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Executive Summary 

Race car drivers spend time determining the math and physics of a course before a race. 
This has been the complications of racing since the beginning of time. Our basic solution 
for solving any problems was to apply, “Newton’s Laws of Motion,” using kinematics 
and dynamic equations, which led us to write two C++ programs. We wanted to 
determine different driving lines and times. With this we could find the best one, which 
would give the racer a better benefit in a race. The first one outputs the significant driving 
lines and times around a ninety degree turn. The second program output’s the significant 
driving lines and times around a range of radii from 45 to 180 degrees. We accomplished 
more accurate results than those of Beckman. One major purpose in this project was to 
determine the relationship of speed and radius. Basically, the width of the track is a major 
part of what is the safest speed and radius. Therefore, there are not any corresponding 
radii and speeds. If so, it is very uncommon. This project was well intriguing, yet 
complicated. There is so much more to racing than just the common turn, straight, turn. 
Mathematics and physics are a major part and something that is well worth figuring out. 
This is a problem that could be passed down to anyone whom would like to take it 
further, which is a future plan.  

 

 

 

 



Introduction 
Our program analyzes the physics of a race car corner, enhancing the driver’s knowledge 

of how to drive the course.  This could potentially improve the race car time by providing 

a fast yet safe cornering method.  Our project is related to a larger project at UNM School 

of Engineering.  They are trying to find the fastest and safest way to go through a corner 

and are building the car they will be racing using the physical equations. Students from 

UNM will use our program to analyze the driving line before they race. 

When we started this project we were intrigued by the possibility of writing a program 

for all race car drivers to use.  We chose this particular problem because it concerns a 

major part of any race car driver’s life and a common problem needing to be solved.  

Using racing simulation is a standard practice in professional race car driving. There is 

much yet to be discovered in this field and we see an opportunity to contribute to this 

work.  We both have a personal interest in race car driving because we know many 

people who race competitively. 

2.  Background 

2.1  Problem Definition 

The intention of our project is to determine the best way to go through a corner in a race 

course. By “best,” we mean in the least time and at the greatest average speed.  We will 

do this by determining the shape of a driving line through the corner.  We will also 

determine times for multiple lines and compare the results. 

This project is significant because it can only be approached in two different ways: first 

by driving experience and skill and the second by the principles of physics.  



Understanding of the physics of race car could give a driver a winning edge over the 

competition.  

 

2.2 Centrifugal or Centripetal  Force? 

Centrifugal force is the apparent force that throws you to the outside of a turn during 

cornering. If there is anything loose in the car, it will immediately slide to the right in a 

left hand turn, and vice versa.  Centrifugal force is a fiction, and a consequence of the fact 

first noticed just over three hundred years ago by Newton that objects tend to continue 

moving in a straight line unless acted on by an external force (Beckman). 

Technically, centrifugal force does not exist. It appears quite real to an object being 

rotated as illustrated by a child on a merry-go-round.  In this situation, the child is not 

experiencing any real outward force, but he/she must exert a force inwards to keep from 

flying off the merry-go-round.  Since the centrifugal force appears so real, it is often very 

useful to use as if it were real  (Beckman).  “The more massive the object, the greater the 

force.”  (Newton)  We know that this is true because an adult will have a harder time 

staying on a merry-go-round than a child will. 

When you turn the steering wheel, you are trying to get the front tires to push a little 

sideways on the ground, which then pushes back, according to Newton's third law.  When 

the ground pushes back, it causes a little sideways acceleration.  This sideways 

acceleration is a change in the sideways velocity (Beckman).  The forces felt by the 

driver are centripetal.  The term centrifugal means “center fleeing”, which refers to the 

inertial tendency to resist the centripetal force and to continue going straight.  If the 

centripetal force is constant in magnitude, the centrifugal tendency will be constant.  



There is no such thing as centrifugal force although it is a convenient fiction for the 

purpose of some calculations (Beckman).  

2.3  Acceleration 

The acceleration shown on the graph in diagram C (Appendix E) is usually measured in 

units of G. The graph is called a GG Diagram. It plots values of G against G.  A “G,” is a 

very useful way of measuring acceleration.  Acceleration is the change in speed with 

time, and would typically be measured in units of, for example, meters per second per 

second.  That is how much your speed changed in a given time.  

The G manages to remove the matter of weight by comparing measured accelerations 

with the acceleration due to gravity, which is a reasonably constant value.  The result is a 

number, which has no dimensions; it is unit-less. It is the same regardless of whether you 

are using metric or imperial units 

Acceleration is generally measured using an electro-mechanical device called an 

Accelerometer. We all have a vertical acceleration of one G acting on us due to the 

Earth's gravity.  A sports car on road tires is unlikely to reach one G in cornering or under 

braking, though values of around 0.8 to 0.9 G are quite achievable (Beckman). 

3.  Project Description 

3.1  Principles 

The physics principles governing cornering in a race car are Newton’s 1st and 2nd Laws of 

Motion.  Newton’s first law states that every material object continues in its state of rest 

of uniform motion in a straight line, unless it is compelled to change that state by forces 

impressed upon it. That is, a car will continue drifting until it is interrupted by an outside 

force like friction, gravity and in some cases another car. 



Newton’s second law states that the acceleration of an object is directly proportional to 

the net force acting on the object, is in the direction of the net force and is inversely 

proportional to the mass of the object. That is, when a force is applied to a car the change 

in motion equals the force divided by the mass of the car.  

• Mass - measure of body's inertia, i.e., resistance to change in state of motion; 
fundamental measure of amount of matter in body  

o Unit for mass is the gram, abbreviation is g  
• Force - pushes or pulls that change body's state of motion  

o Unit for force is the dyne, 1 dyne = 1 g*cm/s2  
• Velocity - time rate of change of position (speed) in particular direction; 

instantaneous velocity (at a single instance of time)  
o Unit for velocity is centimeter per second, abbreviation is cm/s  

• Acceleration - time rate of change of velocity in a particular direction; 
instantaneous acceleration  

3.2 Math Model 
For the first program we used the same computational model of Beckman. We defined 

multiple lines and multiple times using many extensive equations. (c_speed = 

sqrt(32*radius)*60/88;) : With this equation we were able to define the best cornering 

speed. We took the square root of  the quantity one gee( 32) multiplied by any radius, 

then multiplying the quantity by mph divided by feet per second. We used Beckman’s 

basic calculation of 60mph and 88fps.  

Then we determined our braking distance, we used the equation: (b_distance = (100*100-

c_speed*c_speed)*88*88/(2*32*3600);) : In this equation we multiplied the quantity of  

the start speed twice then subtracted the cornering speed squared. Next we multiplied the 

quantity by feet per second (fps) squared divided by the quantity of two gees by the radii.  

Later we wanted to determine the straight distance using (s_distance = 13*50-b_distance-

100;): With this equation we multiply 13 by 50 subtracting the brake distance. The 

subtract the starting speed from the brake distance.  

http://www.physics.gmu.edu/classinfo/astr103/CourseNotes/Glossary/astrgl_a.htm#acceleration


Next we want to find the time in the straight so we use (s_time = 

s_distance/(100*88/60);) : First we divide the straight distance by the quantity of the 

starting speed multiplied by fps/mph.  

 

After this we wanted to find the time in the braking zone (b_zone = (100-

c_speed)*88/(60*32);) : To do this we had to multiply the quantity of the starting 

speed(100)  subtracting the cornering speed. The divide all of that by the quantity mph * 

amount of g’s(32).  

To find the time in the corner use the equation (t_corner 

radius*3.14159265358979/(c_speed*(88/60));) : First multiply the radius by pi. The 

divide that answer by the quantity cornering speed 8 fps/mph.  

Then to find the exit speed from chute is a bit more complicating 

(e_chute = (sqrt(16*((c_speed*c_speed*88*88/3600)/16+13*50))*60/88-

c_speed)*(88/60)/16;): 

Just take the square root of the quantity 16 multiplied by the quantity of cornering speed 

squared multiplied by fps squared divided by 3600. Then divide that quantity by 16 + 13 

* 50. After that we just multiplied those two quantities together by mph/fps. Then 

multiply all of the above by the quantity fps(88)/mph(60) then once you get that number 

which should be the amount of g’s divided by 16. 

The exit speed is similar to the time above: (e_speed = 

sqrt(16*((c_speed*c_speed*88*88/3600)/16+13*50))*60/88;) Just take the square root of 

the quantity 16 multiplied by the quantity of cornering speed squared multiplied by fps 



squared divided by 3600. Then divide that quantity by 16 + 13 * 50. After that we just 

multiplied those two quantities together by mph/fps. 

 The total time is the easiest to find by using: ((t_time =  s_time + b_zone + t_corner + 

e_chute;): 

Basically just add the time in the straight + the time in the braking zone + time in the 

corner + and the time in the exit chute. 

 

The second program it became much more complicated because of the fact that it  can 

calculate the corner for any degree turning angle. 

ro outer radius 
ri inner radius 
< deg angle of turn 

g 
accel. Of gravity 
(32.16) 

Ny lateral g's 
Nxa accelerating g's (.5) 
Nxb braking g's (1.1) 
R Largest radius 
SAB Length of Seg. AB 

 

t Time 
SCD length of seg. CD 
tAB time in seg. AB 
tBC time in seg. BC 
tCD time in seg. CD 
v Velocity 
SBC length of seg.BC 

 

R = (ro – ri) cos ( <deg/2) / 1 – cos(<deg/2) –Largest radius 

To get the length of SAB ( length of segment AB): SAB = SCD = (R – ri)sin(<deg/2). 

To calculate the time in the entry in segment AB use the equations: 

VA = VB  

SAB = 2(Nxag)(Sab)+VA*VA+VB*VB 

If SAB > 0 ,Then: 

(VA*VA) = VB*VB+2(nxg)(SAB) 



tAA = (VA-VA)/(Nxag) - accelerating 

tAB = (VA – VB)(Nxbg) – braking 

tAB = tAA + tAB 

If SAB < 0 , Then: 

 

tAB = VB – VA / Nxbg 

 

To calculate the time in the turn in segment BC, we used: 

VB = sqrt(Nygr) = Vc : With this equation for radius you can use either (r = ro, ri, R) 

SBC = r *@ 

(@ = ( <deg/180) * 3.14) 

tBC = SBC / VB 

 

To calculate time in the exit in segment BC for ro, ri: 

Assume there is no turn coming up which would require braking: 

VD = sqrt(2(Nxag)(SCD)+VC*VC) 

tCD = VD –VC / Nxag 

 

To calculate the total time, just add all the times together: 

t = tAB + tBC + tCD (for ro, ri) 

t = tBC (for R) 

 

3.3  Computational Model 

We wrote two C++ programs.  The first is a replication of Beckman’s solution for 

cornering.  In this model, the assumption is that the angle of the corner is 90%.  With the 

help our mentor, John Russell, we added the capability of using any angle to our second 

program.  We verified the accuracy of our second program by running a test case with a 

cornering angle of 90% and comparing the results to a similar run in our first program.  



The results were the same.  The third step in this computational model would be to add 

nested loops representing the radius, the angle, and the width of the corner.  This way we 

could get more data in a single run of the program.  We plan on having this program done 

by the day of the AiS Challenge Expo Awards. 

4.  Results 

We wrote two programs: one we related to Brian Beckman’s results and another more 

flexible. The first code is basically related to a 90 degree angle. The second code was 

written to process results for any angle. Although, we did think we were inaccurate at the 

beginning after comparing our results with those of Brian Beckman. We spent time 

running different numbers through our program. We later found out through our mentor 

and extensive time spent on the equations that our results were more accurate.  

4.1  Knowledge Acquired 

In the course of this project we learned more about the physics involved in the dynamics 

of car racing. Though we all had a basic idea of what racing was prior to this project, we 

have gained more in-depth knowledge concerning the different methods and stimulations 

involved in racing.   

We also learned some entirely new programming methods and commands.  Our project 

was challenging because of the fact that we needed to use so many equations.  We 

sharpened our previously acquired skills in programming in C++, writing reports, and 

giving presentations as well.  However, we got more out of this project than just new 

knowledge; we also developed a stronger friendship and experienced working together as 

a team. 

5. Conclusions 



Our completed program can be applied to any data set of corners. Although the input 

section of our program was written to use a numerous amount of radii, the core of the 

program is entirely general, and the code can be modified to use a different number of 

radii and speed to determine was is safe and not..   

Our program also uses dynamics and kinematics , rather than basic algebra, which means 

that the user can input different radii and find and accurately safe speed. This is 

considered to be a good programming technique because it allows the user to define the 

precise information for the course. 

This program and idea was intriguing. We wrote two accurate programs that both out put 

data. Our problem was solved. We have determined multiple lines and multiple times for 

a corner of a race course. One program focuses on 90 degree turns and the second focuses 

on every radii. We too have determined a safe speed 

There is only one major limitation to our program: the fact that is only for the corner of 

the course. This program was written to be extended. The next step is to determine 

accurate information for a straight. We wrote our program with the knowledge that it is 

limited to us at the time being. 

The success of our program ensures that it will be used and further developed by 

researchers/students at the engineering school at the University of New Mexico. Our 

mentor, Dr. Russell, will give our code to his graduate students and have them work with 

it.  They will try to extend our program.  

Also, the UNM will use our program to analyze their own data in the future; currently, 

they are still looking for accurate information for their courses. However, once we are 

finished we will have successfully helped them with part of their problem. 



Racers want to know if there is a correlation between radii and speeds, and our program 

will help them find out.  However, the importance of race simulation is not only for 

research purposes, but also for accurate personal interests.  By knowing the exact radii 

and speed for the fastest and safest will better benefit the racer. This improves racing 

accuracy and lets the racer avoid unnecessarily severe accidents. 

5.1  Recommendations 

Our mentor has suggested that we continue this project next year.  We are seriously 

considering doing so.  We would like to extend this project to include the best line and 

time for racing in a straight. After this has been accomplished we would like our program 

to be one in which a race car driver could use to find out information for a whole course. 

It takes time but is something we would love to accomplish. We would like to make the 

program interactive so that a race driver could readily use the program. One other 

intriguing idea for our program is graphical and interface output. We have also been 

offered to join the engineering class at UNM. This project has been so exciting for us and 

is something we would definitely love to expand on. 
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Appendix A 

C++ Code Program One 

 
// AiS Challenge Program 

//Angelica And Jamie 

 

/* */ 

  

#include <string.h> 

#include <iomanip.h> 

#include <conio.h> 

#include <iostream.h> 

#include <stdlib.h> 

#include <math.h> 

 

int radius;           //radius of the corner 

//int g = 32;        //gee force 

float c_speed;        //cornering speed at 1 g 

float b_distance;     //braking distance in ft @ 1g from 100mph 

float s_distance;     //straight distance in ft prior to braking 

float s_time;         //time in sec in the straight @ 100mph prior to braking 

float b_zone;        //time in sec in braking zone 

float t_corner;      //time in the corner @ 180 degrees 

float e_chute;       //time int the exit chute at 1/2g 

float t_time;         //total time in seg 

float e_speed;       //exit speed in mph 

int x;                 //loop counter 



 

int main() 

{ 

for (x=50;x<=1000;x+=50) 

{ 

radius=x; 

cout <<"radius of the corner "<<radius<<endl; 

c_speed = sqrt(32*radius)*60/88; 

cout << setprecision(4)<<"c_speed - cornering speed " << c_speed<<endl; 

b_distance = (100*100-c_speed*c_speed)*88*88/(2*32*3600); 

cout << "b_distance - braking distance " << b_distance<<endl; 

s_distance = 13*50-b_distance-100; 

cout << setprecision(4)<<"s_distance - straight distance " << s_distance<<endl; 

s_time = s_distance/(100*88/60); 

cout << setprecision(4)<<"s_time - time in the straight " << s_time<<endl; 

b_zone = (100-c_speed)*88/(60*32); 

cout <<"b_zone - braking zone " <<b_zone<<endl; 

t_corner = radius*3.14159265358979/(c_speed*(88/60)); 

cout << setprecision(4)<<"t_corner - time in the corner "<<t_corner<<endl; 

e_chute = (sqrt(16*((c_speed*c_speed*88*88/3600)/16+13*50))*60/88-

c_speed)*(88/60)/16; 

cout << setprecision(4)<<"e_chute - time in the exit chute " <<e_chute<<endl; 

t_time =  s_time + b_zone + t_corner + e_chute; 

cout << setprecision(4)<<"t_time - exit time " <<t_time<<endl; 

e_speed = sqrt(16*((c_speed*c_speed*88*88/3600)/16+13*50))*60/88; 

cout << setprecision(4)<<"e_speed - exit speed "<<e_speed<<endl; 

system("PAUSE"); 

} 

 

return 0; 

} 



Appendix B 

Code Description 

 

Our program is a complete modeling program in C++ that enables us to try out different 

computational models in the form of a physic network with variable parameters to see 

which one works best for our problem.  Our code uses the extensive equations obtained 

from the excel data sets made available by Brian Beckman. This is done by calculating 

the speed intensities, numerous radius’s, into our race stimulation. (See Appendix C: 

diagram A)  

Our completed program can be applied to any data set of race car drivers to classify them 

into two categories: Dangerous or Safe.  Although the input section of our program was 

written to use a numerous number of radius’s and speed using the loop variable, the race 

stimulation core of the program is entirely general, and the code can be easily modified to 

use car types.   

Our program also uses dynamics and kinematics, rather than simple mathematics, which 

means that the user can input different speeds, different radius’s and get accurate 

information back. This is considered to be a good programming technique because it 

allows the user to define the computational environment and it prevents the necessity of 

compiling the program for each change in numerical radius and speed values.   

 

 

 



Appendix C 

Program Two 
//Minitime - isolated curve 

//Angelica Delgadillo and Jamie O'Dell 

 

#include <iostream.h> 

#include <stdlib.h> 

#include<string.h> 

#include<iomanip.h> 

#include<math.h> 

                 

 float g;      

 float rcl; 

 float w; 

 float phi; 

 float T; 

 float Ro; 

 float Ri; 

 float ro; 

 float ri; 

 float ny; 

 float nxb; 

 float nxa; 

 float R; 

 float sab; 

 float vb; 

 float sbc; 

 float tbc; 

 float tmin; 

 float vbi; 

 float sbci; 



 float tbci; 

 float scdi; 

 float vci; 

 float vdi; 

 float tcdi; 

 float va; 

 float sapbi; 

 float vapi;  

 float taapi; 

 float tabi; 

 float tapbi; 

 float ti; 

 float vbo; 

 float sbco; 

 float tbco; 

 float scdo; 

 float vco;  

 float vdo; 

 float sapbo; 

 float vapo; 

 float tapbo; 

 float taapo; 

 float tabo; 

 float to; 

 float tcdo;  

int main() 

{ 

   g =32.16; //gravitational constant (ft/s^2) 

  

  //curve imput 

  rcl = 75;    //radius of corner center line (ft) 



  w =30;       //width of course (ft) 

  phi =90;     //turn angle (degrees) 

  T =6;        //car track width (ft) 

  

  Ro = rcl+.5*w; 

  Ri =rcl-.5*w; 

  

  ro = Ro -.5*T;   //effective outer radius 

  ri = Ri +.5*T;   //effective inner radius 

   

  //race car performance input 

   

  ny = 1.10;    //lateral g's 

  nxb = 1.0;    //braking g's 

  nxa = 0.5;     //acceleration g's 

   

   

  //calculate largest radius, R, and entry and exit distances, sab 

  R = (ro - ri*cos(phi*3.14/360))/(1-cos(phi*3.14/360)); 

  sab = (R-ri)*sin(phi*3.145/360); 

   

  //calculate time in curve for largest radius R 

  vb = sqrt (ny*g*R);   //speed in curve 

  sbc = R*phi*3.145/180;    //curve length 

  tbc = sbc/vb;          //time in curve 

  tmin = tbc; 

   

  //calculate time in curve with smallest radius, ri 

   

  //time in curve 

   



  vbi = sqrt(ny*g*ri);       //speed in curve 

  sbci = ri*phi*3.145/180;   //curve length of BC 

  tbci = sbci/vbi;           //time in curve BC   

   

  //time in exit 

  scdi = sab;            //exit length in same as entry length 

  vci = vbi;             //speed at C is the same as speed at B 

  vci = vci*vci; 

  vdi = sqrt(2*nxa*g*scdi+vci); //speed at D 

  tcdi =(vdi-vci) /(nxa*g);       //time in exit CD 

   

  //time in entrance 

  va =vb;  ///entrance speed is same as speed for largest radiua curve 

  va = va*va; 

  vbi = vbi*vbi; 

  sapbi = (2.0*nxa*g*sab +va-vbi/2.0*g*(nxa+nxb)); 

  vbi = vbi*vbi; 

  vapi = sqrt(vbi+2*nxb*g*sapbi); 

     

  taapi = ( vapi-va) / (nxa*g); 

  tapbi = (vapi-vbi)/(nxb*g); 

     

  tabi = taapi + tabi; 

     

  //total time inner radius 

     

  ti = tabi+tbci+tcdi; 

     

  //calculate time in curve with largest radius, ro 

  //time in curve 

     



  vbo = sqrt (ny*g*ro);    //speed in curve 

  sbco = ro*phi*3.145/180;    //curve length of BC 

  tbco = sbco/vbo;         //time in curve BC 

       

  //time in exit 

       

  scdo = sab;             //exit length is same as entry length 

  vco = vbo;              //speed at C is the same as speed at B 

  vco = vco*vco;    

  vdo = sqrt(2*nxa*g*scdo+vco);  //speed at D 

  tcdo = (vdo -vco)/ (nxa*g);      //time in exit CD 

      

  //time in entrance 

      

  va = vb;           //entrance speed is same as speed for largest radius curve 

  va = va*va; 

  vbo = vbo*vbo; 

  sapbo = (2*nxa*g*sab+va-vbo)/(2*g*(nxa+nxb)); 

  vbo = vbo*vbo; 

      

  vapo = sqrt(vbo+2*nxb*g*sapbo); 

  taapo = (vapo-va)/(nxa*g); 

  tapbo = (vapo-vbo)/(nxb*g); 

      

  tabo = taapo + tapbo; 

      

  //total time outer radius 

  to = tabo + tbco + tcdo; 

    cout << R<<" largest radius of the curve possible"<<endl; 

    cout <<rcl<<" radius of the corner center line "<<endl; 

    cout <<w<<" width of the course"<<endl; 



    cout <<phi<<" turn angle in degrees"<<endl; 

    cout <<T<<" car track width "<<endl;      

    cout <<Ro<<" effective outer radius "<<endl; 

    cout <<Ri<<" effective inner radius "<<endl; 

    //cout  

    system("PAUSE"); 

    return 0; 

} 
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Appendix D 
Diagram B 
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Diagram C 

 
 
 

 
 
 
 
 
 
 



                                Appendix A 
                                   Code 
 
 
//Minitime - isolated curve 
#include <iostream.h> 
#include <stdlib.h> 
#include<string.h> 
#include<iomanip.h> 
#include<math.h> 
                 
     
      
      float g; 
        
 float rcl; 
 float w; 
 float phi; 
 float T; 
 float Ro; 
 float Ri; 
 float ro; 
 float ri; 
 float ny; 
 float nxb; 
 float nxa; 
 float R; 
 float sab; 
 float vb; 
 float sbc; 
 float tbc; 
 float tmin; 
 float vbi; 
 float sbci; 
 float tbci; 
 float scdi; 
 float vci; 
 float vdi; 
 float tcdi; 
 float va; 
 float sapbi; 
 float vapi;  
 float taapi; 
 float tabi; 
 float tapbi; 
 float ti; 



 float vbo; 
 float sbco; 
 float tbco; 
 float scdo; 
 float vco;  
 float vdo; 
 float sapbo; 
 float vapo; 
 float tapbo; 
 float taapo; 
 float tabo; 
 float to; 
 float tcdo;  
int main() 
{ 
   g =32.16; //gravitational constant (ft/s^2) 
  
  //curve imput 
  rcl = 75;    //radius of corner center line (ft) 
  w =30;       //width of course (ft) 
  phi =30;     //turn angle (degrees) 
  T =6;        //car track width (ft) 
  
  Ro = rcl+.5*w; 
  Ri =rcl-.5*w; 
  
  ro = Ro -.5*T;   //effective outer radius 
  ri = Ri +.5*T;   //effective inner radius 
   
  //race car performance input 
   
  ny = 1.10;    //lateral g's 
  nxb = 1.0;    //braking g's 
  nxa = 0.5;     //acceleration g's 
   
   
  //calculate largest radius, R, and entry and exit distances, sab 
  R = (ro - ri*cos(phi*3.145/360))/(1-cos(phi*3.145/360)); 
  sab = (R-ri)*sin(phi*3.145/360); 
   
  //calculate time in curve for largest radius R 
  vb = sqrt (ny*g*R);   //speed in curve 
  sbc = R*phi*3.145/180;    //curve length 
  tbc = sbc/vb;          //time in curve 
  tmin = tbc; 
   



  //calculate time in curve with smallest radius, ri 
   
  //time in curve 
   
  vbi = sqrt(ny*g*ri);       //speed in curve 
  sbci = ri*phi*3.145/180;   //curve length of BC 
  tbci = sbci/vbi;           //time in curve BC   
   
  //time in exit 
  scdi = sab;            //exit length in same as entry length 
  vci = vbi;             //speed at C is the same as speed at B 
   
  vdi = sqrt(2*nxa*g*scdi+vci,2); //speed at D 
  tcdi =(vdi-vci) /(nxa*g);       //time in exit CD 
   
  //time in entrance 
  va =vb;  ///entrance speed is same as speed for largest radiua curve 
  va = va*va; 
  vbi = vbi*vbi; 
  sapbi = (2.0*nxa*g*sab +va-vbi/2.0*g*(nxa+nxb)); 
  vbi = vbi*vbi; 
  vapi = sqrt(vbi+2*nxb*g*sapbi); 
     
  taapi = ( vapi-va) / (nxa*g); 
  tapbi = (vapi-vbi)/(nxb*g); 
     
  tabi = taapi + tabi; 
     
  //total time inner radius 
     
  ti = tabi+tbci+tcdi; 
     
  //calculate time in curve with largest radius, ro 
  //time in curve 
     
  vbo = sqrt (ny*g*ro);    //speed in curve 
  sbco = ro*phi*3.145/180;    //curve length of BC 
  tbco = sbco/vbo;         //time in curve BC 
       
  //time in exit 
       

  scdo = sab;             //exit length is same as entry length 
  vco = vbo;              //speed at C is the same as speed at B 

      
  vdo = sqrt(2*nxa*g*scdo+vco,2);  //speed at D 
  tcdo = (vdo -vco)/ (nxa*g);      //time in exit CD 



      
  //time in entrance 

      
  va = vb;           //entrance speed is same as speed for largest radius curve 

  va = va*va; 
  vbo = vbo*vbo; 

  sapbo = (2*nxa*g*sab+va-vbo)/(2*g*(nxa+nxb)); 
  vbo = vbo*vbo; 

      
  vapo = sqrt(vbo+2*nxb*g*sapbo); 

  taapo = (vapo-va)/(nxa*g); 
  tapbo = (vapo-vbo)/(nxb*g); 

      
  tabo = taapo + tapbo; 

      
  //total time outer radius 
  to = tabo + tbco + tcdo; 

          
    system("PAUSE"); 

    return 0; 
} 



//Minitime - isolated curve 
#include <iostream.h> 
#include <stdlib.h> 
#include<string.h> 
#include<iomanip.h> 
#include<math.h> 
                 
     
      
      float g; 
        
 float rcl; 
 float w; 
 float phi; 
 float T; 
 float Ro; 
 float Ri; 
 float ro; 
 float ri; 
 float ny; 
 float nxb; 
 float nxa; 
 float R; 
 float sab; 
 float vb; 
 float sbc; 
 float tbc; 
 float tmin; 
 float vbi; 
 float sbci; 
 float tbci; 
 float scdi; 
 float vci; 
 float vdi; 
 float tcdi; 
 float va; 
 float sapbi; 
 float vapi;  
 float taapi; 
 float tabi; 
 float tapbi; 
 float ti; 
 float vbo; 
 float sbco; 
 float tbco; 
 float scdo; 



 float vco;  
 float vdo; 
 float sapbo; 
 float vapo; 
 float tapbo; 
 float taapo; 
 float tabo; 
 float to; 
 float tcdo;  
 
int main() 
{ 
   g =32.16; //gravitational constant (ft/s^2) 
  
  //curve imput 
  rcl = 75;    //radius of corner center line (ft) 
  w = 30;       //width of course (ft) 
  phi 90;     //turn angle (degrees) 
  T =6;        //car track width (ft) 
  
  Ro = rcl+.5*w; 
  Ri = rcl-.5*w; 
  
  ro = Ro -.5*T;   //effective outer radius 
  ri = Ri +.5*T;   //effective inner radius 
   
  //race car performance input 
   
  ny = 1.10;    //lateral g's 
  nxb = 1.0;    //braking g's 
  nxa = 0.5;     //acceleration g's 
   
   
  //calculate largest radius, R, and entry and exit distances, sab 
  R = (ro - ri*cos(phi*3.14/360))/(1-cos(phi*3.14/360)); 
  sab = (R-ri)*sin(phi*3.145/360); 
   
  //calculate time in curve for largest radius R 
  vb = sqrt (ny*g*R);   //speed in curve 
  sbc = R*phi*3.145/180;    //curve length 
  tbc = sbc/vb;          //time in curve 
  tmin = tbc; 
   
  //calculate time in curve with smallest radius, ri 
   
  //time in curve 



   
  vbi = sqrt(ny*g*ri);       //speed in curve 
  sbci = ri*phi*3.145/180;   //curve length of BC 
  tbci = sbci/vbi;           //time in curve BC   
   
  //time in exit 
  scdi = sab;            //exit length in same as entry length 
  vci = vbi;             //speed at C is the same as speed at B 
  vci = vci*vci; 
  vdi = sqrt(2*nxa*g*scdi+vci); //speed at D 
  tcdi =(vdi-vci) /(nxa*g);       //time in exit CD 
  if (tcdi<0) 
  tcdi = abs(tcdi); 
  //time in entrance 
  va =vb;  ///entrance speed is same as speed for largest radiua curve 
  va = va*va; 
  vbi = vbi*vbi; 
  sapbi = (2.0*nxa*g*sab +va-vbi/2.0*g*(nxa+nxb)); 
  if (sapbi<0) 
  sapbi=abs(sapbi); 
  vbi = vbi*vbi; 
  vapi = sqrt(vbi+2*nxb*g*sapbi); 
     
  taapi = ( vapi-va) / (nxa*g); 
  if (taapi<0) 
  taapi = abs(taapi); 
  tapbi = (vapi-vbi)/(nxb*g); 
  if (tapbi<0) 
  tapbi=abs(tapbi);   
  tabi = taapi + tabi; 
     
  //total time inner radius 
     
  ti = tabi+tbci+tcdi; 
  if (ti<0) 
  ti == abs(ti); 
   
     
  //calculate time in curve with largest radius, ro 
  //time in curve 
     
  vbo = sqrt (ny*g*ro);    //speed in curve 
  sbco = ro*phi*3.145/180;    //curve length of BC 
  tbco = sbco/vbo;         //time in curve BC 
       
  //time in exit 



       
  scdo = sab;             //exit length is same as entry length 
  vco = vbo;              //speed at C is the same as speed at B 
  vco = vco*vco;    
  vdo = sqrt(2*nxa*g*scdo+vco);  //speed at D 
  tcdo = (vdo -vco)/ (nxa*g);      //time in exit CD 
  if (tcdo<0) 
  tcdo = abs(tcdo);    
  //time in entrance 
      
  va = vb;           //entrance speed is same as speed for largest radius curve 
  va = va*va; 
  vbo = vbo*vbo; 
  sapbo = (2*nxa*g*sab+va-vbo)/(2*g*(nxa+nxb)); 
  if (sapbo<0) 
  sapbo = abs(sapbo); 
  vbo = vbo*vbo; 
      
  vapo = sqrt(vbo+2*nxb*g*sapbo); 
  if (vapo<0) 
  vapo = abs(vapo); 
  taapo = (vapo-va)/(nxa*g); 
  if (taapo<0) 
  taapo = abs(taapo); 
  tapbo = (vapo-vbo)/(nxb*g); 
  if (tapbo<0) 
  tapbo = abs(tapbo); 
      
  tabo = taapo + tapbo; 
  if (tabo<0) 
  tabo = abs(tabo); 
      
  //total time outer radius 
  to = tabo + tbco + tcdo; 
  if (to<0) 
  to = abs(to); 
    cout << R<<" :largest radius of the curve possible (R) "<<endl; 
    cout <<rcl<<" :radius of the corner center line (rcl) "<<endl; 
    cout <<w<<" :width of the course (w)"<<endl; 
    cout <<phi<<" :turn angle in degrees (phi)"<<endl; 
    cout <<T<<" :car track width (T) "<<endl;      
    cout <<Ro<<" :effective outer radius (Ro) "<<endl; 
    cout <<Ri<<" :effective inner radius (Ri) "<<endl; 
    cout <<ro<<" :effective outer radius (ro) "<<endl; 
    cout <<ri<<" :effective inner radius (ri) "<<endl; 
    cout <<ny<<" :lateral g's (ny) "<<endl; 



    cout <<nxb<<" :braking g's (nxb)"<<endl; 
    cout <<nxa<<" :accelerating g's(nxa)"<<endl; 
    cout <<sab<<" :time in segment ab (sab) "<<endl; 
    cout <<vb<<" :speed in curve (vb) "<<endl; 
    cout <<sbc<<" :curve length (sbc) "<<endl; 
    system("PAUSE"); 
    cout <<tbc<<" :time in the curve (tbc)"<<endl; 
    cout <<tmin<<" :time in curve (tmin) "<<endl; 
    cout <<vbi<<" :speed in curve (vbi) "<<endl; 
    cout <<sbci<<" :curve in length BC (sbci) "<<endl; 
    cout <<tbci<<" :time in curve BC (tbci) "<<endl;  
    cout <<scdi<<" :exit lenth is ame as entry length (scdi) "<<endl; 
    cout <<vci<<" :speed at C is the same as speed at B (vci) "<<endl; 
    cout <<vdi<<" :speed at D (vdi) "<<endl; 
    cout <<tcdi<<" : time in exit CD (tcdi) "<<endl; 
    cout <<va<<" :entrance speed is same as speed for largest radius curve (va) "<<endl; 
    cout <<sapbi<<" : (sapbi) " <<endl; 
    cout <<vapi<<" : (vapi) "<<endl; 
    cout <<taapi<<" : (taapi)"<<endl; 
    cout <<tapbi<<" : (tapbi)"<<endl; 
    cout <<ti<<" :total time in the inner radius (ti) "<<endl; 
    system("PAUSE"); 
    cout <<vbo<<" : speed in the curve (vbo) "<<endl; 
    cout <<sbco<<" :curve length of BC (sbco) "<<endl; 
    cout <<tbco<<" : (tbco)"<<endl; 
    cout <<vco<<" : (vco)"<<endl; 
    cout <<vdo<<" : (vdo)"<<endl; 
    cout <<tcdo<<" : (tcdo)"<<endl; 
    cout <<sapbo<<" : (sapbo)"<<endl; 
    cout <<vapo<<" : (vapo)"<<endl; 
    cout <<taapo<<" :(taapo)"<<endl; 
    cout <<tapbo<<" : (tapbo)"<<endl; 
    cout <<tabo<<" : (tabo)"<<endl; 
    cout <<to<<" : (to)"<<endl;  
         
    system("PAUSE"); 
    return 0; 
} 



//Minitime - isolated curve 
#include <iostream.h> 
#include <stdlib.h> 
#include<string.h> 
#include<iomanip.h> 
#include<math.h> 
                 
     
      
      float g; 
        
 float rcl; 
 float w; 
 //float phi; 
 float T; 
 float Ro; 
 float Ri; 
 float ro; 
 float ri; 
 float ny; 
 float nxb; 
 float nxa; 
 float R; 
 float sab; 
 float vb; 
 float sbc; 
 float tbc; 
 float tmin; 
 float vbi; 
 float sbci; 
 float tbci; 
 float scdi; 
 float vci; 
 float vdi; 
 float tcdi; 
 float va; 
 float sapbi; 
 float vapi;  
 float taapi; 
 float tabi; 
 float tapbi; 
 float ti; 
 float vbo; 
 float sbco; 
 float tbco; 
 float scdo; 



 float vco;  
 float vdo; 
 float sapbo; 
 float vapo; 
 float tapbo; 
 float taapo; 
 float tabo; 
 float to; 
 float tcdo;  
 int phi; 
int main() 
{ 
   g =32.16; //gravitational constant (ft/s^2) 
  
  //curve imput 
  rcl = 75;    //radius of corner center line (ft) 
  w = 30;       //width of course (ft) 
  //phi 90;     //turn angle (degrees) 
  T =6;        //car track width (ft) 
  
  for (phi=45; phi<=180; phi+=22) 
   
  { 
  cout<<"Turn angle is = "<<phi<<endl; 
  Ro = rcl+.5*w; 
  Ri = rcl-.5*w; 
  
  ro = Ro -.5*T;   //effective outer radius 
  ri = Ri +.5*T;   //effective inner radius 
   
  //race car performance input 
   
  ny = 1.10;    //lateral g's 
  nxb = 1.0;    //braking g's 
  nxa = 0.5;     //acceleration g's 
   
   
  //calculate largest radius, R, and entry and exit distances, sab 
  R = (ro - ri*cos(phi*3.14/360))/(1-cos(phi*3.14/360)); 
  sab = (R-ri)*sin(phi*3.145/360); 
   
  //calculate time in curve for largest radius R 
  vb = sqrt (ny*g*R);   //speed in curve 
  sbc = R*phi*3.145/180;    //curve length 
  tbc = sbc/vb;          //time in curve 
  tmin = tbc; 



   
  //calculate time in curve with smallest radius, ri 
   
  //time in curve 
   
  vbi = sqrt(ny*g*ri);       //speed in curve 
  sbci = ri*phi*3.145/180;   //curve length of BC 
  tbci = sbci/vbi;           //time in curve BC   
   
  //time in exit 
  scdi = sab;            //exit length in same as entry length 
  vci = vbi;             //speed at C is the same as speed at B 
  vci = vci*vci; 
  vdi = sqrt(2*nxa*g*scdi+vci); //speed at D 
  tcdi =(vdi-vci) /(nxa*g);       //time in exit CD 
  if (tcdi<0) 
  tcdi = abs(tcdi); 
  //time in entrance 
  va =vb;  ///entrance speed is same as speed for largest radiua curve 
  va = va*va; 
  vbi = vbi*vbi; 
  sapbi = (2.0*nxa*g*sab +va-vbi/2.0*g*(nxa+nxb)); 
  if (sapbi<0) 
  sapbi=abs(sapbi); 
  vbi = vbi*vbi; 
  vapi = sqrt(vbi+2*nxb*g*sapbi); 
     
  taapi = ( vapi-va) / (nxa*g); 
  if (taapi<0) 
  taapi = abs(taapi); 
  tapbi = (vapi-vbi)/(nxb*g); 
  if (tapbi<0) 
  tapbi=abs(tapbi);   
  tabi = taapi + tabi; 
     
  //total time inner radius 
     
  ti = tabi+tbci+tcdi; 
  if (ti<0) 
  ti == abs(ti); 
   
     
  //calculate time in curve with largest radius, ro 
  //time in curve 
     
  vbo = sqrt (ny*g*ro);    //speed in curve 



  sbco = ro*phi*3.145/180;    //curve length of BC 
  tbco = sbco/vbo;         //time in curve BC 
       
  //time in exit 
       
  scdo = sab;             //exit length is same as entry length 
  vco = vbo;              //speed at C is the same as speed at B 
  vco = vco*vco;    
  vdo = sqrt(2*nxa*g*scdo+vco);  //speed at D 
  tcdo = (vdo -vco)/ (nxa*g);      //time in exit CD 
  if (tcdo<0) 
  tcdo = abs(tcdo);    
  //time in entrance 
      
  va = vb;           //entrance speed is same as speed for largest radius curve 
  va = va*va; 
  vbo = vbo*vbo; 
  sapbo = (2*nxa*g*sab+va-vbo)/(2*g*(nxa+nxb)); 
  if (sapbo<0) 
  sapbo = abs(sapbo); 
  vbo = vbo*vbo; 
      
  vapo = sqrt(vbo+2*nxb*g*sapbo); 
  if (vapo<0) 
  vapo = abs(vapo); 
  taapo = (vapo-va)/(nxa*g); 
  if (taapo<0) 
  taapo = abs(taapo); 
  tapbo = (vapo-vbo)/(nxb*g); 
  if (tapbo<0) 
  tapbo = abs(tapbo); 
      
  tabo = taapo + tapbo; 
  if (tabo<0) 
  tabo = abs(tabo); 
      
  //total time outer radius 
  to = tabo + tbco + tcdo; 
  if (to<0) 
  to = abs(to); 
    cout << R<<" :largest radius of the curve possible (R) "<<endl; 
    cout <<rcl<<" :radius of the corner center line (rcl) "<<endl; 
    cout <<w<<" :width of the course (w)"<<endl; 
    cout <<phi<<" :turn angle in degrees (phi)"<<endl; 
    cout <<T<<" :car track width (T) "<<endl;      
    cout <<Ro<<" :effective outer radius (Ro) "<<endl; 



    cout <<Ri<<" :effective inner radius (Ri) "<<endl; 
    cout <<ro<<" :effective outer radius (ro) "<<endl; 
    cout <<ri<<" :effective inner radius (ri) "<<endl; 
    cout <<ny<<" :lateral g's (ny) "<<endl; 
    cout <<nxb<<" :braking g's (nxb)"<<endl; 
    cout <<nxa<<" :accelerating g's(nxa)"<<endl; 
    cout <<sab<<" :time in segment ab (sab) "<<endl; 
    cout <<vb<<" :speed in curve (vb) "<<endl; 
    cout <<sbc<<" :curve length (sbc) "<<endl; 
    system("PAUSE"); 
    cout <<tbc<<" :time in the curve (tbc)"<<endl; 
    cout <<tmin<<" :time in curve (tmin) "<<endl; 
    cout <<vbi<<" :speed in curve (vbi) "<<endl; 
    cout <<sbci<<" :curve in length BC (sbci) "<<endl; 
    cout <<tbci<<" :time in curve BC (tbci) "<<endl;  
    cout <<scdi<<" :exit lenth is ame as entry length (scdi) "<<endl; 
    cout <<vci<<" :speed at C is the same as speed at B (vci) "<<endl; 
    cout <<vdi<<" :speed at D (vdi) "<<endl; 
    cout <<tcdi<<" : time in exit CD (tcdi) "<<endl; 
    cout <<va<<" :entrance speed is same as speed for largest radius curve (va) "<<endl; 
    cout <<sapbi<<" : (sapbi) " <<endl; 
    cout <<vapi<<" : (vapi) "<<endl; 
    cout <<taapi<<" : (taapi)"<<endl; 
    cout <<tapbi<<" : (tapbi)"<<endl; 
    cout <<ti<<" :total time in the inner radius (ti) "<<endl; 
    system("PAUSE"); 
    cout <<vbo<<" : speed in the curve (vbo) "<<endl; 
    cout <<sbco<<" :curve length of BC (sbco) "<<endl; 
    cout <<tbco<<" : (tbco)"<<endl; 
    cout <<vco<<" : (vco)"<<endl; 
    cout <<vdo<<" : (vdo)"<<endl; 
    cout <<tcdo<<" : (tcdo)"<<endl; 
    cout <<sapbo<<" : (sapbo)"<<endl; 
    cout <<vapo<<" : (vapo)"<<endl; 
    cout <<taapo<<" :(taapo)"<<endl; 
    cout <<tapbo<<" : (tapbo)"<<endl; 
    cout <<tabo<<" : (tabo)"<<endl; 
    cout <<to<<" : (to)"<<endl;  
         
    system("PAUSE"); 
    } 
     return 0; 
} 


	Our program is a complete modeling program in C++ that enables us to try out different computational models in the form of a physic network with variable parameters to see which one works best for our problem.  Our code uses the extensive equations obtai
	Appendix A
	Code
	//Minitime - isolated curve
	#include <iostream.h>
	#include <stdlib.h>
	#include<string.h>
	#include<iomanip.h>
	#include<math.h>
	float g;
	float rcl;
	float w;
	float phi;
	float T;
	float Ro;
	float Ri;
	float ro;
	float ri;
	float ny;
	float nxb;
	float nxa;
	float R;
	float sab;
	float vb;
	float sbc;
	float tbc;
	float tmin;
	float vbi;
	float sbci;
	float tbci;
	float scdi;
	float vci;
	float vdi;
	float tcdi;
	float va;
	float sapbi;
	float vapi;
	float taapi;
	float tabi;
	float tapbi;
	float ti;
	float vbo;
	float sbco;
	float tbco;
	float scdo;
	float vco;
	float vdo;
	float sapbo;
	float vapo;
	float tapbo;
	float taapo;
	float tabo;
	float to;
	float tcdo;
	int main()
	{
	g =32.16; //gravitational constant (ft/s^2)
	//curve imput
	rcl = 75;    //radius of corner center line (ft)
	w =30;       //width of course (ft)
	phi =30;     //turn angle (degrees)
	T =6;        //car track width (ft)
	Ro = rcl+.5*w;
	Ri =rcl-.5*w;
	ro = Ro -.5*T;   //effective outer radius
	ri = Ri +.5*T;   //effective inner radius
	//race car performance input
	ny = 1.10;    //lateral g's
	nxb = 1.0;    //braking g's
	nxa = 0.5;     //acceleration g's
	//calculate largest radius, R, and entry and exit distances, sab
	R = (ro - ri*cos(phi*3.145/360))/(1-cos(phi*3.145/360));
	sab = (R-ri)*sin(phi*3.145/360);
	//calculate time in curve for largest radius R
	vb = sqrt (ny*g*R);   //speed in curve
	sbc = R*phi*3.145/180;    //curve length
	tbc = sbc/vb;          //time in curve
	tmin = tbc;
	//calculate time in curve with smallest radius, ri
	//time in curve
	vbi = sqrt(ny*g*ri);       //speed in curve
	sbci = ri*phi*3.145/180;   //curve length of BC
	tbci = sbci/vbi;           //time in curve BC
	//time in exit
	scdi = sab;            //exit length in same as entry length
	vci = vbi;             //speed at C is the same as speed at B
	vdi = sqrt(2*nxa*g*scdi+vci,2); //speed at D
	tcdi =(vdi-vci) /(nxa*g);       //time in exit CD
	//time in entrance
	va =vb;  ///entrance speed is same as speed for largest radiua curve
	va = va*va;
	vbi = vbi*vbi;
	sapbi = (2.0*nxa*g*sab +va-vbi/2.0*g*(nxa+nxb));
	vbi = vbi*vbi;
	vapi = sqrt(vbi+2*nxb*g*sapbi);
	taapi = ( vapi-va) / (nxa*g);
	tapbi = (vapi-vbi)/(nxb*g);
	tabi = taapi + tabi;
	//total time inner radius
	ti = tabi+tbci+tcdi;
	//calculate time in curve with largest radius, ro
	//time in curve
	vbo = sqrt (ny*g*ro);    //speed in curve
	sbco = ro*phi*3.145/180;    //curve length of BC
	tbco = sbco/vbo;         //time in curve BC
	//time in exit
	scdo = sab;             //exit length is same as entry length
	vco = vbo;              //speed at C is the same as speed at B
	vdo = sqrt(2*nxa*g*scdo+vco,2);  //speed at D
	tcdo = (vdo -vco)/ (nxa*g);      //time in exit CD
	//time in entrance
	va = vb;           //entrance speed is same as speed for largest radius curve
	va = va*va;
	vbo = vbo*vbo;
	sapbo = (2*nxa*g*sab+va-vbo)/(2*g*(nxa+nxb));
	vbo = vbo*vbo;
	vapo = sqrt(vbo+2*nxb*g*sapbo);
	taapo = (vapo-va)/(nxa*g);
	tapbo = (vapo-vbo)/(nxb*g);
	tabo = taapo + tapbo;
	//total time outer radius
	to = tabo + tbco + tcdo;
	system("PAUSE");
	return 0;
	}


