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Executive Summary 
 
Problem 
 Recently, many scientists, authors, and filmmakers have concerned themselves with the 
possibility of a disastrous meteorite impact. It has been suggested that a meteorite may have been 
the main catalyst that led to the extinction of the dinosaurs. The aim of this project is to discern 
how severe a threat a meteorite impact really is. In particular, we wish to focus on the effects of 
an impact on global oceanic temperature. If a large enough temperature change occurred in the 
oceans, it is conceivable that radical alterations could be made to local marine animal and plant 
life and global climate and temperature.  
 
Method 
 We attempted to solve this problem by ramming an asteroid, with size, mass, and other 
characteristics defined by the user, into the Earth, which we assumed was completely covered by 
water to simplify calculations. We calculate the kinetic energy of the asteroid upon collision and 
assume that all of it becomes heat energy, which is then transferred to the nearby water. We then 
model the heat�s flow from the impact site in order to determine the effects on global 
temperature and write the output to a file. This file is later used to create a graphical output that 
is more readable than the raw data.  
   
Results 
 Our results were surprising, and at first confusing, although they make sense. Regardless 
of the size, velocity, impact location, and mass of the asteroid, no change was observed in local 
temperature at all. At first we tried a few tweaks to the program, but when we checked the 
computer�s calculation of the initial temperature change at the impact point, we found that even 
the biggest asteroid raised local temperature by less than .03 degrees Celsius. Global temperature 
was virtually unaffected by the crash. However, over time heat from the warmer areas of the 
globe, like the Equator, flowed into the cooler areas such as the North and South Poles.  
 
Conclusions 
 Although meteorites can be extremely massive and travel at high velocities, the energy 
created by an oceanic impact is not enough to affect temperature in any significant way. We 
hypothesize that though the energy created by the impact is tremendous, the sheer volume of 
water that the energy is dissipated through is too large for the energy to have any effect. At least 
in this regard, it seems that meteorites pose no real threat. If meteorites are really as dangerous as 
some think them to be, then it must be some other factor, such as debris clouds or heat transfer 
through the atmosphere. The flow of heat from the Equator to the Poles is probably due to the 
fact that there is nothing to prevent the world�s oceans from becoming a uniform temperature in 
our simulation. 
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Introduction  

 In many ways, especially in our media, meteorites tend to be hailed as the harbingers of 

death. Simply look at the number of books and movies made about the subject. In most of these 

stories, though, the sky-dwelling menace is stopped just in time to prevent it from hitting our 

planet. However, what would happen if the hero or heroine failed to stop the asteroid? Numerous 

theories have been advanced, from tidal waves to mass extinction. Our project this year boils 

down to one main question: Is it really that big of a deal? We seek to model an asteroid impact in 

order to determine its effects on oceanic temperatures. This will allow us to determine, if only 

partially, the nature of the threat posed by stray celestial objects.  

Although ocean temperature seems like a strange thing to choose when dealing with 

meteorite impacts, we chose this aspect for two main reasons. 

First., ocean temperature is of some consequence. Were oceanic temperatures to be 

altered by something such as a meteorite, it could have drastic effects on marine life and global 

climate, as well as ocean current systems. It also simplifies the problem to a point where it 

becomes manageable. To fully model an impact and all of its resultant effects would require 

years of dedicated research and work, and we do not have the time, money, or manpower needed 

for such a project. We believe the scope that we cover in our project is small enough to be 

attainable, yet large enough to be significant.  

Second, the project offers to help us learn more about the subject regardless of the results. 

If the results show that meteorites truly are a threat to human life, then we will know more about 

the range and severity of the damage caused by a meteor relative to its velocity, mass, and so 
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forth. If the results show that meteorites pose little threat with regard to ocean temperature, then 

that leaves us free to explore other ways in which a collision could have an impact on the 

viability of human life on this planet. 
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Description 

We limited ourselves to an entirely oceanic planet without gravity, and assumed that all 

kinetic energy is turned into heat energy. We made these simplifications in order to make the 

problem more manageable and to make the simulation easier to code.  

Our program runs in several steps. First, we receive input from the user concerning the 

meteor�s velocity, direction, mass, and so on. The meteor�s speed and direction are used to 

calculate when and where the asteroid lands. Since longitude has no real effect on oceanic 

temperature, we hold the longitude of the impact constant and determine only the latitude of the 

impact site. We represent our virtual world with a two-dimensional array, with each cell 

representing an area of the Earth two degrees latitude high and two degrees longitude wide. We 

convert the asteroid�s energy to heat and raise the temperature of the grid cell representing the 

impact point. We then calculate the heat distribution over several timesteps. Each timestep 

produces a file containing the temperature of each cell in the grid. These files are then inserted 

into a raytracing program that creates a map of our virtual world with each point colored with 

respect to its temperature; for example, the coldest points are blue, and the warmest are red. This 

format allows us to better interpret the data output by our program. To view the exact code we 

wrote to achieve this goal, please refer to Appendix A.  
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Mathematical Model 

C++ 

The mathematical model of our project consists of two parts: the model involving the 

asteroid�s approach to Earth and the model involving what happens during and after impact.  

 Before the impact, we receive information about the meteor�s initial position, velocity, 

and angle of movement. A Cartesian grid is used to represent the Earth and the space around it, 

with the origin at the center of the Earth. The meteor is placed on this grid based on its initial 

coordinates. The meteor�s movement is then tracked over several timesteps until it strikes the 

Earth. The horizontal and vertical movement is determined by the functions, 

X = Vcos θθθθ    
Y = Vsin θθθθ 

 
Where V is the meteor�s speed and θ θ θ θ is the meteor�s angle of movement. The program detects 

when the meteor has hit the Earth by determining the meteor�s distance from Earth using the 

distance formula, 

D = √√√√((y – y1)2 + (x – x1)2) 
 

where y1 and x1 are zero because the center of the Earth, which we measure the distance from, is 

the origin of the coordinate system. This is then compared to the Earth�s radius, which is 

approximately six thousand three hundred kilometers. The y-coordinate of the meteor is used to 

determine the latitude of the impact site. The heat energy generated by the meteor is determined 

by the equation 

E = ½ MV2 
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where E is the total energy, M is the meteor�s mass, and V is the meteor�s velocity. The energy 

is divided by the amount of energy needed to raise the temperature of the body of water 

containing the impact site one degree, and get the temperature change generated by the impact.  

We then create a Cartesian grid to represent the world itself, and have each cell represent an area 

two degrees latitude high and two degrees longitude wide. The temperature values for each cell 

are initialized according to a function of their latitudes, which is given by 

(3.90625 * 10-6)L4 – (6.77008333 * 10-4)L3 + .0359375L2 - .97916666L + 30 

where L is the latitude of the cell. We add the initial temperature change to the appropriate grid 

cell based on the impact site�s latitude, and then distribute the heat over several timesteps. For 

each timestep, the heat flow in or out of a cell to neighboring cells is given by  

.61A * (T1 – T2) / D  

where A is the area of the surfaces exchanging heat, T1 is the temperature of the cell, T2 is the 

temperature of the cell that the first cell is interacting with, and D is the distance between the two 

cells.  

POV-Ray™ 

 The only real mathematical model involved in our graphics, which are done by POV-

Ray�, a free downloadable raytracing program, is that of the equations used to determine a 

point�s color as a function of its temperature. These are as follows: 

 The red value is given by 

R(x) =  { |sin(5πx/2)| (.4 ≤ x ≤ .6) 

1 (x > .6) }. 

The green value is given by 

G(x) = { 1  (.2 ≤ x ≤ .6) 
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|sin(5πx/2)| (.6 < x < .8) }. 

 The blue value is given by 

B(x) = { 1 (0 ≤ x ≤ .2) 

sin(5πx/2) (.2 < x ≤ .4) 

sin(5πx/2)  (.8 ≤ x ≤ 1) }. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 10 

Results 

Our results were very surprising and did not come out at all like we had expected.  

Instead of raising the temperature of the ocean by great amounts, it instead did not raise the 

temperature by one degree.  Even after trying various sizes and velocities, the results were the 

same.  At first we thought or program might have had an error in it, but we manually calculated 

the change in the temperature and the manual results matched that of the computational results. 

To see the graphical output of our program which leads us to these results, see Figures 1 and 2 in 

the Figures section. We learned that a meteor impact of any realistic size and velocity would not 

change the temperature of the water at all.  

 We also learned several rather un-scientific but useful lessons over the course of this 

project.  For example, we learned not to procrastinate and to perform preliminary research and 

calculations before choosing a project, so that we will have a better idea of what our results 

should be before we actually get any results.  We learned that if we started earlier, we would 

have more time and not be quite as pressed as deadlines approach. By performing these 

preliminary precautions, we hope to improve our ability to complete projects like this one 

successfully, on time, and hopefully less stressfully. 
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Conclusions 

 It seems to be that meteorites have no real impact on local temperature, much less global 

temperature. While we at first thought that something was wrong, by monitoring the energy and 

temperature values our program produces at it runs, we performed some calculations and 

determined that the results actually made sense. Our virtual ocean contains over five hundred 

billion cubic kilometers of water. According to our calculations, it would take about four 

quadrillion joules of energy to raise the global ocean temperature a single degree 

Celsius.  However, running even the largest meteor; a seventy-ton meteorite going two hundred 

sixty thousand kilometers per hour; only a few hundred billion joules are produced. It seems that 

though the energy released by the impact is enormous, it is not anywhere near enough to 

overcome the sheer volume of water contained in the ocean. The problem becomes compounded 

as water�s relatively high specific heat (the energy required to change a substance�s temperature) 

is taken into account. Thus, it makes sense that the impact has virtually no effect on ocean 

temperature. 

 As to the nature of the threat meteorites pose to human and other life with regard to 

oceanic temperature, it seems that we can safely say �none�. Therefore, it appears that either 

meteorites are not actually capable of the mass destruction that is sometimes portrayed in the 

media or that some other aspect of the impact is responsible; perhaps the evaporated water or 

debris clouds created by the impact. More accurate and detailed simulations would have to be 

run in order to provide a more definite answer to the question. 
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Recommendations 

Our project experienced several difficulties and limitations. In order for the effects of 

meteorite impacts to be more thoroughly and accurately simulated, we recommend several things. 

First of all, we recommend that more research be done on the equations governing conductive 

heat transfer through water and on the physics of the impact. We also recommend that various 

other aspects of the impact be implemented in order to produce a more accurate representation of 

the impact, such as gravity, air resistance, water evaporation and displacement, tidal waves, and 

three-dimensional heat transfer. Implementing land impacts would also be useful, as well as 

modeling the craters, shockwaves, debris clouds, and atmospheric heat transfers involved in such 

an impact. The composition and density of the asteroid could also be taken into account, as well 

as non-spherical asteroids. Overall, this project has vast potential for expansion. 
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Figures 

 
Figure 1: A map displaying heat distribution before the impact. 

 
Figure 2: A map displaying heat dispersion after the impact.  The impact occurred in the upper blue region. 

 



 15 

Appendix A: Code 
Source Code : pointOfImpact1.cpp 
//Supercomputing Team 13: Albuquerque Academy 
//Ryan McGowan, Bill Knoop, Shaun Ballou, Paul Boyle 
//January 29, 2003 
 
//Point Of Impact: Version 1 
//Assumes a water impact and calculates heat energy released into 
a system through meteorite  
//impact.  
 
#include <math.h>       //mathematic functions 
#include <iostream.h>   //cerr and cin 
#include <fstream.h>    //file writing functions 
#include "apstring.h"   //string! 
#include "world.h"      //the grid containing temperature 
information 
#include "meteor.h"     //contains info about the meteorite 
#include "temp.h"        
 
 
//Function Implementations 
 
 
/* 
getInfo(): gets the mass, velocity, and relative position of the 
incoming object and returns  
a boolean. If the function returns true, then the function 
successfully completed; otherwise  
there was an error. 
*/ 
 
 
bool getInfo( double &pVelocity, double &pMass, double &pXDist, 
double &pYDist, double &pAngle, double &pRadius ) 
{ 
  
 cerr << "Enter the initial velocity of the meteorite in 
kilometers per hour.\n Most meteors travel between 40 and 260 
thousand km/h.\n"; 
 cin >> pVelocity; 
  
 //convert km/h to km/s... 
 pVelocity /= 3600.0;   
 
 if (pVelocity < 0) 
 { 
  cerr << ">>>ERROR: The meteorite's velocity must be 
positive.\n"; 
  return false; 
 } 
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 cerr << "Enter the initial mass of the meteorite in 
kilograms.\nMeteorites can weigh from 1 to 64 000 kilograms.\n"; 
 cin >> pMass; 
 
 if ( pMass < 0 ) 
 { 
  cerr << ">>>ERROR: The meteorite must have a 
nonnegative, nonzero mass.\n"; 
  return false; 
 } 
 cerr << "Enter the meteorite's initial horizontal position 
relative to the\n center of the Earth.\n"; 
 cin >> pXDist; 
 
 cerr << "Enter the meteorite's initial vertical position 
relative to the center\n of the Earth.\n"; 
 cin >> pYDist; 
 
  
 cerr << "Enter the meteorite's angle of movement in degrees 
\nNegative angles are OK.\n"; 
 cin >> pAngle; 
 
 cerr << "Enter the meteorite's radius in meters.\n"; 
 cin >> pRadius; 
  
 if ( pRadius <= 0 ) 
 { 
        cerr << ">>>ERROR: The meteorite must have a positive 
radius!\n"; 
        return false; 
 } 
 
 pAngle = ( PI * pAngle ) / 180.0; //convert degrees to 
radians 
 
 return true; 
} 
 
 
 
/* 
calculateEnergy: takes a meteor object and returns the object's 
kinetic energy (to simplify the problem it is assumed 
that all kinetic energy is converted to heat energy) 
*/ 
 
 
double calculateEnergy( Meteor pMeteor ) 
{ 
 cerr << "Energy Calculated!\n"; //DEBUG 
 system( "PAUSE" ); 
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    return ( 0.5 * pMeteor.getMass() * pow( pMeteor.getVelocity(), 
2 ) ); 
 //Kinetic Energy = .5 * mass * velocity ^ 2 
} 
 
 
 
/* 
hitEarth: moves the meteor towards Earth; records the latitude at 
which the meteor strikes 
*/ 
 
 
bool hitEarth( Meteor & pMeteor, lat & pLatitude ) 
{ 
 double seconds = 0; 
 while ( pMeteor.distanceFromEarth() > 0 ) //each loop is one 
second 
 { 
  //update the meteorite's position, accounting for 
gravity 
  pMeteor.setPos( pMeteor.getX() + pMeteor.getVelocity() 
* cos( pMeteor.getAngle() ), 
      pMeteor.getY() + 
pMeteor.getVelocity() * sin( pMeteor.getAngle() )); 
  seconds++; 
 
  if ( pMeteor.distanceFromEarth() > MOON_DISTANCE ) 
  { 
   cerr << ">>>ERROR: The meteoroid missed the 
Earth!\n\nWhile this COULD be considered a good thing, it's 
difficult to collect data for a event that doesn't happen...\n"; 
   return false; 
  } 
   
 
 }  
    pLatitude.setLat( pMeteor.getY() * 90 / RADIUS_EARTH ); 
     
    cerr << "The meteorite has hit Earth!\n"; //DEBUG 
    system( "PAUSE" ); 
     
 return true; 
} 
 
double calcInitialHeat( double pEnergy, lat pLatitude ) 
{ 
    double amountOfWater = 0; 
    amountOfWater = ( pLatitude.vertLength() / 1000.0 ) * 
( pLatitude.horizLength() * 1000.0 );  //area 1 meter deep times 
the size of the chunk contained within the lat & long 
    amountOfWater *= 1000000; //convert to cubic centimeters of 
water and multiply by the density of water (namely, 1) 
 



 18 

    cerr << "Inital Heat Calculated!\n"; //DEBUG  
    system( "PAUSE" );        
    return pEnergy / ( amountOfWater * SPECIFIC_HEAT_WATER); 
//divide the available energy by how many Joules are needed to 
raise the temperature of the entire body of water one degree 
 
} 
 
void writeFile( world &pWorld , int fileNum ) 
{ 
    ofstream writer; 
    double mini = pWorld.theWorld[0][0].getTemp(), maxi = 
pWorld.theWorld[0][0].getTemp(); 
    apstring fileName = "Z:\\SCC\\Output Files\\test"; 
    apstring number = ""; 
    double youAreASTUPIDPROGRAM = 0; 
    while ( fileNum > 0 ) 
    { 
        number += char('0' + fileNum % 10); 
        fileNum /= 10; 
    } 
     
    apstring r; 
    r = ""; 
     
    for (int k = number.length() - 1; k >= 0; k--) 
    { 
        r += number[k]; 
    } 
     
    fileName += r; //add number to string! 
    fileName += ".poi"; 
    writer.open(fileName.c_str()); 
 
    for (int y = 0; y < 90; y++) 
    { 
        for (int x= 0; x < 180; x++) 
        { 
   youAreASTUPIDPROGRAM = 
pWorld.theWorld[y][x].getTemp(); 
 
   if (youAreASTUPIDPROGRAM > maxi)  
    maxi = youAreASTUPIDPROGRAM; 
   if (youAreASTUPIDPROGRAM < mini) 
    mini = youAreASTUPIDPROGRAM; 
            writer << youAreASTUPIDPROGRAM << ",\n"; 
        } 
    } 
    writer.close(); 
    writer.open("Z:\\SCC\\Output Files\\scale.pos"); 
 writer << mini << "," << maxi; 
 writer.close(); 
    cerr << "File " + fileName + " written...\n"; 
} 
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world distributeHeat( world &pWorld, int pTime) 
{ 
    double initHeat[90][180]; 
    double tempChange[90][180]; 
    int left = 0; 
    int right = 0; 
    int top = 0; 
    int bottom = 0; 
    int longi = 0; 
 
    for (int random = 0; random < 90; random++) 
    { 
        for (int random2 = 0; random2 < 180; random2++) 
        { 
            initHeat[random][random2] = 
pWorld.theWorld[random][random2].getTemp();      
            tempChange[random][random2] = 0.0;   //initialize the 
array 
        } 
    } 
     
    cerr << "Array containing temperature change values 
initialized!\n"; //DEBUG 
 
    for (int timer = 0; timer < pTime; timer++) 
    { 
        for (int y = 0; y < 90; y++) 
        { 
            for (int x = 0; x < 180; x++) 
            { 
                left = x - 1; 
                right = x + 1; 
                top = y - 1; 
                bottom = y + 1; 
                 
                if (left < 0) 
                    left = 179; 
 
                if (right > 179) 
                    right = 0; 
 
                if (top < 0) 
    { 
     top = 0; 
     longi = 90 - (x - 90); 
    } 
    else 
     longi = x; 
 
                if (bottom > 89) 
                { 
     bottom = 89; 
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     longi = 90 - (x - 90); 
    } 
    else  
     longi = x; 
 
 
 
                tempChange[y][x] = 
transferHeat( pWorld.theWorld[y][x].vertLength(), .01, 
pWorld.theWorld[y][x].horizLength() * 
pWorld.theWorld[y][x].vertLength(), 
pWorld.theWorld[y][x].getTemp() - initHeat[y][x], 
pWorld.theWorld[top][longi].getTemp() - initHeat[top][longi]); 
                tempChange[y][x] += 
transferHeat( pWorld.theWorld[y][x].vertLength(), .01, 
pWorld.theWorld[y][x].horizLength() * 
pWorld.theWorld[y][x].vertLength(), 
pWorld.theWorld[y][x].getTemp() - initHeat[y][x], 
pWorld.theWorld[bottom][longi].getTemp() - 
initHeat[bottom][longi]); 
                tempChange[y][x] += 
transferHeat( pWorld.theWorld[y][x].horizLength(), .01, 
pWorld.theWorld[y][x].horizLength() * 
pWorld.theWorld[y][x].vertLength(), 
pWorld.theWorld[y][x].getTemp() - initHeat[y][x], 
pWorld.theWorld[y][left].getTemp() - initHeat[y][left]); 
                tempChange[y][x] += 
transferHeat( pWorld.theWorld[y][x].horizLength(), .01, 
pWorld.theWorld[y][x].horizLength() * 
pWorld.theWorld[y][x].vertLength(), 
pWorld.theWorld[y][x].getTemp() - initHeat[y][x], 
pWorld.theWorld[y][right].getTemp() - initHeat[y][right]); 
            }//x 
        }//y 
         
        for (int y1 = 0; y1 < 90; y1++) 
        { 
            for (int x1 = 0; x1 < 180; x1++) 
            { 
                
pWorld.theWorld[y1][x1].setTemp(pWorld.theWorld[y1][x1].getTemp() 
+ tempChange[y1][x1] ); 
            }//x1 
        }//y1 
 
 
        writeFile(pWorld, timer ); 
    }//timer 
    cerr << "Heat distribution over requested time completed!\n"; 
//DEBUG 
     
    return pWorld; 
}//distributeHeat 
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//the Program 
 
 
int main() 
{ 
 double vel = 0, mass = 0, xPos = 0, yPos = 0, angle = 0, 
energy = 0, radius = 0; 
 lat storeLat; 
 world myWorld; 
  
 if ( !getInfo( vel, mass, xPos, yPos, angle, radius ) ) 
 { 
     system ( "PAUSE" ); 
  return 0; 
 } 
  
 Meteor collide( vel, mass, xPos, yPos, angle, radius ); 
  
 if ( collide.distanceFromEarth() <= 0 ) 
 { 
  cerr << ">>>ERROR: The meteorite cannot start out 
inside of the Earth!\n"; 
  system ( "PAUSE" ); 
  return 0; 
 } 
 
 if ( collide.distanceFromEarth() > MOON_DISTANCE ) 
 { 
  cerr << ">>>ERROR: The meteorite starts too far away. 
Bring it within 385 000 km of the Earth.\n"; 
  system ( "PAUSE" ); 
  return 0; 
 } 
 
 bool hits = hitEarth( collide, storeLat ); 
  
 if (!hits) 
 { 
    system( "PAUSE" ); 
     return 0; 
    } 
     
    energy = calculateEnergy( collide ); 
 storeLat.setTemp( calcInitialHeat( energy, storeLat ) ); 
//initalize world temperatures 
 myWorld.theWorld[(int)storeLat.getLat()][90].setTemp(storeLa
t.getTemp());  //set the impact to the middle of the world 
 writeFile(myWorld, 1000);  //write initial world to file 
 cerr << "Initial Heat Stored to WorldMatrix!\n"; //DEBUG 
 system("PAUSE"); 
 distributeHeat( myWorld, 10 );   
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 return 0;  
} 
 

Header Files 

Constants.h 

#ifndef CONSTANTS_H 
#define CONSTANTS_H 
 
//Constants 
const double MASS_EARTH = 5.972 * pow(10.0, 24.0); //the mass of 
the Earth in kg, in case we need it 
const double SPECIFIC_HEAT_WATER = 4.18; // specific heat of 
water in J / ( g * degrees Celsius )  
const double PI = 4 * atan(1.0); //our favorite mathematical 
constant, defined as 4 * arctangent(1) 
const double MOON_DISTANCE = 384467.0; //the moon's average 
distance from Earth  
const double WATER_THERMAL_CONDUCTIVITY = 0.61; //the thermal 
conductivity of water 
const double RADIUS_EARTH = 6378.0; //the Earth's radius 
 
#endif  
 
lat.h 
 
#ifndef LAT_H 
#define LAT_H 
 
#include "constants.h" 
 
class lat 
{ 
public: 
 lat(); 
 lat(double l); 
 void adjustTemp(double lati); 
 double getTemp(); 
 void setTemp(double t); 
 double getLat(); 
 void setLat( double l ); 
 double horizLength(); 
 double vertLength(); 
private: 
 double latitude; 
 double temperature; 
}; 
 
void lat::setLat( double l ) 
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{ 
 latitude = l; 
} 
lat::lat(double l) 
{ 
 latitude = l; 
 const double RADIUS_EARTH = 6378.0; //the Earth's radius 
 const double PI = 4 * atan(1.0); //our favorite mathematical 
constant, defined as 4 * arctangent(1) 
 temperature = 0; 
} 
 
void lat::adjustTemp(double lati) 
{ 
 lati = abs((int)lati); 
 temperature = 3.90625 * pow (10, -6) * pow(lati, 4) - 
6.770833333 * pow (10, -4) * pow (lati, 3) + .0359375 * pow (lati, 
2) - .97916666 * lati + 30; 
} 
 
lat::lat() 
{ 
 temperature = 0; 
 latitude = 0; 
} 
 
 
double lat::getTemp() 
{ 
 return temperature; 
} 
 
void lat::setTemp(double t) 
{ 
 temperature = t; 
} 
 
double lat::getLat() 
{ 
 return latitude; 
} 
 
double lat::horizLength() 
{    
    return ( ( ( 90.0 - latitude )  / 90.0 ) * RADIUS_EARTH) / 
360.0 ; 
} 
 
double lat::vertLength() 
{ 
    return PI * RADIUS_EARTH / 180.0; 
} 
#endif 
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meteor.h 
 
#ifndef METEOR_H 
#define METEOR_H 
 
#include "constants.h" 
//a struct to represent the Meteorite 
class Meteor 
{ 
public: 
 //constructors 
 Meteor(); 
 Meteor(double pVelocity, double pMass, double pX, double pY, 
double pAngle, double pRadius); 
 //accessors 
 double getMass(); 
 double getVelocity(); 
 double getX(); 
 double getY(); 
 double distanceFromEarth(); 
 double getAngle();  
 double getRadius(); 
 //modifiers 
 bool setMass( double pMass ); 
 bool setVelocity( double pVelocity ); 
 void setPos( double pX, double pY ); 
 bool setRadius( double pR ); 
 
private: 
 double sVelocity; 
 double sMass; 
 double sXPos; 
 double sYPos; 
 double sAngle; 
 double sRadius; 
}; 
 
//Constructors for Struct Meteor 
Meteor::Meteor() 
{ 
 sVelocity = 0; 
 sMass = 0; 
 sXPos = 0; 
 sYPos = 0; 
} 
 
Meteor::Meteor(double pVelocity, double pMass, double pX, double 
pY, double pAngle, double pRadius) 
{ 
 sVelocity = pVelocity; 
 sMass = pMass; 
 sXPos = pX; 
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 sYPos = pY; 
 sAngle = pAngle; 
 sRadius = pRadius; 
} 
 
//Accessor functions for struct Meteor 
 
//getMass(): returns the mass of the meteorite. 
double Meteor::getMass() 
{ 
 return sMass; 
} 
 
//getVelocity(): returns the velocity of the meteorite. 
double Meteor::getVelocity() 
{ 
 return sVelocity; 
} 
 
//getRadius(): returns the radius of the meteorite 
double Meteor::getRadius() 
{ 
    return sRadius; 
} 
 
//getAngle(): returns the angle of the meteorite. 
double Meteor::getAngle() 
{ 
 return sAngle; 
} 
 
//getX(): returns the horizontal position of the meteorite 
relative to the center of the Earth 
double Meteor::getX() 
{ 
 return sXPos; 
} 
 
//getY(): returns the vertical position of the meteorite relative 
to the center of the Earth. 
double Meteor::getY() 
{ 
 return sYPos; 
} 
 
//distanceFromEarth(): returns the meteorite's distance from the 
Earth 
double Meteor::distanceFromEarth() 
{ 
 return ( sqrt( pow(sXPos, 2) + pow(sYPos, 2) ) - 
RADIUS_EARTH ); 
} 
 
//Modifier functions for struct Meteor 
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/* 
setMass(): takes a double representing the new mass for the 
meteorite, and returns 
a boolean stating whether the received parameter was valid or not. 
Sets the meteorite's 
mass. 
*/ 
bool Meteor::setMass( double pMass ) 
{ 
 if ( pMass > 0 ) 
 { 
  sMass = pMass; 
  return true; 
 } 
 else 
  return false; 
} 
 
/* 
setVelocity(): takes a double representing the new velocity for 
the meteorite, and returns 
a boolean stating whether the receive parameter was valid or not. 
Sets the meteorite's velocity. 
*/ 
bool Meteor::setVelocity( double pVelocity ) 
{ 
 if ( pVelocity >= 0 )  
 { 
  sVelocity = pVelocity; 
  return true; 
 } 
 else 
  return false; 
} 
 
/* 
setPosition(): takes two doubles representing the new x and y 
coordinates of the meteorite. 
If only one needs to be set, the struct's getX() or getY() 
function may be passed as the parameter that doesn't change. 
*/ 
void Meteor::setPos( double pX, double pY ) 
{ 
 sXPos = pX; 
 sYPos = pY; 
} 
 
/* 
setRadius(): takes a double representing the radius of the meteor. 
Returns false if the value isn't valid. 
*/ 
bool Meteor::setRadius( double pR ) 
{ 
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    if (pR > 0) 
    { 
        sRadius = pR; 
        return true; 
    } 
    else 
    { 
        return false; 
    } 
}     
//END STRUCT 
#endif 
 
temp.h 
#ifndef TEMP_H 
#define TEMP_H 
 
 
class temp 
{ 
public: 
    temp(); 
    double transferHeat( double distance, double time, double 
area, double firstTemp, double secondTemp); 
}; 
 
temp::temp() 
{ 
} 
 
double transferHeat( double distance, double time, double area, 
double firstTemp, double secondTemp) 
{ 
   
    double transferred = 0; 
    transferred = ( (WATER_THERMAL_CONDUCTIVITY * area * 
(firstTemp - secondTemp) )/ distance ) * time; 
 //cerr << "\nfirst temp:" << firstTemp << "\ndistance:" << 
distance << "\narea:" << area << "\nsecondTemp:" << secondTemp << 
"\ntransferred energy:" << transferred; 
    //system("PAUSE"); 
    return transferred; 
} 
 
#endif 
 
world.h 
 
#ifndef WORLD_H 
#define WORLD_H 
 
#include "lat.h" 
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//A class to represent our virtual world 
class world 
{ 
public: 
 world(); 
 lat theWorld[90][180]; 
}; 
 
world::world() 
{ 
 for (int y = 0; y < 90; y++) 
 { 
  for (int x = 0; x < 180; x++) 
  { 
   theWorld[y][x].adjustTemp(abs(90 - 2*y)); 
   theWorld[y][x].setLat(2*y - 90); 
  } 
 } 
} 
 
#endif 
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Appendix B: POV-Ray™ and Raytracing 

POV-Ray�, the program with which we created our graphics, uses a method called 

raytracing to produce its output. Raytracing is a math-intensive process, and is very much based 

on the way the human eye sees objects. In the real world, a light source emits photons. As these 

photons interact with objects, they are refracted, reflected, or absorbed. We can see because our 

eyes detect these photons and construct an image based on the wavelengths and amplitudes of 

these photons. Raytracing works by performing this exact process, only backwards. A camera 

and light source are defined, as well as any number of objects of various shapes, sizes, and colors. 

The scene�s camera shoots many hundreds of thousands of rays in all directions in which it can 

see and follows the rays as they interact with objects. Depending on the nature of the objects 

with which a ray collides and whether or not the ray eventually ends up colliding with a light 

source, a color is calculated for the pixel or pixels corresponding to that particular ray. This 

allows us to create very detailed and realistic graphics. 
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