoretically unbreakable "one-time pads’ will at some point be
broken, even if it takes a hundred years on current technology. One-time pads Still, though, encryption is
used for many purposes, be it security, messages from government to army, or even just two friends
talking.

It ismindless to put years of time into developing thousands of ‘unbreakable’ algorithm one-time
pads. Instead, it iswiser to develop an encryption program which would take a year to break a message
(only to find out that it was a confirmation of an online order). If there are an extremely large number of
possible keys, a code breaker could be slowed down. It is aso important to change the key occasionally.
If an enemy army intercepts the message "%8Un" and the good army goes west, the next time the enemy
army intercepts a message saying "%8Un" they will know that the good army will go west. This method
of codebreaking is known as traffic analysis.

Another problem some current algorithms have is that they are too slow for certain applications.
If it takes along time to encrypt streaming video from an Unmanned Aerial Vehicle, the operator may not
be able to see the enemy soldiers with their AA missile launchers. The solution to this comesin many

different forms, such as bitdlicing or dedicated hardware.

Modern agorithms have many loops, some of which seem extraneous and a waste of time;
however, they are needed to prevent certain shortcut methods of codebreaking. The fact that computers

almost never get "confused" or drop a byte allows many modern algorithms to be quite complicated.

History of the AES Competition

A year ago, researchers from 12 different countries submitted 15 candidates for the Advanced
Encryption Standard (AES) —the new encoding method that eventually will be adopted by the federal
government. These candidates have been subjected to many different simulated "attacks" by

cryptographers, narrowing the choice to only 5 possible candidate algorithms.

The AES will be a public algorithm designed to protect sensitive government information well
into the next century and will replace the aging Data Encryption Standard, currently used in both the

private and the government sectors.

The following five candidates were selected: MARS, RC6™, Rijndael, Serpent, and Twofish. No
significant security vulnerabilities were found for the five finalists. At a 128 bit key size, there are
approximately 340,000,000,000,000,000,000,000,000,000,000,000,000 (340 followed by 36 zeroes)
possible keys. An exhaustive search of all of the keys would take a tremendous amount of time, even for

amassive supercomputer or many computers working in tandem.

The final decision was determined by several factors, including speed, security, and the simplicity of
the algorithm, among others. The final winner was Rijndael, which had a simple code, was easy to
implement (even on a Smart Card), and is, in theory, perfectly secure. Rijndael will become the new
Advanced Encryption Standard as of May 26, 2002.

Reference: Various excerpts were taken from an online publication at http://www.nist.gov .

http://www.nist.gov/

M athematical Background of AES

AES uses severa different mathematical techniques including base 2 polynomia multiplication,
and Galois Fields for the s-box and mixcolumns transformations. To fully understand what happens when

these transformations are performed, some mathematical background isin order.

In base 2, there are only two numbers, 0 and 1. Base 2 polynomials are like normal polynomials,
except they use only 0 and 1 for coefficients. For example, x* + x> + x + 1 would be a base 2 polynomial.
If this polynomial were added to the polynomial x° + x* + x using normal polynomial addition, the result
would be x° + x* + 2x® + 2x + 1. However, with base 2 polynomials, the answer would be x° + x* + 1,
because al 2s are "cancelled out". Notice that addition is the same thing as subtraction. Polynomial

multiplication works in much the same way.

Irreducible polynomials are those for which two other polynomials cannot be chosen which
multiply out to that particular polynomial. For example, x> + 1 is not irreducible, because in base 2 it is
equal to
(x +)(x + 1). Irreducible polynomials are used to generate Galois fields, which are fields of all base
prime number (always 2 in this case) polynomials modulus an irreducible polynomial. For example, there
isaGalois field created with the polynomial x* + x + 1. Suppose that | multiply (x +1)(x +1) in this field.

The answer would be (x* + 2x + 1) + (x* + X + 1) = 2x* + 3x + 2 = x.

A property of any field is that every element has an inverse. This also holds for Galois fields
(when the zero element is removed). In the field created by the polynomial x* + x + 1, the inverse of
(x+1) is x and visa versa, because (x + 1)*x = x* + x = 1. Legrange's theorem says that any value in a
finite group to the power of the number of elements equals one. This meansthat (x + 1)° = 1. Also notice
that because thisis true for any element, an element to the power of the number of elements of the group —
1isequal to theinverse. Thus, (x + 1) = x, and this was previously demonstrated.
This property is used in the S-box transformation. The S-box inverse transformation takes the inverse of
apolynomial in the Galois field determined by the irreducible polynomial x® + x* + x> + x + 1. There are
256 elements in this field, 255 in the resulting multiplicative group (taking away 0), and thus the inverse
can be determined by taking the polynomial to the 254" power. Obviously, it is inefficient to take the
polynomia to such a high power using 253 multiplication steps. Instead, we notice that squaring a
polynomial over base 2 is relatively easy, while multiplying two different polynomials is fairly difficult.

8

We can get the 254 power by performing the following steps. Notice that there are only four

multiplications.

Start with apolynomial to beinverted. Call it x.

Square it and store that result in "a". Now we have x*

Square it again and multiply that result by "a". Now we have x° stored in "a".
Square thistwice and storeitin"b".

Multiply "b" by "a". Now we have x* stored in "a" and x24 stored in "b"
Square"b" twice and multiply it by "a". This gives us x*

Multiply this by the original x. This produces x**’

Square thisvalue. This gives x*™* and the inverse.

The affine transformation is much ssimpler than the inverse. It treats the 8 bits as though they were
a vector and multiplies them by a matrix. Finally, four of the eight bits are inverted (one goes to zero,

Zero goes to one).

The shiftrows transformation simply moves bytes around. No mathematical explanation is
needed.

The mixcolumns operation uses many of the same basic principles as the S-box. However,
mixcolumns looks at four bytes simultaneously in afour by one vector. The operation can be described as

follows:

ax 1 1 x+1%&317x7 +a,x° +..a,x° H MBytelq
D<+1 X 1 1 mb,x" +b,x°® +..byx° O_[Byte 20

x+1 x 1 Bexsexe+.ox0 D %yte:%D
ﬁ 1 x+1 X @17% +dgx° +..d
Each coefficient is actually an element of GF(28). The resulting polynomial in x is reduced mod (x* + 1).
If this polynomial were irreducible, we would get a field of GF(256%). The polynomial is not irreducible,
but each row element has an inverse mod x* + 1. Thus, the matrix has an inverse.

Bitslicing
Bitdlicing is a method of improving the speed of some encryption agorithms by encrypting many
different values simultaneously. In normal encryption of 64 values, | start with a 16 byte value, run the
encryption program on it, then move on to the other 63 values. In bitslicing, | ook at the first bits of all

64 values simultaneously and perform operations simultaneously. Instead of looking up values for the s-
box transformation, | must calculate them, using logical gates such as XOR and AND.

Maormal Erncreption

HEESTINNIEEEEEN
ElFlalglal TITTTT T ITT]

bfcdelff T{ T [T LT [{1]
Bitzliced Encryption

5 |
a
f

mu:-r:-|

3]
3
d

l:rn:n—ll
o -qm|

The advantage of bitslicing occurs when the processor oneis using is able to process long strings
simultaneously. For example, many processors nowadays can process 128-bit strings. As processors

become faster and faster and the demands increase, the string processing length will also increase. This
will continue to make bitslicing more efficient.

Scientific M ethod:

10

Resear ch Plan

Objective: Develop a simple encryption algorithm which does not relate to the AES. This will be used
to gain a greater understanding of computer programming as well as possibly being used to perform tests
on the AES algorithm later on.

I Develop an agorithm which performs the same tasks as the actual Rijndagl algorithm, but does
not utilize lookup tables. This will be considered the "control" experiment. The control will mainly be
used to gain a greater understanding of the programming and mathematical techniquesinvolved.

: Develop an algorithm which uses bitdlicing techniques and assembly code. Optimize the bitslice
program by using various programming techniques and by using mathematics to determine the fastest
way to perform certain calculations. This optimization may include using a different processor with

larger registers or by using programming techniques specific to a certain processor.

[1: Compare the speed of the "control" program with the bitdiced algorithm. Test the different
functions separately, however many times it takes to get a meaningful result (may be in the millions).

Use these results to try to optimize the bitsliced algorithm further.

IV: Compare the speed of the bitsiced AES agorithm to the lookup table algorithm. One test will
involve testing the different sub-functions of the AES algorithm and comparing their speed against the
speed of the bitsliced algorithm. Final speed will be determined by a combination of the times for the
different functions. Finally, determine the necessary conditions for the bitdliced algorithm to become

more efficient.

V. Compare the speed, effectiveness and complexity of the bitdicing encryption method to Brian's
alternative encryption program. (See Project Code - Method 2.)

VI: Write up results and conclusions. Some future research may include further optimization, the
development of dedicated hardware, and/or the use/inclusion of other encryption techniques to achieve
faster speeds.

Hypothesis
11

A bhitdliced Advanced Encryption Standard or AES program will be less efficient than one which
uses lookup tables for 64-bit registers. However, if 256-bit registers (currently not used in most Intel-
based desktops) were used, then the bitsliced program would become more efficient than the lookup table
program (the current official AES program).

Procedure
A computer program combining C++ and assembly language-based code was written to
implement/simulate the mathematical equations (algorithm) explained in the Mathematical Background
for AES and Appendices A,B, and C. The computer program flow chart for the AES Encryption

Algorithmis outlined in the next section.

Flowchart for AES Encryption Algorithm

I Preliminaries
Theinput is a 128-bit "text" to be encrypted and a 128-bit key. These are transformed to produce an
encrypted 128-bit output.
A: Starting Operation
Aninitial bitwise XOR operation of the text with the Roundkey is performed before any other
operations.

: Rounds
There are 10 Rounds in the encryption algorithm. Most consist of four operations except for the last.
A: S-Box
The S-Box isthefirst operation in the Round. It takes single bytes at atime for all 16 bytes and
consists of two parts.
1 Inverse
The inverse treats the byte as the coefficients of a polynomial in GF(2®) and takesits
inverse modulus the polynomial x® + x* + x> + x + 1. See the Mathematical Background
section.
2: Affine
The Affine treats the byte as a vector, multiplying it by a matrix of ones and zeroes
(addition is performed by a bitwise XOR operation.) and then
adding it to another vector.
B: ShiftRows
This transformation is performed once per round. It treats the bytes as though they wereina4 x 4
matrix and does a number of left circular shifts one some of the rows. Thisisto allow for
"diffusion” when the next operation is performed.
C: MixColumns
Thistransformation looks at each "column™ in the 4 x 4 matrix of bytesindividually. It treats each
byte as a polynomial in GF(2®%) and multiplies the vector determined by the 4-byte column by a4 x
4 matrix consisting of polynomialsin GF(2®).
D: AddRoundKey

12

This transformation finishes every round and performs a bitwise XOR of the RoundKey with the
current encrypted state.

Keys

The key is once at the beginning, but a special Roundkey is generated for each round.

A: Roundkey Generation

Each Roundkey is generated from the previous Roundkey (or the original key). Thefirst four
bytes are found by using a tranformation on the last 4 bytes of the origina Roundkey which uses
the S-box on each one and then rotates them, finally adding a constant. The next 4 bytes are found
by abitwise XOR of the previous four bytes and the four bytes in the same corresponding position

in the previous Roundkey. Same for the next 8 bytes.

Results -- Data

Human error was removed by causing the computer to compute the start time for the calculation

and the end time for the calculation. All programs were run without any side programs on, such asMS

Word. Thus, the results are accurate to one second, the resolution of the timing function used. Millions

of repetitions also helped to dispel any random errors.

Ten trialswere performed for four different implementation aspects: (timesin seconds)
640,000,000 runs of S-box for bitsliced:
Time: 43 43 43 44 43 43 43 43 43 43 Average=43.1 sec
640,000,000 runs of Mixcolumnsfor bitsliced:
Time: 10 10 10 10 10 10 10 10 10 10 Average = 10.0 sec
2,000,000,000 runs of table lookup operation:
Time: 20 20 20 20 21 20 20 20 21 20 Average = 20.2 sec
2,000,000,000 runs of XOR operation:
Time: 6 5 6 6 5 5 6 5 5 6 Average= 5.5 sec
Overal time for 10,000,000 bitsliced rounds (16 S-boxes and 4 Mixcolumns): 11.4 sec
Overal time for 10,000,000 lookup rounds (16 lookups and 16 XORS): 2.50 sec

A sample output from the program is shown in Table | on. the next page.

Tablel. Sample Output from the" BitslicelO.cpp” Program.

kkhkhkkkkhhkkhkkhhhkhkkhhhkhkhhkhkhhhkhkhhkhkhkhhkhkhhhkhkhhkhkhhhkhkhhkhkkhkhhkhkhhkkhkhhkkhkkk,kkk**

o 1, 1,01 o0 0 1, 1, 1, O O O 1, O, O 1, 1, 1, O, O, O, O,

13

RPOOP
POPP
ocopro

o e e
o e e

PR OO
RrOOR
or oo
PR OO

OO0O0ORrR O
OCOOR Rk
RPOoOOOR
OORr OO
RPOROR
ORrO0OOR
PR, OOO
OR R RERO
RPOR OO
FOOOO
coropr
FOROR
oOroro

orprr

Press any key to continue
khkkkkkkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkkhkkhkkhkhkhkhkkhkkhkhkhkhkhkkhkkhkkhkkhkhkhkhkhkkhkhkhkhkkhkkhkkhkhkkkkkhkkhkkkkkkkkx*x

The above output is the result of an input of "00112233445566778899aabbccddeeft" (in
hexadecimal notation) for the plain text to be encrypted and "000102030405060708090a0b0c0d0e0f" for
the key (and all of the expanded keys).

The output should be, according to known values in the FIPS publication, equal to: 69 c4 e0 d8
6a 7b 04 30 d8 cd b7 80 70 b4 c5 5a To check this, look at each 4 bit output group. Thefirst
should be equal to 6, or 0*8+1*4+1*2+0*1 = 6. The second isequal to 9, because 1*8+ 0*4+ 0*2+ 1*1
= 9. All of therest of the results can be checked.

Analysis

This project involved applying a fairly well known technique in a unique and creative way. Our
most original result is that we managed to demonstrate that the bitslicing encryption technique could be
used to increase the speed of the AES algorithm for high volumes in the very near future. At first, we did
not expect that the bitsliced program would be so fast. Certainly, our data shows that cryptographers
should consider the bitslicing technique for implementation in the Advanced Encryption Standard.

Itiscritical to first note that when alarger register is used (128-bit or hypothetical 256-bit), is
performance speed for moves and logical gate operationsisidentical to the speed of a smaller register.
This property of the Intel chip architecture allows me to predict the performance of my bitslicing program
on larger register types. The second critical thing to note isthat computers in general are extremely
consistent in their speed of performance for agiven task. That said, we can use a combination of
theoretical and actual timed calculations to give an ideafor how long the bitsliced version would take
compared to the table-lookup and the control versions.

Conclusions

14

By adding some optimization measures to the bitsliced program, the bitslicing program could
possibly gain a speed advantage over the lookup table implementation. Such optimization measures could
include a more efficient routine for taking a polynomial to the fourth power or even a subroutine to
compute the inverse directly without using polynomial multiplication. Another one would be
"pipelining,” or switching around commands to move and XOR registers so that the two sub-processors
could work simultaneously. Because the Intel chip architecture, as explained in Analysis, is designed so
that operations with larger registers take exactly the same time as operations with smaller registers, time
calculations can be made for currently hypothetical large registers. Asregister sizes increase and chips

begin to use 256 and 512-bit registers, bitslicing could become the accepted method for AES encryption.

Acknowledgments

15

We would like to thank everyone who has generously contributed their time and effort to help us
in our endeavor: my parents for driving, my sisters for being amenable to scheduling their home computer
work around our computer time needs, and all of our teachers. We could never have developed our

project had it not been for their aid and support.

A specia thanks goes to our mentor, Dr. William R. Cordwell, who gave us the idea of using
bitdlicing as atechnique in encryption. His patient guiding and humor helped us get through the times
when we thought that we would never get the bugs out of our code. He was supportive, never

dominating.

We are also extremely grateful to our teacher, Stephen Schum, who gave us computer time on the
Manzano HS computers and al so taught us programming techniques in the Adventures in Supercomputing
course. He was willing to give up his own personal time over vacation and in the evenings to support us.
His encouragement and wise guidance kept us on track.

Refer ences

Biham, Eli, "A Fast New DES Implementation in Software" Israel, 1997
Daemen, John and Rijmen, Vincent "AES Proposal: Rijndael," 1999

Federal Information Processing Standards, "Announcing the Advanced Encryption Standard"”, November
2001

"Intel Architecture Developers Manuel Volume 1," 2001, pp. 231-240
"Intel Architecture Developers Manuel Volume 2," 2002, pp. 472, 516-580

http://www.nist.gov/public_affairs/releases/g99-111.htm, "NIST Announces Encryption Standard
Finalists, " August 9, 1999

16

http://www.nist.gov/public_affairs/releases/g99-111.htm

Appendi x A. Project Code
Team 050, Manzano Hi gh School, "Tales fromthe Encrypt"”

/1 Program nane: BitslicelO.cpp -- (Bitsliced Rijndael nodification)
/1 Aut hor: Robert Cordwel |
/| Dat e: April 1, 2002

#i ncl ude <i ostream h>
#i ncl ude <stdi o. h>

unsi gned long int inverse[2+1];

unsi gned long int t[30+1];

unsigned long int c[16+1];

unsi gned long int nf16+1];

unsi gned long int thblock|[256+1];

unsi gned long int bl ock[256+1];
i

unsi gned long int GFinverse[16+1];
unsi gned |l ong int roundkey[2816+1];

unsigned long int* inverse_ptr;

unsigned long int* t_ptr;
unsigned long int* c_ptr;
unsigned long int* moptr;

unsi gned | ong
unsi gned | ong
unsi gned | ong

nt* tblock ptr;
nt* bl ock_ptr;
nt* roundkey_ptr;

unsi gned long int* block byte ptr;
unsi gned long int* tbl ock byte ptr;

int p=0;

voi d sbox(unsigned long int*, unsigned long int*);

voi d square(void);

void mult(void);

void affine(void);

voi d m xcol ums(unsigned long int*, unsigned long int*);

voi d build _round_key(unsigned char*, unsigned long int*, int);
voi d addr oundkey(unsi gned long int*, unsigned long int*, int);

const unsigned | ong int one = OXFFFFFFFF;
const unsigned long int zero = 0X00000000;

i nt i;
int j;
char pause;

int row

int col

int |;

/1 The roundkeys in this case are already pregenerated, as though they had just been
created

/1fromthe function int keyexpansion(unsigned char* key, unsigned |ong int* expkey).
/1 This function is shown below, and is used in the non-bitsliced program

[/ START FUNCTI ON
/I Expands the key for the roundkeys. This generates seveal different keys, each of
/Iwhich is used individually.

17

/*
i nt keyexpansi on(unsi gned char* key, unsigned |ong int* expkey)
unsi gned long int tenp;
int i;
doubl e p;

for(i=0;i<4;i++)
expkey[i] = (key[4*i]" key[4*i +1] <<8"key[4*i +2] <<16”key[4*i +3] <<24);

for(i=4;i<44;i++)

{
tenmp = expkey[i-1];
p=1i;
i f(fnod(p, 4.0)==0)
tenp = subword(tenp)”rcon(i/4);
expkey[i] = expkey[i - 4] " tenp;
}
return O;
}
*/

/1 END FUNCTI ON
unsi gned char ol droundkey[176] =
{
0X00, 0X01, 0X02, 0X03, 0X04, 0X05, 0X06, 0X07,

0X08, 0X09, OX0A, 0X0B, 0Xo0C, 0X0D, OXOE, OXOF
0XD6, OXAA, 0X74, OXFD, 0XD2, OXAF, 0X72, OXFA,

OXDA, O0XA6, 0X78, OXF1, OXDs, OXAB, 0X76, OXFE
0XB6, 0X92, OXCF, 0X0B, 0X64, 0X3D, 0XBD, OXF1

OXBE, 0X9B, 0XC5, 0X00, 0X68, 0X30, 0XB3, OXFE
0XB6, OXFF, 0X74, OX4E, 0XD2, 0XC2, 0OXC9, OXBF,

0X6C, 0X59, OX0C, OXBF, 0X04, 0X69, OXBF, 0Xx41,
0X47, OXF7, OXF7, OXBC, 0X95, 0X35, OX3E, 0X03,

0XF9, 0X6C, 0X32, 0XBC, OXFD, 0X05, 0X8D, OXFD
0X3C, OXAA, O0XA3, OXE8, 0XA9, O0X9F, 0X9D, OXEB

0X50, OXF3, OXAF, 0X57, OXAD, 0XF6, 0X22, OXAA,
OX5E, 0X39, OXOF, O0X7D, O0XF7, 0XA6, 0X92, 0X96

0XA7, 0X55, 0X3D, 0XCl, OXOA, 0XA3, OX1F, 0X6B
0X14, OXF9, 0X70, OX1A, OXE3, O0X5F, OXE2, 0X8C

0X44, OXOA, OXDF, 0X4D, OXA4E, 0XA9, 0XC0, 0X26
0X47, 0X43, 0X87, 0X35, 0XA4, OX1LC, 0X65, 0XB9,

OXEO, 0X16, OXBA, OXF4, OXAE, 0XBF, OX7A, 0OXD2,
0X54, 0X99, 0X32, 0XDl1, O0XFO, 0X85, 0X57, 0X68,

0X10, 0X93, OXED, 0X9C, OXBE, 0X2C, 0X97, OX4E,
0X13, 0X11, OX1D, OX7F, OXE3, 0X94, OX4A, 0X17,
0XF3, 0X07, OXA7, 0X8B, 0X4D, 0X2B, 0X30, OXC5
}; //This contians the original 16-byte roundkey in addition to all 10 of the
/I expanded roundkeys.

voi d mai n(voi d)
ios::sync_with stdio();

cout.setf(ios::hex,ios::basefield);
cout.setf(ios::uppercase);
cout.setf(ios::right);
cout.setf(ios::internal);

cout.setf(ios::right,ios::adjustfield);
cout.fill('0");

/I Pseudocode for S-box

//Load values into mx. Values are stored in block

/1 Square and nodulus. Store as M

/1 Square and nodul us again. Store as C

//Mulitiply Mand C

/1 Square and nodul us again. Store as C

/IMultiply (A* B) * C. Store as A

/1 Square and nodulus three tines. Store as B. Program has yet to be generated to do
this efficiently

//Mulitiply (A* B) * S Store as A

/1 Square and nodulus it. This is the inverse.

/1 Run affine transfornmation.

/I Notice that efficiency could be increased by changing the nultiplication function

/! square and nodulus of nms to mMs

/1 __asm{

/1 ems
/1 pusha
11}

/*When | amcalling up 8 byte "quadwords" the conputer expects a nenory address which
is divisible

by 8. However, mnmy arrays are made up of 4 byte unsigned integers. | could have used
8 byte

doubl es, but the conmputer expects these to be in a specific format. Thus, if the
nenory

| ocation of the array is divisible by 4 but not by 8 | create a tenporary new array
| ocation

which is divisible by 8.*/

roundkey_ptr = roundkey;
if ((((unsigned |long int)roundkey ptr)98)!=0)
roundkey_ptr ++;

i nverse_ptr = inverse
if ((((unsigned long int)inverse_ptr)%8)!=0)
i nverse_ptr++

t_ptr =t;
if ((((unsigned long int)t_ptr)u)!=0)
t_ptr++;

c_ptr = c;
if ((((unsigned long int)c_ptr)u)!=0)
c_ptr++

mptr = m
if ((((unsigned long int)mptr)%8)!=0)
m ptr++

t bl ock_ptr = tbl ock;
if ((((unsigned long int)tblock ptr)98)!=0)
t bl ock_ptr++

bl ock_ptr = bl ock;
if ((((unsigned long int)block_ptr)uB)!=0)

19

bl ock_ptr ++;

!/l inverse of 10101101 should be 11100111, + affine should be 173 = 10010101
/'l inverse of 255 should be 00011100, + affine should be 22 = 00010110

/1 These should be OXFFFFFFFF, but they are only 1 so that it is easier to read the

/] out put .

//We only test a single value for the bitsliced nmethod because the sane operations
/lare perforned on all of the values, so if it works for a single value, it works for
/1 every val ue.
i nverse_ptr[O0]
i nverse_ptr[1]
i nverse_ptr[2]

1
1,
1.

/] Tenporary bl ock settings. These are used to test the program- they correspond to
/la known val ue test shown in the FIPS publication

//Notice that only single ones and zeroes are used.

/1 This is for ease of reading the value off.

bl ock_ptr[0]
bl ock_ptr[1]
bl ock_ptr][2]
bl ock_ptr[3]
bl ock_ptr[4]
bl ock_ptr[5]
bl ock_ptr][6]
bl ock_ptr[7]
bl ock_ptr][8]
bl ock_ptr[9]
bl ock_ptr[10]
bl ock_ptr[11]
bl ock_ptr[12]
bl ock_ptr[13]
bl ock_ptr[14]
bl ock_ptr[15]

CLRLLLLeLLeee

LR e”

bl ock_ptr[16]
bl ock_ptr[17]
bl ock_ptr[18]
bl ock_ptr[19]
bl ock_ptr[20]
bl ock_ptr[21]
bl ock_ptr[22]
bl ock_ptr[23]
bl ock_ptr[24]
bl ock_ptr[25]
bl ock_ptr[26]
bl ock_ptr[27]
bl ock_ptr[28]
bl ock_ptr[29]
bl ock_ptr[30]
bl ock_ptr[31]

bl ock_ptr[32]
bl ock_ptr[33]
bl ock_ptr[34]
bl ock_ptr[35]
bl ock_ptr[36]
bl ock_ptr[37]
bl ock_ptr[38]
bl ock_ptr[39]

(TR T TR TR TR TR TR
OO0 O0ORrRRLROO

20

bl ock_ptr[40]
bl ock_ptr[41]
bl ock_ptr[42]
bl ock_ptr[43]
bl ock_ptr[44]
bl ock_ptr[45]
bl ock_ptr[46]
bl ock_ptr[47]

bl ock_ptr[48]
bl ock_ptr[49]
bl ock_ptr[50]
bl ock_ptr[51]
bl ock_ptr[52]
bl ock_ptr[53]
bl ock_ptr[54]
bl ock_ptr[55]
bl ock_ptr[56]
bl ock_ptr[57]
bl ock_ptr[58]
bl ock_ptr[59]
bl ock_ptr[60]
bl ock_ptr[61]
bl ock_ptr[62]
bl ock_ptr[63]

bl ock_ptr[64]
bl ock_ptr[65]
bl ock_ptr[66]
bl ock_ptr[67]
bl ock_ptr[68]
bl ock_ptr[69]
bl ock_ptr[70]
bl ock_ptr[71]
bl ock_ptr[72]
bl ock_ptr[73]
bl ock_ptr[74]
bl ock_ptr[75]
bl ock_ptr[76]
bl ock_ptr[77]
bl ock_ptr[78]
bl ock_ptr[79]

bl ock_ptr[80]
bl ock_ptr[81]
bl ock_ptr[82]
bl ock_ptr[83]
bl ock_ptr[84]
bl ock_ptr[85]
bl ock_ptr[86]
bl ock_ptr[87]
bl ock_ptr[88]
bl ock_ptr[89]
bl ock_ptr[90]
bl ock_ptr[91]
bl ock_ptr[92]
bl ock_ptr[93]
bl ock_ptr[94]
bl ock_ptr[95]

OO0ORrPPOOOOOORFROO0O0O

bl ock_ptr[80+16]
bl ock_ptr[81+16]
bl ock_ptr[82+16]
bl ock_ptr[83+16]
bl ock_ptr[84+16]
bl ock_ptr[85+16]
bl ock_ptr[86+16]
bl ock_ptr[87+16]
bl ock_ptr[88+16]
bl ock_ptr[89+16]
bl ock_ptr[90+16]
bl ock_ptr[91+16]
bl ock_ptr[92+16]
bl ock_ptr[93+16]
bl ock_ptr[94+16]
bl ock_ptr[95+16]

bl ock_ptr[80+32]
bl ock_ptr[81+32]
bl ock_ptr[82+32]
bl ock_ptr[83+32]
bl ock_ptr[84+32]
bl ock_ptr[85+32]
bl ock_ptr[86+32]
bl ock_ptr[87+32]
bl ock_ptr[88+32]
bl ock_ptr[89+32]
bl ock_ptr[90+32]
bl ock_ptr[91+32]
bl ock_ptr[92+32]
bl ock_ptr[93+32]
bl ock_ptr[94+32]
bl ock_ptr[95+32]

bl ock_ptr[128]
bl ock_ptr[129]
bl ock_ptr[130]
bl ock_ptr[131]
bl ock_ptr[132]
bl ock_ptr[133]
bl ock_ptr[134]
bl ock_ptr[135]
bl ock_ptr[136]
bl ock_ptr[137]
bl ock_ptr[138]
bl ock_ptr[139]
bl ock_ptr[140]
bl ock_ptr[141]
bl ock_ptr[142]
bl ock_ptr[143]

PR RROoRLee

bl ock_ptr[128+16]
bl ock_ptr[129+16]
bl ock_ptr[130+16]
bl ock_ptr[131+16]
bl ock_ptr[132+16]
bl ock_ptr[133+16]
bl ock_ptr[134+16]
bl ock_ptr[135+16]
bl ock_ptr[136+16]

OORRPRRPRPRPRROORRRRRER

PRROoooRR

bl ock_ptr[137+16]
bl ock_ptr[138+16]
bl ock_ptr[139+16]
bl ock_ptr[140+16]
bl ock_ptr[141+16]
bl ock_ptr[142+16]
bl ock_ptr[143+16]

bl ock_ptr[128+32]
bl ock_ptr[129+32]
bl ock_ptr[130+32]
bl ock_ptr[131+32]
bl ock_ptr[132+32]
bl ock_ptr[133+32]
bl ock_ptr[134+32]
bl ock_ptr[135+32]
bl ock_ptr[136+32]
bl ock_ptr[137+32]
bl ock_ptr[138+32]
bl ock_ptr[139+32]
bl ock_ptr[140+32]
bl ock_ptr[141+32]
bl ock_ptr[142+32]
bl ock_ptr[143+32]

bl ock_ptr[128+48]
bl ock_ptr[129+48]
bl ock_ptr[130+48]
bl ock_ptr[131+48]
bl ock_ptr[132+48]
bl ock_ptr[133+48]
bl ock_ptr[134+48]
bl ock_ptr[135+48]
bl ock_ptr[136+48]
bl ock_ptr[137+48]
bl ock_ptr[138+48]
bl ock_ptr[139+48]
bl ock_ptr[140+48]
bl ock_ptr[141+48]
bl ock_ptr[142+48]
bl ock_ptr[143+48]

bl ock_ptr[128+64]
bl ock_ptr[129+64]
bl ock_ptr[130+64]
bl ock_ptr[131+64]
bl ock_ptr[132+64]
bl ock_ptr[133+64]
bl ock_ptr[134+64]
bl ock_ptr[135+64]
bl ock_ptr[136+64]
bl ock_ptr[137+64]
bl ock_ptr[138+64]
bl ock_ptr[139+64]
bl ock_ptr[140+64]
bl ock_ptr[141+64]
bl ock_ptr[142+64]
bl ock_ptr[143+64]

bl ock_ptr[128+80]

PRoooor

RPRPOORRPRRRRPFRPOORRERER

PRERROOORRERROQOLO

[

PRooORROORROORROO

23

bl ock_ptr[129+80]
bl ock_ptr[130+80]
bl ock_ptr[131+80]
bl ock_ptr[132+80]
bl ock_ptr[133+80]
bl ock_ptr[134+80]
bl ock_ptr[135+80]
bl ock_ptr[136+80]
bl ock_ptr[137+80]
bl ock_ptr[138+80]
bl ock_ptr[139+80]
bl ock_ptr[140+80]
bl ock_ptr[141+80]
bl ock_ptr[142+80]
bl ock_ptr[143+80]

PRERROoOOORRERRRROOR

bl ock_ptr[128+96]
bl ock_ptr[129+96]
bl ock_ptr[130+96]
bl ock_ptr[131+96]
bl ock_ptr[132+96]
bl ock_ptr[133+96]
bl ock_ptr[134+96]
bl ock_ptr[135+96]
bl ock_ptr[136+96]
bl ock_ptr[137+96]
bl ock_ptr[138+96]
bl ock_ptr[139+96]
bl ock_ptr[140+96]
bl ock_ptr[141+96]
bl ock_ptr[142+96]
bl ock_ptr[143+96]

PRRPRPRPPOORRPRRPRPRLRRLROO

bl ock_ptr[128+112]
bl ock_ptr[129+112]
bl ock_ptr[130+112]
bl ock_ptr[131+112]
bl ock_ptr[132+112]
bl ock_ptr[133+112]
bl ock_ptr[134+112]
bl ock_ptr[135+112]
bl ock_ptr[136+112]
bl ock_ptr[137+112]
bl ock_ptr[138+112]
bl ock_ptr[139+112]
bl ock_ptr[140+112]
bl ock_ptr[141+112]
bl ock_ptr[142+112]
bl ock_ptr[143+112]

RPRRPRRPRRPRPRPRRRPRRPPEPRPRRRERE

for(i=0;i<2816;i ++)
roundkey ptr[i] = O;

int p;

for (p=0; p<ll; p++)

bui |l d_round_key(ol droundkey, roundkey_ptr, p);

/1 This "expands" the roundkey. Every single bit of the nonexpanded roundkey becones
/164 bits here because everything is repeated 64 times.

24

/*

cout <<"roundkey = "<<endl
for(l=0;1<128; I ++)

cout <<roundkey_ptr[I*2] <<", ";
cout <<endl <<endI

cout <<"i nput = "<<endl
for(l=0;1<128; I ++)

cout <<bl ock_ptr[l*2] <<", ";
cout <<end|

*/

/1 Row and col do not correspond to row and colum. They are sinply variables and
//shoul d betreated as such. The purpose of the 80*col +64*row termis to performthe
//shiftrows transformation without having to do any extra work.

int counter;

addr oundkey(bl ock_ptr, roundkey ptr, 0); //The initial addition of the roundkey.

for (counter=1; count er<10; counter++) //The 9 normal rounds in a full encryption

{
for(row=0; row<4; r ow++)
{ for (col =0; col <4; col ++)

{
bl ock_byte_ptr = block_ptr + (80*col + 64*row) %256;
t bl ock_byte ptr = tblock _ptr + (64*row + 16*col);
sbox(bl ock_byte ptr, tblock byte ptr); //16 elenents per bit-sliced byte, 4 colunmms
per row
}

}

for(col =0; col <4; col ++)

{
bl ock_byte_ptr = block_ptr + 64*col;
t bl ock_byte ptr = tblock_ptr + 64*col
nm xcol ums(bl ock_byte_ptr, tblock_byte ptr);

}

addr oundkey(bl ock_ptr, roundkey_ ptr, counter);
}

//The final round. Notice that it is mssing the MxColums operation
for(row=0; row<4; r owt+)
{ for(col =0; col <4; col ++)

{
bl ock_byte ptr = block _ptr + (80*col + 64*row) %256;

t bl ock_byte_ptr = tblock_ptr + (64*row + 16*col);
sbox(bl ock_byte ptr, tblock _byte ptr);
}

}

addr oundkey(t bl ock_ptr, roundkey_ ptr, 10);
/*
25

for (row=0; row<4; r ow++)
{ for (col =0; col <4; col ++)
{
bl ock_byte _ptr = block_ptr + (80*col + 64*row) %256;
t bl ock_byte ptr = tblock _ptr + (64*row + 16*col);
sbox(bl ock_byte ptr, tblock byte ptr); //16 elenents per bit-sliced byte, 4 colunms
per row

}
}

addr oundkey(bl ock_ptr, roundkey_ptr, 10);
*/

/1 This small function outputs the "top" value in each of the 64-bit extended bits.
//Notice that the outputs are normally in a strange format. For each byte, the
//values are low to high. That is changed to a high to low normal format in this
/1 out put function.

cout <<end|
for(l=0;1<16; | ++)

for(i=0;i<8;i++)
cout <<t bl ock_ptr[14-2*i +l *16] <<", ";
}

cout <<endl| <<endl

voi d sbox(unsigned |long int* block byte ptr, unsigned long int* tblock byte ptr)

{

// The purpose of the assenbly level code is to access the mmx registers.

//Wthout witing in assenbly |level code, | do not know of any way to access these

/lregisters.

/1 Assenbly | evel coding also allows me to get the nost efficiency out of ny program
__asn{
emms

//mght want to push eax here, and pop it later

nmov eax, [block byte ptr] //note: novqg mmD, [block byte ptr] does not work;

/1l it puts
the value of the pointer in mo0,
/1 not the
val ue of bl ock[0]
novg mm0, [eax] /1 Calling values from bl ock
movg nml, [eax+8]
novq MR, [eax+16]
nmovg nmB, [eax+24]
nmovg nmd, [eax+32]
novg nmb, [eax+40]
nmovg nmb, [eax+48]
nmovqg nmi/, [eax+56]

26

/] Tenporary debug step shown. These will appear at different points in the program

//and were used for debugging (just to show what debuggi ng was |ike)
/1zzzzz (to easialy be able to find a certain point by searching for zzzzz)
/lstore values tenporarily to print out inverse of GF(2"8) entry
nmovg [GFi nverse], mmD
novqg [GFi nverse+8], mml
nmovqg [GFi nverse+16], mmR
nmovqg [GFi nverse+24], mm8
novq [GFi nverse+32], mmi
novq [GFi nverse+40], mmb
novq [GFi nverse+48], mb
nmovqg [GFi nverse+56], mmv
}
cout <<"i nput val ues of block to sbox function = \n";
for (i=0;i<8;i++)
cout <<" 908X YO8X\ n" <<GFi nver se[2*i] <<GFi nverse[2*i +1] ;
cout<<"Hit key to continue...\n";
scanf (" %", &ause) ;
end debug*/

//This entire first part of the s-box transformation is mainly concerned with finding

//the inverse of the G-(27"8) polynom al in the nmx state.
/11n order to do this, the polynom al rnust be taken to the 254th power.

/I Much of this is repetitive, so it takes very few comrents to understand the code

/1 This small subroutine is repeated fairly often. It takes the pol ynom al
//corresponding to the current mx state and deternines its square.

nmovg [t+8], mrl

novg [t+16], mmR

nmovqg [t+24], mmB

nmovqg [t+40], mmb

pxor nm0O, m
pxor nmm0D, mMmb

movq nmml, mv
pxor nmml, m4
pxor nmi, mb

movqg mMm, mb
pxor mm®, [t +8]

movg M8, m4d
pxor mmB, mb
pxor mmB, mb
pxor mm8, mv

pxor nmd, [t+16]
pxor mm4, mmv

pxor mmb, mb
pxor nm/, mb

nmovg nme, [t +24]
pxor nm6, [t+40]

movg [m, mD

27

movq
movq
movq
movq
movq
movq
movq

movq
movq
movq
movq

pxor
pxor

movq
pxor
pxor

movq
pxor

movq
pxor
pxor
pxor

pxor
pxor

pxor
pxor

movq
pxor

movq
movq
movq
movq
movq
movq
movq
movq

[mt8], mmi

[m+16]
[m+24],
[m+32] ,
[m40],
[48],
[m+56],

mP
m®B
m4
mb
b
mm

[t+8], ml

[t+16],
[t+24],
[t+40],

mr0, mm
m0, mb

mmd, [t+
md, mv

mrb, mb
mv, mb

mo6, [t+

me
mB
mrb

16]

24]

m6, [t+40]

[c], mD

[c+8], mml

[C+16] 1
[c+24],
[c+32],
[c+40],
[C+48] 1
[C+56] 1

e
B
nm
nmb
nm6
nmv

/1 mnow has power 2

/1 c now has power 4

/1 This subcode "nultiplies" the value stored in mby the value currently in the
Multiplication is very time consumng - however,

/lregistres, which is stored in c.

//there is no way to get around the fact that at least 4 nultiplications nust
/I perforned to find the inverse.

pand nmO,
movg [t],
movqg mmo,

pand nmi,
pand nmO,
pxor nmil

rqu[t+ﬂ, il

[m
0

[c]

[m
[m+8]
m0

be

28

movq
movq

pand
pand
pand
pxor
pxor
novq
nov(q
novq
novq

pand
pand
pand
pand
pxor
pxor
pxor
nov(q
nov(q
nov(q
novq
nov(q

pand
pand
pand
pand
pand
pxor
pxor
pxor
pxor
nov(q
nov(q
nov(q
novq
novq
nov(q

pand
pand
pand
pand
pand
pand
pxor
pxor
pxor
pxor
pxor
nov(q
nov(q
nov(q
novq
novq
nov(q

m0, [c]
ml, [c+8]
me, [
nl, [m+8]
nmO, [m+l16]
mR2, il
m2, o
[t+16], mm®
mo, [c]
nml, [c+8]
2, [c+16]
m8, [
2, [m+8]
nl, [m+16]
m0, [m+24]
mB, e
mB, ml
nmB3, o
[t+24], mmB
mo, [c]
ml, [c+8]
mR2, [c+16]
mB, [c+24]
m#, [
mB, [m+8]
m2, [m+16]
mil, [m+24]
nmO, [m+32]
nmd, B8
nmd, e
nmd, il
nmd, o
[t+32], nmd
m0, [c]
ml, [c+8]
mR2, [c+16]
mB, [c+24]
nmmd, [c+32]
mb, [
nmd, [m+8]
B, [m+16]
mR2, [m+24]
mil, [m+32]
m0, [m+40]
nmb, mm
mb, mB
mb, e
mb, mil
mb, MmO
[t+40], mmb
m0, [c]
ml, [c+8]
m2, [c+16]
mB, [c+24]
mmd, [c+32]

29

novg nmb, [c+40]

pand mm6, [m
pand nmb,

pand nm4,

pand nmB,

pand mm2,

pand nmi,

pand nm0, [m+48]
pxor nmo,

pxor nmo,

pxor Mo,

pxor o,

pxor nmo,

pxor nmo,

novqg [t+48], mmb
movg mmo0, [c]

movg nmil, [c+8]
novq mm2, [c+16]
nmovg nmB, [c+24]
novg nmd, [c+32]
nmovg mmb, [c+40]
nmovg nmo6, [c+48]
pand mmv, [m
pand nm6, [m+8]
pand mmb, [m+l16]
pand nmd, [m+24]
pand mmB8, [m+32]
pand nm2, [m+40]
pand nmil, [m+48]
pand mm0, [m+56]

pxor mmv/, b
pxor mmiv/, mrb
pxor mmv/, mMm#
pxor mmv/, mMmB
pxor mm/, mP
pxor i/, nmmil
pxor mmi/, mD
nmovqg [t+56], mmv
novg nmil, [c+8]

nmovg mm2, [c+16]
nmovg mmB, [c+24]
novq mmd, [c+32]
nmovg nmb, [c+40]
novg nmb, [c+48]

nmovg mmv/, [c+56]

pand mv, [mt8]

pand nm6, [m+16]
pand mmb, [m+24]
pand nm4, [m+32]
pand mmB8, [m+40]
pand MR, [mt+48]
pand nmil, [m+56]
pxor v/, mb

pxor mmv/, b
pxor mmiv/, m
pxor mmi/, mB
pxor mmv, mmR

pxor mv, nmil
nmovqg [t+64], mmv
nmovg mm2, [c+16]

nmovg nmB, [c+24]
nmovg nmd, [c+32]
novg nmb, [c+40]
nmovg nm6, [c+48]

nmovg mmv/, [c+56]

pand mmv, [m+16]

pand nm6, [m+24]
pand mmb, [m+32]
pand nm4, [m+40]
pand nmB8, [m+48]
pand nm2, [m+56]
pxor v/, mb

pxor mmv/, b
pxor mmv/, m4
pxor mmv/, mmB
pxor mmv, mmg
novqg [t+72], mmv
nmovg mmB, [c+24]

nmovg nmd, [c+32]
nmovg nmb, [c+40]
nmovg nm6, [c+48]
novg mmv, [c+56]

pand mmv/, [m+24]
pand nm6, [m+32]
pand nmb, [m+40]
pand nmd, [m+48]
pand mmB8, [m+56]
pxor mmv/, b
pxor mmv/, mmb
pxor mmv/, mMm#
pxor mmv/, mMmB
nmovqg [t+80], mmv
nmovg nmd, [c+32]

novq nnB: [c+40]
nmovg nm6, [c+48]
novg mmv, [c+56]

pand mmv/, [m+32]
pand nm6, [m+40]
pand nmb, [m+48]
pand nmd, [m+56]
pxor mmv/, mmb

pxor mmv/, mmb

pxor mmv/, m4

novqg [t+88], mmv
novg nmb, [c+40]
nmovg nm6, [c+48]
nmovg nmv/, [c+56]

pand mmv, [m+40]
pand nm6, [m+48]
pand mmb, [m+56]
pxor mmv/, mmb
pxor mmv/, mmb
nmovqg [t+96], mmv

/1

movq
movq

pand
pand
pxor
novq
novq

pand
novq

mb,
mv,

m,
mo,
mv

[c+48]
[c+56]

[m+48]
[m56]
mr6

[t+104], m¥

m,

mv,

[c+56]

[m56]

[t+112], ¥

Modul us for nultiplication. It is stored in nil6]

movq
movq
movq
movq
movq
movq
movq
movq

pxor
pxor
pxor

pxor
pxor
pxor
pxor

pxor
pxor
pxor

pxor
pxor
pxor
pxor
pxor
pxor

pxor
pxor
pxor
pxor

pxor
pxor
pxor

pxor
pxor
pxor

pxor
pxor

[t +64]
[t +96]
[t+104]

[t +64]
[t+72]
[t +96]
[t+112]

[t+72]
[t +80]
[t+104]

[t +64]
[t+80]
[t+88]
[t +96]
[t+104]
[t+112]

[t +64]
[t+72]
[t+88]
[t+112]

[t+72]
[t+80]
[t +96]

[t+80]
[t+88]
[t+104]

[t+88]
[t +96]

32

movq
movq
movq
movq

pxor
pxor

movq
pxor
pxor

movq
pxor

movq
pxor
pxor
pxor

pxor
pxor

pxor
pxor

movq
pxor

movq
movq
movq
movq

pxor
pxor

movq
pxor
pxor

movq
pxor

nmov(
pxor
pxor

pxor

movq
movq
movq
movq
movq
movq
movq
movq

mv, [t+112]
[mM, MmO
[m8], mil

[m16], mmR
[m-24], mmB
[m-32], nmd
[m-40], nmb
[mt48], nmb
[m56], mmv

/ I Doubl esquare -

[t+8]

, il

[t+16], M2
[t+24], mmB
[t+40], mmb

[t+8]

mé

[t+16]
mv

m6
mrb6

[t+24]
[t +40]

, il

[t+16], 2
[t+24], mmB
[t+40], mmb

mb

/I Now m has power 6

shoul d be repl aced.

pxor mB, mv

pxor nmd, [t+16]
pxor mm4, mmv

pxor nmb, mMmb
pxor mmv/, mmb

nmovg nmo, [t+24]
pxor nmm6, [t+40]

movg [c], nmD

nmovg [c+8], mml

nmovqg [c+16], mmR

novqg [c+24], mmB

nmovg [c+32], nmmd

nmovqg [c+40], mmb

nmovqg [c+48], b

nmovg [c+56], mm¥ //Now c has power 24

pand mO, [m
movg [t], nmD
nmovg nm0, [c]

pand mil, [m
pand mm0, [m+8]
pxor nmmil, mO
nmovg [t+8], mrl
nmovg mmD, [c]
movg nmil, [c+8]

pand M2, [n]
pand nmil, [m+8]
pand nmm0, [m+16]
pxor mm®, il
pxor mm®2, mO
novq [t+16], mMmR
nmovg nm0, [c]
novg nmil, [c+8]
nmovg mm2, [c+16]

pand m8, [m
pand nm2, [m+8]
pand nmil, [m+16]
pand mm0, [m+24]
pxor mmB8, mR
pxor mm8, nml
pxor mm8, mD

novqg [t+24], mmB
movg mm0, [c]

novq nnﬂ: [c+8]
nmovg nm2, [c+16]
nmovg nmB, [c+24]

pand mm4, [m

pand mm8, [m+8]
pand MR, [mt16]
pand mml, [mt24]

pand mm0, [m+32]
pxor nmm4,
pxor mm4, mP
pxor nmm,
pxor mm,
novg [t+32], nmmd
movg mm0, [c]

movg nmil, [c+8]
novq Mg, [c+16]
nmovg nmB, [c+24]
novg nmd, [c+32]
pand mmb, [m
pand nmd, [m+8]
pand mmB8, [m+16]
pand mmR2, [m+24]
pand nml, [m+32]
pand nm0, [m+40]
pxor mmb, mMm#
pxor nmmb, mMmB
pxor mmb, mMmP
pxor mb, il
pxor mmb, mD

nmovqg [t+40], mmb
nmovg mmD, [c]

movg nmil, [c+8]
nmovg mm2, [c+16]
nmovg nmB, [c+24]
nmovg nmd, [c+32]
novg nmb, [c+40]
pand mm6, [m
pand nmb, [m+8]
pand nm4, [m+16]
pand mmB, [m+24]
pand mm®2, [m+32]
pand nml, [m+40]
pand nm0, [m+48]
pxor nm6, mb
pxor nm6, mMm#
pxor m6, mMmB
pxor M6, mP
pxor mmo6, nmil
pxor nm6, mD

novqg [t+48], mmb
movg mm0, [c]

nmovg nmil, [c+8]
novq Mg, [c+16]
nmovg nmB, [c+24]
novg nmd, [c+32]
nmovg mmb, [c+40]
novg nm6, [c+48]
pand mmv, [m

pand nm6, [m+8]
pand mmb, [m+l16]
pand mmd, [mt24]
pand mmB8, [m+32]
pand nm2, [m+40]

pand nmil, [m+48]
pand mm0, [m+56]
pxor mmv/, mmb
pxor mmv/, mmb
pxor mmv/, Mm%
pxor nmmv/, mMmB
pxor mmv/, mP
pxor i/, nmmil
pxor mmv/, mmO
nmovqg [t+56], mmv
novg nmil, [c+8]

nmovg mm2, [c+16]
nmovg mmB, [c+24]
novq mmd, [c+32]
nmovg nmb, [c+40]
novg nmb, [c+48]

nmovg mmv/, [c+56]

pand mv, [mt8]

pand nm6, [m+l16]
pand mmb, [m+24]
pand nmd, [m+32]
pand mm8, [m+40]
pand m®, [mt+48]
pand nmil, [m+56]
pxor nmv/, mb

pxor mmv/, b
pxor mmv/, m4
pxor mmv/, mB
pxor mmv, mmR
pxor mv, nmil
nmovqg [t+64], mmv
nmovg mm2, [c+16]

nmovg nmB, [c+24]
nmovg nmd, [c+32]
novg nmb, [c+40]
nmovg nmo6, [c+48]

nmovg mmv/, [c+56]

pand mmv, [m+16]

pand mm6, [m+24]
pand mmb, [m+32]
pand nm4, [m+40]
pand nmB8, [m+48]
pand nm2, [m+56]
pxor v/, mb

pxor mmv/, mmb
pxor mmv/, m4
pxor mmv/, mB
pxor mmv, mmR
novqg [t+72], mmv
nmovg mmB, [c+24]

novq mmd, [c+32]
nmovg nmb, [c+40]
nmovg nm6, [c+48]
novg mmv, [c+56]

pand mmv/, [m+24]
pand nm6, [m+32]
pand nmb, [m+40]

11

pand
pand
pxor
pxor
pxor
pxor
nov(q
nov(q
novq
novq
nov(q

pand
pand
pand
pand
pxor
pxor
pxor
nov(q
nov(q
nov(q
nov(q

pand
pand
pand
pxor
pxor
novq
nov(q
nov(q

pand
pand
pxor
novq
novq

pand
novq

mm,
m8,

mv

mB

[t+80], rm¥

m,
b,
o,
mv,

[c+32]
[c+40]
[c+48]
[c+56]

[m+32]
[m+40]
[m+48]
[m+56]
m6
mb
i

[t+88], m¥

mrb,
mrb,
mv,

m,
mb,
mb,
m,
mv,

[c+40]
[c+48]
[c+56]

[m+40]
[m+48]
[m-56]
mrb6
mrb

[t+96], ¥

mb,
mv,

mv,
mo,
mv,

[c+48]
[c+56]

[m+48]
[m56]
n6

[t+104], m¥

m,

mv,

[c+56]

[m56]

[t+112], ¥

Modul us for nultiplication. It is stored in nil6]

movq
movq
movq
movq
movq
movq
movq
movq

pxor
pxor
pxor

pxor
pxor

[t]

[t+8]
[t+16]
[t+24]
[t+32]
[t +40]
[t+48]
[t +56]

[t +64]
[t +96]
[t+104]

[t +64]
[t+72]

37

movq
movq
movq
movq
movq
movq
movq
movq

pxor nmil, [t+96]
pxor nml, [t+112]
pxor mR, [t+72]
pxor nmm2, [t+80]
pxor mm2, [t+104]
pxor mmB, [t +64]
pxor mmB8, [t+80]
pxor nmB8, [t+88]
pxor mmB, [t+96]
pxor mm8, [t+104]
pxor mmB8, [t+112]
pxor nmd, [t+64]
pxor nmd, [t+72]
pxor nmd, [t+88]
pxor nm4, [t+112]
pxor mb, [t+72]
pxor mmb, [t+80]
pxor mmb, [t+96]
pxor nm6, [t+80]
pxor nm6, [t+88]
pxor nm6, [t+104]
pxor mmv, [t+88]
pxor mmv/, [t+96]
pxor mv, [t+112]
movg [, MO
movg [m+8], ml
novq [m+1l6], mmR
novq [mt24], mB
novqg [m+32], nmmd
nmovqg [m+40], mmb
nmovqg [m+48], mmb
nmovqg [mt56], mmv // Now m has power 30

[c]

[c+8]

[c+16]

[c+24]

[c+32]

[c+40]

[c+48]

[c+56]

[t+8], mml

[t+16], mmR

[t+24], M8

[t+40], mmb

nmO, mm

mO, nmb

nl, mv

nm,

38

pxor nmml, mMmb

movqg mMm, mb
pxor mmR2, [t+8]

movg mmB, md
pxor mm8,
pxor mmB, mb
pxor 8,

pxor nmd, [t+16]
pxor nmm4, mv

pxor mmb, mb
pxor v/, mb

nmovg nme, [t +24]
pxor nm6, [t+40]

novg [t+8], mml

nmovqg [t+16], mmR
nmovqg [t+24], mmB
nmovqg [t+40], mmb

pxor nm0, mMm%#
pxor mm0, mmb

movq nmml, mv
pxor nmml, Mm%
pxor nml, mMmb

movqg mMm, mb
pxor mm2, [t +8]

movg mmB, md
pxor mm8,
pxor mmB, mb
pxor mm8,

pxor nmd, [t+16]
pxor mm4, mv

pxor mmb, mb
pxor v/, mb

nmovg nmo, [t +24]
pxor nm6, [t+40]

novg [c], mD

movg [c+8], mml

novq [c+16], mMmR

novq [c+24], mmB

nmovqg [c+32], nmmid

novqg [c+40], mmb

nmovqg [c+48], mmb

nmovqg [c+56], mm¥ //Now c¢ has power 96

pand nm0, [m

movq
movq

pand
pand
pxor
novq
novq
novq

pand
pand
pand
pxor
pxor
novq
novq
novq
nov(q

pand
pand
pand
pand
pxor
pxor
pxor
nov(q
novq
novq
nov(q
nov(q

pand
pand
pand
pand
pand
pxor
pxor
pxor
pxor
nov(q
novq
novq
nov(q
nov(q
novq

pand
pand
pand
pand
pand
pand
pxor
pxor
pxor
pxor

[(t], D
m0, [c]
i, [n]
mO, [mt8]
mi, o
[t+8], mml
m0, [c]
ml, [c+8]
me, [
mi, [mt8]
mO, [mtl6]
m2, mil
m2, o
[t+16], mmR
m0, [c]
ml, [c+8]
mmR2, [c+16]
m8, [
m2, [mt8]
mil, [mtl6]
mO, [m+24]
m8, m
mB, ml
mB, o
[t+24], mmB
mo, [c]
mil, [c+8]
m2, [c+16]
mB, [c+24]
md, [
mB, [mt8]
m2, [mtl6]
mil, [m+24]
m0, [mt32]
m4, m8
m4, me
m4, mil
m4, o
[t+32], mm4
m0, [c]
ml, [c+8]
2, [c+16]
mB, [c+24]
m, [c+32]
mb, [
4, [mt8]
mB, [m+16]
m2, [m+24]
mi, [m+32]
mO, [mt40]
mb, mm
mb, m8
mb, mP
mb, il

40

pxor nmmb, MmO
nmovqg [t+40], mmb
movg mmo0, [c]

nmovg nmil, [c+8]
nmovg nm2, [c+16]
novg mmB, [c+24]
nmovg nmd, [c+32]
nmovg mmb, [c+40]
pand m6, [m
pand mmb, [m+8]
pand nm4, [m+l16]
pand mmB, [m+24]
pand MR, [m+32]
pand nmil, [m+40]
pand nm0, [m+48]
pxor mm6, mb
pxor mm6, mMm4
pxor mm6, mMmB
pxor mm6, mmR
pxor m6, il
pxor mo6, mD

nmovqg [t+48], mmb
nmovg nmm0, [c]

nmovg nmil, [c+8]
novg mm2, [c+16]
nmovg mmB, [c+24]
nmovg nmd, [c+32]
nmovg nmb, [c+40]
nmovg nm6, [c+48]

pand mv, [m
pand mm6, [m+8]

pand nmb, [m+l16]
pand mmd, [mt24]
pand mmB8, [m+32]
pand mm®2, [m+40]
pand nml, [m+48]
pand nm0, [m+56]
pxor nm/, mb

pxor mv, mmb

pxor mmv/, m4
pxor mmv/, mmB
pxor mmv, mmg
pxor mm/, nmril
pxor v/, MmO
nmovqg [t+56], mmv
nmovg nmil, [c+8]

novq mm2, [c+16]
nmovg nmB, [c+24]
novg nmd, [c+32]
nmovg mmb, [c+40]
novg nm6, [c+48]
nmovg nmv/, [c+56]
pand mmv, [m+8]
pand nm6, [m+l16]
pand mb, [mt24]
pand mm4, [m+32]
pand nmB8, [m+40]

pand mm2, [m+48]
pand nml, [m+56]
pxor mmv/, mmb
pxor mmv/, mmb
pxor mmv/, Mm%
pxor nmmv/, mMmB
pxor mmv/, mP
pxor i/, nmmil
nmovqg [t+64], mmv
nmovg nm2, [c+16]

novg mmB, [c+24]
nmovg nmd, [c+32]
nmovg mmb, [c+40]
nmovg nm6, [c+48]
nmovg nmv, [c+56]

pand mmv/, [m+16]
pand mm6, [m+24]

pand nmb, [m+32]
pand nm4, [m+40]
pand mmB, [m+48]
pand mm®2, [m+56]

pxor mmv/, b
pxor mmv/, mmb
pxor mmv/, Mm%
pxor mmv/, mMmB
pxor mm/, mP
movqg [t+72], mmv
nmovg nmB, [c+24]

novq nnﬂ: [c+32]
novg nmb, [c+40]
nmovg nm6, [c+48]

nmovg mmv/, [c+56]

pand v, [mt24]

pand nm6, [m+32]
pand mmb, [m+40]
pand nmd, [m+48]
pand mmB8, [m+56]
pxor nm/, mb
pxor mv, mmb

pxor mmv/, m4
pxor mmv/, mmB
nmovqg [t+80], mmv
nmovg nmd, [c+32]

novg nmb, [c+40]
nmovg nm6, [c+48]
nmovg nmv/, [c+56]
pand mmv, [m+32]
pand nm6, [m+40]
pand mmb, [m+48]
pand nm4, [m+56]
pxor mmv/, mmb

pxor mmv/, b

pxor mv, 4

nmovqg [t+88], mmv
nmovg nmb, [c+40]
novg nm6, [c+48]
nmovg nmv, [c+56]

pand mmv/, [m+40]
pand mm6, [m+48]
pand nmb, [m+56]
pxor mm/, mb

pxor mv, mmb

nmovqg [t+96], mmv
nmovg nmo6, [c+48]
nmovg nmv/, [c+56]

pand mmv, [m+48]
pand mm6, [m+56]
pxor mmv/, mmb
novq [t+104], mv
nmovg nmv, [c+56]

pand mmv/, [m+56]
nmovqg [t+112], mV

/I Modulus for nultiplication. It is stored in ni16]

nmovg mm0, [t]
nmovqg mni,
movq nme,
movq mm8,
nmovg nmd, [t +32]
nmovq nmb,
nmovq nmo,
novqg i,

pxor mm0, [t+64]
pxor nm0, [t+96]
pxor nm0, [t+104]

pxor nml, [t+64]
pxor nml, [t+72]
pxor nml, [t+96]
pxor mml, [t+112]

pxor mmR, [t+72]
pxor mmR2, [t +80]
pxor m2, [t+104]

pxor mmB, [t +64]
pxor mmB8, [t +80]
pxor mmB8, [t+88]
pxor mmB8, [t+96]
pxor m8, [t+104]
pxor mmB, [t+112]

pxor mmd, [t+64]
pxor mmd, [t+72]
pxor nmd, [t+88]
pxor nmd, [t+112]

pxor mmb, [t+72]
pxor mmb, [t+80]
pxor nmb, [t+96]

pxor
pxor
pxor

pxor
pxor
pxor

movq
movq
movq
movq
movq
movq
movq
movq

pand
nov(q
novq

pand
pand
pxor
nov(q
nov(q
nov(q

pand
pand
pand
pxor
pxor
novq
nov(q
nov(q
nov(q

pand
pand
pand
pand
pxor
pxor
pxor
nov(q
novq
novq
novq
nov(q

pand
pand
pand
pand
pand
pxor
pxor
pxor

m®6, [t +80]
m®6, [t+88]
n6, [t+104]
mv, [t+88]
mv/, [t+96]
mv, [t+112]
[c], mmO
[c+8], mml
[c+16], mmR
[c+24], mmB
[c+32], nmmd
[c+40], nmb
[c+48], b
[c+56], mmv
m0, [eax]
[t], mmD

m0, [c]

ml, [eax]
m0, [eax+8]
nm, o
[t+8], mml
m0, [c]

ml, [c+8]
me, [eax]
mml, [eax+8]
m0, [eax+16]
mR2, il

m2, 0
[t+16], mmP
mD, [c]
ml, [c+8]
2, [c+16]
B, [eax]
e, [eax+8]
mml, [eax+16]
m0, [eax+24]
mB, m

mmB, mrl

mB, o
[t+24], mmB
m0, [c]

ml, [c+8]
me, [c+16]
B, [c+24]
nmd, [eax]
mB, [eax+8]
e, [eax+16]
mrl, [eax+24]
m0, [eax+32]
mv, m8

nmd, e

nmd, mrl

// Now ¢ has power

126

pxor
movq
movq
movq
movq
movq
movq

pand
pand
pand
pand
pand
pand
pxor
pxor
pxor
pxor
pxor
nov(q
nov(q
nov(q
novq
novq
nov(q
nov(q

pand
pand
pand
pand
pand
pand
pand
pxor
pxor
pxor
pxor
pxor
pxor
nov(q
nov(q
novq
novq
nov(q
nov(q
novq
novq

pand
pand
pand
pand
pand
pand
pand
pand
pxor
pxor

nmd, o
[t+32], mm4
mD, [c]
ml, [c+8]
me, [c+16]
B, [c+24]
nmd, [c+32]
mb, [eax]
nmd, [eax+8]
B, [eax+16]
R, [eax+24]
mml, [eax+32]
mr0, [eax+40]
mb, mm

mb, mB8

mb, e

mb, mil

nb, Mo
[t+40], mmb
mD, [c]
ml, [c+8]
mR2, [c+16]
mB, [c+24]
nmmd, [c+32]
mb, [c+40]
6, [eax]
mb, [eax+8]
mmd, [eax+16]
B, [eax+24]
m, [eax+32]
mml, [eax+40]
nmr0, [eax+48]
nm6, b

6, nmm

nm6, B

mb, m

nmB, mrl

nm6, o
[t+48], mmb
mD, [c]
nmml, [c+8]
me, [c+16]
B, [c+24]
nmd, [c+32]
mb, [c+40]
nmB, [c+48]
mv, [eax]
6, [eax+8]
nmb, [eax+16]
nmd, [eax+24]
B, [eax+32]
2, [eax+40]
mml, [eax+48]
nm0, [eax+56]
mv, 6

nmv, b

pxor
pxor
pxor
pxor
pxor
movq
movq
movq
movq
movq
movq
movq
movq

pand
pand
pand
pand
pand
pand
pand
pxor
pxor
pxor
pxor
pxor
pxor
nov(q
novq
novq
nov(q
nov(q
nov(q
novq

pand
pand
pand
pand
pand
pand
pxor
pxor
pxor
pxor
pxor
nov(q
novq
novq
novq
nov(q
nov(q

pand
pand
pand
pand
pand
pxor
pxor

v, mm

mv, m8

mv, mR

mmi7, il

nm7, o
[t+56], mmV
ml, [c+8]
2, [c+16]
mB, [c+24]
mmd, [c+32]
mb, [c+40]
nB, [c+48]
mv, [c+56]
mv, [eax+8]
n6, [eax+16]
mb, [eax+24]
mmd, [eax+32]
mB, [eax+40]
e, [eax+48]
mrl, [eax+56]
mv, b

mv, mb

7,

v, mB

v, e

mv, mrl
[t+64], mmV
m2, [c+16]
mB, [c+24]
nmmd, [c+32]
mb, [c+40]
nB, [c+48]
mmv, [c+56]
mv, [eax+16]
6, [eax+24]
mb, [eax+32]
mmd, [eax+40]
B, [eax+48]
e, [eax+56]
mv, b

mv, mb

7,

v, mB

v, e
[t+72], mm¥
mB, [c+24]
m, [c+32]
mb, [c+40]
6, [c+48]
mv, [c+56]
mm/, [eax+24]
6, [eax+32]
nmrb, [eax+40]
mmd, [eax+48]
B, [eax+56]
mv, 6

nmv, b

46

11

pxor
pxor
movq
movq
movq
movq
movq

pand
pand
pand
pand
pxor
pxor
pxor
nov(q
nov(q
nov(q
novq

pand
pand
pand
pxor
pxor
novq
novq
novq

pand
pand
pxor
novq
novq

pand
novq

mv,
mv,

m
m8

[t+80], rm¥

v/

[c+32]
[c+40]
[c+48]
[c+56]

[eax+32]
[eax+40]
[eax+48]
[eax+56]
nm6
nmb
nm

[t+88], m¥

mrb,
mrb,
mv,

mv,
me,
b,
mv,
mv,

[c+40]
[c+48]
[c+56]

[eax+40]
[eax+48]
[eax+56]
n6
mb

[t+96], ¥

mro,
m,

mv,
mb,
mv,

[c+48]
[c+56]

[eax+48]
[eax+56]
6

[t+104], mm¥

mv,

mv,

[c+56]

[eax+56]

[t+112], m¥

Modul us for multiplication. It is stored in nmnx

movq
nmov(
nmov(
movq
movq
nmov(
nmov(
nmov(

pxor
pxor
pxor

pxor
pxor
pxor
pxor

[t +64]
[t +96]
[t+104]

[t +64]
[t+72]
[t +96]
[t+112]

47

pxor nmme,
pxor mmg,
pxor mmg,

pxor mm8,
pxor nm8,
pxor mm8,
pxor mm8,
pxor mm8,
pxor mm8,

pxor nm4,
pxor nm4,
pxor nm4,
pxor nm4,

pxor nmb,
pxor nmb,
pxor nmb,

pxor nmo,
pxor Mo,
pxor o,

pxor v,
pxor i,
pxor mmv,

/I Now mmx has power 127

/*/ 1 debug

movq
movq
movq
movq

pxor
pxor

nmov(
pxor
pxor

movq
pxor

movq
pxor
pxor
pxor

pxor
pxor

pxor
pxor

nmov(
pxor

[t+8], mml

[t+16], mmR
[t+24], mmB
[t+40], mmb

mr0, mb

m, [t+16]
m, mv

mrb, mb
mv/, mb

6, [t+24]
m6, [t +40]

[t+72]
[t+80]
[t+104]

[t +64]
[t +80]
[t+88]
[t +96]
[t+104]
[t+112]

[t +64]
[t+72]
[t+88]
[t+112]

[t+72]
[t+80]
[t +96]

[t+80]
[t+88]
[t+104]

[t+88]
[t +96]
[t+112]

/lzzzzz
//store values tenporarily to print out inverse of GF(2"8) entry
nmovg [GFi nverse], mmO
novq [GFi nverse+8], nml
nmovqg [GFi nverse+16], mmR
novqg [GFi nverse+24], mmB
nmovqg [GFi nverse+32], nmmi
nmovqg [GFi nverse+40], mmb
nmovqg [GFi nverse+48], nmb
nmovqg [GFi nverse+56], mmv
}
printf("inverse of GF(2"8) entry =\n");
for (i=0;i<8;i++)
printf("%8X 98X\ n", GFi nverse[2*i], G-i nverse[2*i +1]);

printf("Ht key to continue...\n");
scanf (" %", &ause) ;
__asm

{

}
*/
// end debug

nov eax, [block_byte_ ptr]

/1 Affine transformation. This nultiplies the current mx "state" by a natrix and
/1then invertes several of the registers.

movg [t], mnmb

pxor mmO, m4

pxor nmm0O, mb
pxor nm0O, mb
pxor m0, mv

pxor mml, mmO
pxor nmml, m4

pxor Mg, il
pxor mm®2, mmb

movq mmb, mO
pxor nmmb, mMmB
pxor mb, mMmP

pxor mB, mP
pxor mmB8, mb

movqg m6, il
pxor mm6, mMmB
pxor mm6, mMm4

pxor nm4, mB
pxor mm4, mmv

nmovg mmv, [t]
pxor m/, mP
pxor mmv/, Mm%

nmov eax, [inverse_ptr]
pxor nm0, [eax]
pxor mml, [eax]
pxor nmb, [eax]

pxor nmmb6, [eax]

nmov eax, [tblock_byte ptr]
nmovqg [eax], mD

novqg [eax+8], mil

novqg [eax+16], mR2

nmovqg [eax+24], mmB

nmovqg [eax+32], m4

nmovqg [eax+40], mb

novqg [eax+48], mb

novqg [eax+56], mmv

nmovg [GFi nverse], mmO

novq [GFi nverse+8], nml

nmovqg [GFi nverse+16], mmR

novqg [GFi nverse+24], mm8

nmovqg [GFi nverse+32], nmmi

nmovqg [GFi nverse+40], mmb

nmovqg [GFi nverse+48], nmb

nmovqg [GFi nverse+56], mmv
}
/*

cout<<"inverse + affine transformation = "<<endl
for (i=0;i<8;i++)

cout <<" 998X UW8X" <<endl <<GFi nver se[2*i] <<GFi nver se[2*i +1] ;

cout<<"Hit key to continue..."<<endl
scanf (" %", &ause) ;

__asm
{
}
/1 end debug

/1 debug
/*

nmov eax, [block_byte ptr]

cout<<"It gets to here"<<endl

for (p=0; p<8; p++)

cout <<"9%98X" <<endl <<bl ock_ptr[2*p];
*/
/1 end debug

/1 __asnm

/1 popa
/1 enms
/1 }

/1 M xCol utms Tr ansf ormati on
/1 The sets of values are stored in unsigned |long int tblock[65]

/*This transformation involves taking four polynom als sinultaneously and mnultiplying
themby a matrix. This matrix is nultiplied by the vector

(x 1 1 X+1) (byte 1) (nbyte 1)

(x+1 x 1 1) (byte 2) (nbyte 2)

50

(1 X+1 X 1) (byte 3) = (nbyte 3)

(1 1 X+1 X) (byte 4) (nbyte 4)

The way that ny function perfornms this multiplication is that it lets nbytes 2, 3,
and 4 be

equal to byte 1. It then nultiplies byte 1 by x and lets nbyte 1 equal this val ue.
Then, it

xors nbyte 4 with the original value

The function then | oads bytes 2, 3, and 4 into nenory and performnms the necessary xor
operations with them

Notice that the transformation x+1 is equal to taking an xor, then multiplying by x
and taki ng

anot her xor.

*/

voi d m xcol ums(unsigned | ong int* block byte ptr, unsigned long int*

t bl ock_byte ptr)

{
__asm{
/1 This is necessary just like in the first function
nov eax, [block byte ptr]
nmov ebx, [tblock_byte ptr]

//Loading the first byte
nmovg nm0, [ebx]

novg nmil, [ebx+8]
movg mm2, [ebx+16]
movg mmB, [ebx+24]
novq mmd, [ebx+32]
nmovg nmb, [ebx+40]
novg nmb, [ebx+48]

nmovg mmv/, [ebx+56]

nmovqg [eax+64], nmD //Movenent is allowed for byte 1 only
novqg [eax+72], mml

novg [eax+80], mmR2

nmovqg [eax+88], mmB

nmovqg [eax+96], m4

nmovqg [eax+104], mmb

novq [eax+112], mmb

novg [eax+120], mmv

nmovqg [eax+128], mmD
nmovqg [eax+136], mmil
nmovqg [eax+144], m?
novqg [eax+152], mmB
nmovqg [eax+160], nmmi
nmovqg [eax+168], mmb
nmovq [eax+176], nmb
novqg [eax+184], mv

nmovqg [eax+192], mmO
nmovg [eax+200], mmil
nmovqg [eax+208], m?P
novqg [eax+216], mmB
novqg [eax+224], nmmid
nmovqg [eax+232], mmb
nmovq [eax+240], nmb
novq [eax+248], mm¥

51

we can nove

pxor
pxor
pxor

nmov(

m0, mv
m, mv
m8, mv
[eax], mv

directly into it

movq
movq
movq
movq
movq
movq
movq

pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq

// Notice that,
/1by x,

/] Operations for

movq
movq
movq
movq
movq
movq
movq
movq

pxor
movq
pxor
nmov(
pxor
nmov(
pxor
movq
pxor
nmov(
pxor
movq
pxor
nmov(
pxor
nmov(

[eax+8], mD
[eax+16], nml
[eax+24], m?
[eax+32], mB
[eax+40], mm
[eax+48], mmb
[eax+56] , nmmb

mv, [eax+192]
[eax+192], mmv
m0, [eax+200]
[eax+200], mD
mml, [eax+208]
[eax+208], Ml
e, [eax+216]
[eax+216], m?P
B, [eax+224]
[eax+224], mB
mmd, [eax+232]
[eax+232], Mm%
mb, [eax+240]
[eax+240], mmb
n6, [eax+248]
[eax+248], mb

it does not

n0, [ebx+64]
nml, [ebx+72]
m2, [ebx+80]
nm8, [ebx+88]
mmd, [ebx+96]
nb, [ebx+104]
mB, [ebx+112]
mv, [ebx+120]

m0, [eax]
[eax], mD
mml, [eax+8]

[eax+8], ml
mmR, [eax+16]
[eax+16], mmR
8, [eax+24]

[eax+24], mmB
nmd, [eax+32]
[eax+32], M4
mb, [eax+40]
[eax+40], mmb
m6, [eax+48]
[eax+48], mmb
mv, [eax+56]
[eax+56], mmv

because byte 1 was not changed after
need to be "rel oaded" as sone | ater byt

byte 2

/1Ml tiplying by x for

/1 Because nbyte 1 has not yet

/I xor operations with nbyte 1

byte 1

been fill ed,

being multiplied

es do.

52

nmovg mmO, [ebx+64] //Rel oading byte 1

movg nml, [ebx+72]
nmovg nm2, [ebx+80]
nmovg nmB, [ebx+88]
nmovg nmy, [ebx+96]
nmovg nmb, [ebx+104]
nmovg nmb, [ebx+112]
novq mv/, [ebx+120]

pxor mmD, [eax+128] //xor operations with nbyte 3
nmovqg [eax+128], mmD
pxor nml, [eax+136]
nmovqg [eax+136], mmil
pxor mR, [eax+144]
novqg [eax+144], m®
pxor mmB8, [eax+152]
nmovqg [eax+152], mmB
pxor mmd, [eax+160]
novqg [eax+160], mmi
pxor nmb, [eax+168]
nmovqg [eax+168], mmb
pxor nm6, [eax+176]
nmovq [eax+176], nmb
pxor nmv, [eax+184]
novqg [eax+184], mv

movg nm0, [ebx+64] /! Rel oadi ng byte 1

novq mml, [ebx+72]

nmovg nm2, [ebx+80]

novg nmB, [ebx+88]

nmovg nmd, [ebx+96]

nmovg nmb, [ebx+104]

novq mb, [ebx+112]

nmovg nmi/, [ebx+120]

pxor nm0, [eax+192] /] xor operations with nbyte 4

nmovqg [eax+192], mmD
pxor mml, [eax+200]
novg [eax+200], mmil
pxor mmR2, [eax+208]
nmovg [eax+208], m?P
pxor mmB, [eax+216]
novqg [eax+216], mmB
pxor mmi, [eax+224]
novqg [eax+224], nmmi
pxor nmb, [eax+232]
nmovq [eax+232], mmb
pxor nm6, [eax+240]
nmovqg [eax+240], nmb
pxor mmv, [eax+248]
nmovqg [eax+248], mv

nmovg nm0, [ebx+64] /1 Rel oadi ng byte 1
nmovg nmil, [ebx+72]
novg nm2, [ebx+80]
movg mmB, [ebx+88]
nmovg nmd, [ebx+96]
nmovg nmb, [ebx+104]

novg Mo, [ebx+112]

movq

pxor
pxor
pxor

pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq

mv, [ebx+120]

moO, mi/
m2, mv
B, mv
mv, [eax]
[eax], mm¥
m0, [eax+8]
[eax+8], mD

mml, [eax+16]
[eax+16], nml
R, [eax+24]
[eax+24], m?
B, [eax+32]
[eax+32], mB
mmd, [eax+40]
[eax+40], mmd
nmb, [eax+48]
[eax+48], mb
6, [eax+56]
[eax+56] , nmmb

//Miltiplying by x for byte 2

/] xor operation with nbyte 1

/1 Rel oading byte 1.Notice that this rel oades the original value of byte 1

//so this byte nust

movq
movq
movq
movq
movq
movq
movq
movq

pxor
pxor
pxor

pxor
nmov(
pxor
movq
pxor
nmov(
pxor
movq
pxor
nmov(
pxor
nmov(
pxor
movq
pxor
nmov(

/1 Operations for

nmov(
nmov(
nmov(

nD, [ebx+64]
nml, [ebx+72]
m2, [ebx+80]
nm8, [ebx+88]
mmd, [ebx+96]
nb, [ebx+104]
mB, [ebx+112]
mv, [ebx+120]
nmO, mv

mR2, mv

mB, mi/

mv, [eax+64]
[eax+64], mmv
0, [eax+72]
[eax+72], nmmD
mml, [eax+80]
[eax+80], nml
nme, [eax+88]
[eax+88], mmR
B, [eax+96]
[eax+96], mmB
nmd, [eax+104]
[eax+104], Mm%
mb, [eax+112]
[eax+112], mmb
nm6, [eax+120]
[eax+120], mb

nm0, [ebx+128]
mml, [ebx+136]
m2, [ebx+144]

byte 3

be nultiplied by x again.

/Ixoring with nbyte 2.

movq
movq
movq
movq
movq

pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq

movq
movq
movq
movq
movq
movq
movq
movq

pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq

movq
movq
movq
movq
movq
movq
movq
movq

pxor
nmov(

mB, [ebx+152]
nmd, [ebx+160]
mb, [ebx+168]
n6, [ebx+176]
mv, [ebx+184]
m0, [eax]
[eax], mmD
mml, [eax+8]

[eax+8], mml
e, [eax+16]

[eax+16], mmR
B, [eax+24]
[eax+24], mB
mm, [eax+32]
[eax+32], mm
mb, [eax+40]
[eax+40], nmb
n6, [eax+48]
[eax+48], mb
mv, [eax+56]
[eax+56], mmv

nm0, [ebx+128]
mml, [ebx+136]
mR2, [ebx+144]
mB, [ebx+152]
nmd, [ebx+160]
nmb, [ebx+168]
nm6, [ebx+176]
mm/, [ebx+184]
m0, [eax+64]

[eax+64], mmD
mml, [eax+72]
[eax+72], nml
m2, [eax+80]
[eax+80], mm®
nB, [eax+88]
[eax+88], mB
mmd, [eax+96]
[eax+96], mmd
mb, [eax+104]
[eax+104], mb
m®b, [eax+112]
[eax+112], mmb
mv, [eax+120]
[eax+120], mmv

nm0, [ebx+128]

nml, [ebx+136]
mR2, [ebx+144]
mB8, [ebx+152]
m¥, [ebx+160]
mb, [ebx+168]
nB, [ebx+176]
mv, [ebx+184]

m0, [eax+192]
[eax+192], mD

/] xor operations

pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq

movq
movq
movq
movq
movq
movq
movq
movq

pxor
pxor
pxor

pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq

movq
movq
movq
movq
movq
movq
movq
movq

pxor
pxor
pxor

pxor
nmov(

mrl, [eax+200]

[eax+200],

m2, [eax+208]

[eax+208],

B, [eax+216]

[eax+216],

mmd, [eax+224]

[eax+224],

mb, [eax+232]

[eax+232],

m6, [eax+240]

[eax+240],

mv, [eax+248]

[eax+248],
m0, [ebx+128]
i,

m2,

mB, [ebx+152]
m,

mb,

mb,

mv, [ebx+184]
mO, v/

me, v/

mB, mv

mv, [eax+64]

[eax+64] ,

D, [eax+72]

[eax+72],

mml, [eax+80]

[eax+80],

e, [eax+88]

[eax+88],

B, [eax+96]

[eax+96] ,

nmd, [eax+104]

[eax+104],

mb, [eax+112]

[eax+112],

m6, [eax+120]

[eax+120],
m0, [ebx+128]
mi,

m,

mS,

nmmd, [ebx+160]
mb,

mo,

mv,

moO, mv

m2, mv

mB8, mv

mv, [eax+128]

[eax+128],

[ebx+136]
[ebx+144]

[ebx+160]
[ebx+168]
[ebx+176]

[ebx+136]
[ebx+144]
[ebx+152]

[ebx+168]
[ebx+176]
[ebx+184]

/IMltiplying by x for

byte 3

pxor nmD, [eax+136]
nmovqg [eax+136], mmD
pxor nml, [eax+144]
novqg [eax+144], mrl
pxor mR, [eax+152]
novg [eax+152], mm®
pxor mmB8, [eax+160]
nmovqg [eax+160], mmB
pxor mmd, [eax+168]
novqg [eax+168], mmi
pxor nmb, [eax+176]
nmovqg [eax+176], mmb
pxor nmb, [eax+184]
nmovq [eax+184], mmb

/1 Operations for byte 4

movg nmO, [ebx+192]

nmovg nml, [ebx+200]
nmovg nm2, [ebx+208]
nmovg nmmB, [ebx+216]
nmovg nmd, [ebx+224]
nmovg nmb, [ebx+232]
nmovg nm6, [ebx+240]
nmovg nmi/, [ebx+248]

pxor mm0, [eax]
nmovqg [eax], mD
pxor mml, [eax+8]
novqg [eax+8], mil
pxor mmR2, [eax+16]
novqg [eax+16], mmR2
pxor mmB, [eax+24]
nmovqg [eax+24], mB
pxor nm4, [eax+32]
novg [eax+32], m
pxor mmb, [eax+40]
nmovqg [eax+40], mmb
pxor nm6, [eax+48]
novqg [eax+48], mb
pxor mmv, [eax+56]
novqg [eax+56], mmv

movg nm0, [ebx+192]

nmovg nmil, [ebx+200]
novg nmmR, [ebx+208]
nmovg nmmB, [ebx+216]
nmovg nmd, [ebx+224]
nmovg nmb, [ebx+232]
nmovg nmb, [ebx+240]
novg nmv/, [ebx+248]

pxor nm0, [eax+64]
novq [eax+64], mD
pxor mml, [eax+72]
novqg [eax+72], mml
pxor mmR2, [eax+80]
nmovqg [eax+80], mmR2
pxor nmB8, [eax+88]
novqg [eax+88], mB

pxor
movq
pxor
movq
pxor
movq
pxor
movq

movq
movq
movq
movq
movq
movq
movq
movq

pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq

movq
movq
movq
movq
movq
movq
movq
movq

pxor
pxor
pxor

pxor
nmov(
pxor
movq
pxor
nmov(
pxor
movq
pxor
nmov(
pxor
nmov(

mm, [eax+96]

[eax+96], mm4d
mb, [eax+104]
[eax+104], mb
m®b, [eax+112]
[eax+112], mmb
mv, [eax+120]
[eax+120], mv
m0, [ebx+192]
nml, [ebx+200]
m2, [ebx+208]
mB, [ebx+216]
nmd, [ebx+224]
mb, [ebx+232]
nB, [ebx+240]
mv, [ebx+248]
nm0, [eax+128]
[eax+128], mD
mml, [eax+136]
[eax+136], mmil
MR, [eax+144]
[eax+144], m?
nmB, [eax+152]
[eax+152], mB
mmd, [eax+160]
[eax+160], Mm%
nb, [eax+168]
[eax+168], mb
6, [eax+176]
[eax+176], mb
mv, [eax+184]
[eax+184], mv
nmD, [ebx+192]
ml, [ebx+200]
m2, [ebx+208]
nmB8, [ebx+216]
m¥, [ebx+224]
nb, [ebx+232]
mB, [ebx+240]
mv, [ebx+248]
nmO, mv

mR2, mv

mB8, mi/

mmv7/, [eax+128]
[eax+128], mv
mD, [eax+136]
[eax+136], mD
mml, [eax+144]
[eax+144], ml
me, [eax+152]
[eax+152], MR
mB, [eax+160]
[eax+160], mMmB
mmd, [eax+168]
[eax+168], Mm%

/I Mltiplying by x for

byte 4

}
/*

pxor
movq
pxor
movq

movq
movq
movq
movq
movq
movq
movq
movq

pxor
pxor
pxor

pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor
movq
pxor

movq
pxor
nmov(

enms

}

for (p=0; p<4; p++)
{ for(g=0;q<4;q++)
cout <<bl ock[2* p+8* p] <<endI

cout << "Hit

ci n. get (pause);

}
*/

/*Tentative coding for fourth power.
The fourth power coding is nore efficient.

movq
movq

pxor
pxor
pxor
pxor

nmov(

[t+32], mm4
[t+56], mmV
myd, mrl
md, mt
m, mmb
m, mb
mrl, mb

mb, [eax+176]
[eax+176], mb
m6, [eax+184]
[eax+184], mb

m0, [ebx+192]

ml, [ebx+200]
m2, [ebx+208]
nmB8, [ebx+216]
m¥4, [ebx+224]
nb, [ebx+232]
mB, [ebx+240]
mv, [ebx+248]
nmO, mv

mR2, mv

mB, mi/

mmv7/, [eax+192]
[eax+192], mv
mD, [eax+200]
[eax+200], mD
mml, [eax+208]
[eax+208], mmil
e, [eax+216]
[eax+216], MR
mB, [eax+224]
[eax+224], mB
nmd, [eax+232]
[eax+232], Mm%
mb, [eax+240]

[eax+240], mb
n6, [eax+248]
[eax+248], mb

/! Enpties the mx registers.

return to continue";

This will

Sinmply a formality.

repl ace the squaring twice in a row

59

pxor mil, mmb

pxor mml, mP

pxor mml, mB

pxor mm0, nmil

pxor m0, mv

pxor nml, [t+32]

nmovqg [t+32], mmR

pxor mm2, mb

pxor MR, mv

pxor mmv/, mmb

pxor mmv/, b

pxor nmmv/, mMmB

movq mmb, mb

pxor mmb, mMmB

novg nmmb, [t+32]

pxor 6, [t+56]

pxor mmB8, mR

pxor mmB, [t+32]

*/

voi d addr oundkey(unsi gned long int* block _ptr, unsigned long int* roundkey_ptr, int

key)

{
unsigned long int* r
unsi gned long int* key2;

/1 debug

/lcout << "block_ptr[0+16], [0+17] = " <<block_ptr[0+16] << "," <<block_ptr[0+17] <<

end|

[/ cout << "rounddkey_ptr[0+16],

I

<<roundkey_ptr[0+17] << endl

/1 debug

for(i

//for

{

=0; i <16; i ++)
(1=0;i<2;i++)

/1r = block_ptr + 64*i;
/1 key2 = 256*key + roundkey_ptr + 64*i;
r = block _ptr + 16*i;

[0+17] = " <<roundkey_ptr[0+16] << ",k "

key2 = roundkey_ptr + 16*i + 256*key;
/1 debug
/1 cout << "begi nning of XOR round" << endl
/lcout << "r,r+1 =" <<r[0] << "," <<r[1] << endl
//cout << "key2, key2+l =" <<key2[0] << ","
/1 <<key?2[1] << endl
/1 debug

__asm

{

nmov eax, [r]
nmov ebx, [key2?]
m0, [eax] /1 Movi ng val ues from bl ock.

nmov(

60

novg nmil, [eax+8]
nmovg mm, [eax+16]
nmovg mmB, [eax+24]
novq mmd, [eax+32]
nmovg nmb, [eax+40]
novg nmb, [eax+48]
nmovg mmv/, [eax+56]

pxor m0, [ebx] //XORing values with the roundkey
pxor nml, [ebx+8]
pxor mmR2, [ebx+16]
pxor mmB, [ebx+24]
pxor nmd, [ebx+32]
pxor nmb, [ebx+40]
pxor nm6, [ebx+48]
pxor mmv/, [ebx+56]

nmovg [eax], mO //Moving the values back into their positions.
nmovqg [eax+8], mil

novqg [eax+16], mR2

novg [eax+24], mB

nmovqg [eax+32], mm4

nmovqg [eax+40], mmb

novq [eax+48], mb

novqg [eax+56], mmv

}
/1 debug
//cout << "end of XOR round"” << endl
/lcout << "r,r+l1 =" <<r[0] << "," <<r[1] << endl
//cout << "key2, key2+1l =" <<key2[0] << ","
/1 <<key2[1] << endl
/1 debug
} /lend for
}
voi d build round_key(unsi gned char* ol droundkey, unsigned |long int* roundkey ptr, int
key)
{
Int a;
int b;
int k;

for(j=0;j<16;j++)
{

for(k=0; k<8; k++)

{
[la =7 - k;

b = 2*k+16*] +256* key;

11 ol droundkey[(j +16*key)] >>(a)) &0X01==1)

f((
f ((ol droundkey[(j +16*key)] >>k) &0X01==1)

i
i
{
/1 These shoul d be OXFFFFFFFF, but they are only a single digit 1 so that
the output is
//easier to read.
roundkey ptr[b] =1

roundkey ptr[b+1] 1

1}
[]*xxxxxkxxxxxk ko xx End BitslicelO.cpp Program -- Team 050 Manzano High School *****xx*

61

Appendix B: Project Code Explanation -- Technical Aspects

The bitdicing program is written almost entirely in assembly level code. This makes it more
efficient, but also makes reading the code difficult. The mm# commands refer to special registers called
the MMX registers, which contain 64 bits each, as opposed to 32 bits for a normal register. The code
consists mostly of movg commands and pxor commands, with afew pand commands thrown in. A movq
command moves 8 bytes, or a "quadword,” either from a register to a memory location, or to a memory
location to aregister. A pxor performs a bitwise XOR command between two registers or aregister and a
memory location and stores the result in the first register. Notice that the result for a pxor or a pand
command cannot be directly stored in a memory location. This means that to take an XOR command of
register mmO and memory location [target], the following code must be used:
pxor mmo, [target]
mov([target], mmO.

Note that if mmO is to be used for any other purpose after this operation, it must be "reloaded” to its

original value.

A general pattern for the bitsliced program goes asfollows:
1 Declare functions, variables, and arrays. Also declare several pointers to be used for optimization
of the array storage (explained in detail below).
2. Input of test values for the program. No AddRoundKey transformation is used in the bitsliced
program. However, thereisafunction for the creation of round keysin the control program.
3: For loops which control the s-box and the mixcolumns transformation. The for loops, as
explained below, also alow the shiftrows transformation to be performed for free.
4: The output at the end of mixcolumns. The output is in the form smallest to largest, first byte to
last byte. This requires a careful interpretation because the format that the AES algorithm information
sheet usesfor itstest valuesis closer to largest to smallest, first byte to last byte.
5: The S-box transformation. This consists of three sub functions: multiplication, squares, and an
affine transformation at the end. The square and multiplication functions are mixed as described in the
Mathematical Background sheet.

5.1: The square transformation is the most simple of the three. It finds the square of the

polynomia given by the current byte. The advantage it has over multiplication of two different

62

polynomials is that there are a lot of cancellations, allowing the code to be shorter. The simplification is
fairly easy aso — notice that the x™*n term goes to the x”*2n term, which can then be simplified.

5.2. The multiplication transformation is more complicated, because it multiplies two different
polynomials, and there are no cancellations. Essentialy, to find the n™ term, one must multiply the
constant term of the first polynomial (by using a pand operation) with the n term of the second XOR the
x term of the first polynomial AND the (n-1)" XOR...

5.3: The affine transformation consists of multiplication by a matrix and then inverting four of
the eight bits (accomplished by a PXOR with avalue set at 1).

6: The last part is the mixcolumns transformation function. This transformation is described in the
Mathematical Background sheet, and the coding is fairly straightforward, involving a lot of reloading of

values (because the PXOR operation does not allow the destination to be a memory register.)

Clarification of Code Pieces

In the bitsliced program, there are a number of lines which seem extraneous, but are in fact
essential for the proper function of the program. Other lines may simply seem confusing. Some of these
lines, listed below, are explained in detail.
inverse ptr = inverse;
if ((((unsigned long int)inverse ptr)%8)!=0)

inverse ptr++;

An unsigned long integer only stores 4 bytes of memory. This means that when an array of unsigned long
integersis created, then the pointer to the first value in the array will be divisible by four bytes. However,
the bitdlicing operations run on 8 bytes of memory. There is a performance penalty if the pointer value
for the array is not divisible by 8. By creating a new pointer to a place four bytes past the original if the
original is not divisible by 8, the performance penalty is avoided and the code is optimized.

for(row=0;row<4;row++)
{ for(col=0;col<4;col++)

{
block byte ptr = block_ptr + (80* col + 64* row)%256;

63

tblock_byte ptr = tblock_ptr + (64*row + 16*cal);

shox(block_byte ptr, tblock _byte ptr); /16 elements per bit-sliced byte, 4 columns per row
}

}

Thisfor loop alows for no time to be spent on the shiftrows transformation. This loop runs the S-box 16
times, taking the values from the storage "block™ and placing them into temporary storage in “tblock,"
while at the same time performing the shiftrows operation. Notice that by using the temporary storage

block, the shiftrows takes effectively zero time.

for(col=0;col<4;col ++)

{

block _byte ptr = block_ptr + 64* col;
tblock_byte ptr = tblock ptr + 64*col;
mixcolumns(block_byte ptr, tblock_byte ptr);
}

This part of the program calls the mixcolumns function four times. It takes the temporary values
from tblock and places them in block, where (if afull round were performed), they would be X ORed with

the Roundkey and then put back into the S-box.

mov eax, [block _byte ptr]

movq mmoO, [eax]
movg mm1, [eax+8]
movg mm2, [eax+16]
movqg mm3, [eax+24]
movq mmd4, [eax+32]
movg mmb5, [eax+40]

movg mme6, [eax+48]

movq mm7, [eax+56]

The block_byte ptr, as shown in the second example, is the position in the "block™ where the
values are coming from. Because it varies, it is critical to temporarily store it in the eax general-purpose
register. Otherwise, the movg command moves the numerical value of the pointer into the register, as
opposed to what the pointer is pointing to.

movqg mmo, [ebx+192]
movq mm1, [ebx+200]
movg mm2, [ebx+208]
movg mm3, [ebx+216]
movg mmd, [ebx+224]
movq mmb5, [ebx+232]
movg mme, [ebx+240]
movg mm7, [ebx+248]

This part is repeated fairly often, and the purpose was explained previously. Because the PXOR

command must be performed inside the mm# register, this changes the value of the register, which must

be rel oaded frequently.

65

Appendix C: Mathematical Equations

For the S-box, the polynomia used for modulus is x® + x* + x® + x + 1. The first transformation

involves taking the inverse. This part is explained in the code itself. The matrix for the affine

EEndbyteOE Bl 000111 1%CurrentOH BLH
[Endbytel;g (1 1 0 O O 1 1 I1Currentl QO
%ndbytezm E‘L 110001 1%3urrent2% Ebg
transformation is [(Endbyte30 (1 1 1 1 0 0 O 1[H:Current3E’+EOD
FndoyteaD B 11 1 1 0 0 0Furrent4Z BF
EEndbyteSD (01 1111 0 OUCurents50 [0
%ndbyte6m %) 011111 O%:urrenwg %LB
Hendbyte7H B 0 0 1 1 1 1 1HCurrent7H HH

For the ShiftRows transformation, the "state" is divided into a 4 x 4 matrix of bytes. The

transformation is as follows:

HabcdHHabcdH
De ghDnghED
Ui D% I i jU

o n o oF " ol

For the MixColumns transformation, the "state" is divided into a 4 x 4 matrix, broken down into vectors

Hx x+1 1 1H

01l X Xx+1
and multiplied, modulus x® + x* + x3 + x + 1, with the matrix B 1 +10
X X

1
ﬁull 1 xﬁ

For the ExpandRoundKey, the RoundKey is generated by first taking the last 4 bytes of the last
RoundKey, Left Circular Shifting them and then applying the S-box. Next, a "round constant"
determined by x""*-* modulus

x® +x*+ x3+ x + 1is XORed. Finaly, this value is XORed with the first 4 bytes of the last RoundKey.
Successive four bytes are generated by taking the last 4 bytes in the current RoundKey and X ORing them
with the corresponding 4 bytesin the last RoundKey.

66

67

	Analysis

