

1

Encrypting Chaos:

Fractal Encryption

New Mexico Adventures in
Supercomputing Challenge
Final Report
April 2, 2003

Team Members
 Nick Whitehead
 Michael Overton
 Zach LaBry
 Franklin Hamilton
 Brian Leising
Teacher
 Jim Mims

2

I. Executive Summary

 With the growing ease of electronic information transfer, comes the need

to protect that data, and ensure its integrity. Such information can come from a variety of

sources: personal, corporate, or governmental. Regardless of the particular contents of the

information, a lot of proprietary or sensitive information exists, and must be stored on

devices that are not safe from intruders. The science of cryptography deals with the

problems of information security as it pertains to storage and transfer.

 Most modern encryption algorithms are based on one of the following two

categories of processes: mathematical problems which are easy and have inverses which

are believed (but not proven) to be hard, and sequences of permutations that are defined

in-part by the inputs given to them. The first category, which summarizes most public-

key encryption methods suffers from the inability to prove the difficulty of the

algorithms. The second method, which categorizes most ciphers, often suffers from

theoretical correlations between the input (“plaintext”) and the output (“ciphertext”).

 Fractals and chaotic systems have properties which have been extensively
studied over the years, and derive their inherent complexity from the extreme sensitivity
of the system to the initial conditions. Such systems have the property that no closed form
solutions exist for them, and therefore “simple” formulas that exactly define the system at
any given time do not exist. As applied to cryptography, this qualifies as a very hard
problem. The major advantage that chaotic systems, such as the n-body problem used in
this project, are provably hard, eliminating one of the fundamental drawbacks to
conventional encryption.

3

II. Software Engineering Goal

The goal of this project is to design and develop an algorithm capable of securely

encrypting data by using the properties of fractals. Cryptography can make use of the

repeatability of fractals. Additionally, cryptography can make use of contrast between

regions of a fractal. That is, since fractals can change value very dramatically over a short

interval, an attacker trying to break a system using fractal cryptography would have

difficulty telling when they were “close” to finding the solution to the problem.

III. Research

A. Cryptography

 Cryptography is the science concerned with the transfer of information. Some of

the basic goals of cryptography include information security, information integrity,

authentication, and non-repudiation, among others. This project is concerned primarily

with the first goal,

 Most current methods of encryption come in two flavors: symmetric, and

asymmetric. Symmetric cryptography deals with permutations of a fixed set of data based

upon some key. The key for encryption, and the key for decryption in this case are the

same key. Symmetric algorithms also come in two major classes: block ciphers, and

stream ciphers. Block ciphers treat each block of data in the same manner, while stream

ciphers will treat the same blocks differently depending upon what preceded them. The

ultimate goal of a cipher is to achieve a level of security that one finds in a one-time pad.

 A one-time pad is a random (truly random) sequence the same length as the

message added modulo 2 to the message. The statistical distribution of bits of the

4

plaintext and ciphertext have absolutely no correlation to each other, and there is no

repetition of the key sequence from which patterns can be found, so any message the

same length of the original plaintext (and ciphertext) has an equal probability of being the

correct message. The result is that an attacker would have no way of determining the

correct message without having some additional information about it.

 Ciphers (notable among them are DES, and AES/Rijndael) are unable to achieve

this “perfect” level of security, however, because their key size is much smaller for

practical reasons, and truly random sources are very difficult to obtain or make use of.

Although the specific sequences of permutations used by these ciphers are rather difficult

to attack, there are methods (linear and differential cryptanalysis, for example) which are

able to find and exploit some weaknesses. Many of these are known-plaintext or chosen-

plaintext (meaning the attacker was able to get one party to encrypt a specific piece of

information), and are practically infeasible to exploit, but nevertheless, bring down the

overall security of the algorithm from the ideal of a one-time pad.

 Asymmetric algorithms work in a very different way. In these algorithms, one key

is known to the public, and is used to encrypt information to send to a certain receiver

with the corresponding private key. The private and public keys are both different,

removing the need for key exchange (or making exchange of symmetric keys safe, as is

usually the case).

 Most of these public-key encryption algorithms rely on problems which are NP-

Complete, and thought to be very hard. Solutions to NP-Complete problems can be

checked in polynomial time. It is also thought that it is impossible to solve these

problems in polynomial time, although recent literature leans toward the contrary,

5

meaning that the security of these algorithms could potentially be compromised

[Bolotashvili]. The specific problems which are addressed by many algorithms are the

discrete logarithm problem (which asserts that it is easy to exponentiate something, but

difficult to find the log), and the theory of elliptic curves.

B. Fractals

 Fractals are seen everywhere in nature and yet so very mysterious. First imagined

by Julia and Mandelbrot, fractals have an element of chaos, but also have an essence of

order. Look at the pictures blow. They both have a random nature, but also have an

element of order. But these are not the only way to represent fractals. They are ultimately

based in mathematics.

 - Julia Set

 - Mandelbrot Set
Take, for example, the following function. F(x)= x2 + C. Set C as some constant, then

give an initial condition for the value of x. Calculate the value of the function, then take

the value just obtained and plug it in as your new x-value. This is an operation called

6

iteration, and is the core concept of fractals. While the previous is a very simple example,

the one that we are using is much more complex. We are using the iterative nature of the

N-body problem to create our algorithm.

7

C. Mathematical Model: The N-Body Problem

 Any particle that has mass obeys Newton’s law of gravitation (on the macroscopic

scale, at least). This law sates that the force of attraction between two bodies is

proportional to the product of their masses, and inversely proportional to the square of the

distance between their centers, giving:

F
Gm m

r
=

− 1 2
2 ,

where G is the constant of proportionality (in this case, called the universal constant of

gravitation).

 When looking at a particular object, the signed magnitude of its acceleration

vector can be determined by dividing the mass, which leaves this quantity as a function of

the mass of the other object, and the distance between them. Acceleration, however, is the

second derivative of an object’s position with respect to time, so the resultant equation is:

d P
dt

Gm
r

2

2 2= −
,

where P is the position of the object as a function of time.

 We can now see that in a space of n-dimensions, based upon the Euclidean

distance formula, each coordinate of the particle’s acceleration can be shown to have the

form:

()

d x
dt

Gm

x y

k

i i
i

n

2

2

1

2= −

−
=
∑

,

8

where the x values are the coordinates of the object being observed, and the y values are

the coordinates of the object toward which it is moving.

 Second order differential equations of this form can be solved in closed form, but

as more objects are added that influence the one we are observing, the situation becomes

much more complex, and it is no longer possible to exactly solve the equation. The

resultant equation is of the form:

,

where p is the number of objects in the system acting upon the one we are observing.

 The n-body problem is concerned with finding determining the motion of

particles while acting under the influence of radial force fields projected from point

sources (as such, it is classified as a dynamic system). These forces take the form of the

one discussed above, but differ simply in the constant that is used in the equation. The

position of a particle under such conditions is defined by a system of differential

equations - namely, Newton’s laws of motion. For the specialized case of the 2-body

problem (and the trivial case of the 1-body problem), the differential equations are

exactly solvable. When the problem is generalized to three or more bodies, it becomes

impossible (with the exception of highly specialized cases) to find closed-form solutions

to the differential equations which define the motion of the system. It is therefore

impossible to exactly determine where a given body will be after any finite period of

time. It is, however, possible to use the differential equations which define the system to

approximate positions of the particles through iteration over a small time-step.

()()
d x
dt

Gm

x y

k p

i p i
i

nj

p2

2

1

2
1

=
−

−

=

= ∑
∑

9

 An example of the n-body problem is our Solar System. The planets, and the Sun

all exert a gravitational attraction on each other, which creates the dynamics which we

observe. Now, the particle which we were observing in the above examples was not

attracting any other objects to it, but instead, was moving about according to the forces

defined by certain fixed objects. An example of this would be a satellite sent into the

Solar System, with no power of its own. Its mass is so small that it would not noticeably

affect that position of the planets or the Sun, but the planets and Sun would most

definitely have an impact upon the satellite’s trajectory. Though the Sun and planets are

themselves in motion, and not fixed as the points in our system are, but the mathematical

foundations remain.

 Another, and perhaps better analogy lies in the motions of a specialized

pendulum. Consider a string tied to a ceiling with a magnetic ball attached to the end (a

basic pendulum, essentially). Now, consider that a number of magnets (all of equal

strength) have been distributed about the floor. Electromagnetic force works on the same

principle as gravity, with a different property, charge, replacing mass, and a different

constant, though the basic governing equation is the same. If one were to release the

pendulum, and let is swing for a while, one would notice that the pendulum follows an

erratic path, curving toward the various magnets as it moved. This system illustrates the

nature of the single object moving under the influence of fixed bodies. This example too

has minor flaws (the addition of the gravitational force on top of the electromagnetic

force), but is meant to illustrate the basic principles of the system used in our encryption

algorithm.

10

IV. Description & Procedure

A. Simple Encryption

 The simple encryption program that we have created encrypts a text file using

pseudo random numbers exclusive-or’ed with the original character then placed into the

new encrypted text file. This method is relatively easy to crack given that you have the

code used to encrypt the file. From there you must create a method that tries many

starting random numbers until it finds the one that was originally used. The bonus to this

method is that it is very fast. If your algorithm stays secret the code should be relatively

hard to break. However, we must assume that the person attacking the code has all the

information including the algorithm used to encrypt, but only missing the original data.

Thus this method would be fine for personal use, but not for corporate use.

B. Java Program

 The Java program will be used to create a nice user interface, since C++ is

difficult to work with for such graphics. The Java program will take the user input and

save it into a file, which C++ will read. Items that will be input will be the name of the

file to encrypt, where to save it, and the coordinates to set up the N-Body system. This

allows for each user to customize the system that they use to encrypt their files. We will

also be using Java to create a nice visualization of the actual process of encrypting the

text.

11

C. N-Body Algorithm

The fractal of choice for this project is a chaotic system. An example of a chaotic

system is the n-body problem. The n-body problem tries to determine the motion of

particles in the presence of strongly attractive forces (such as gravitational force and

electromagnetic force). Using the principles mentioned above, our algorithm will use a

series of simple unary functions operating directly on binary data to render it theoretically

undecipherable.

The complexity of breaking this system lies within the difficulty of finding a set

of attracting forces that would yield a given path for a particle. For a single path (as

defined within the precision of a computers computing ability) there will not be unique

solutions, and therefore it will be difficult for an attacker to determine the correct solution

(key and corresponding plaintext-ciphertext pair) to the algorithm.

Our primary encryption algorithm is designed to make use of the fractal properties

of a chaotic system (an example of which would be the n-body problem), while still

maintaining a reasonably straightforward approach to minimize potential security holes,

and reduce errors involved in the implementation of the algorithm.

 Many considerations had to be taken into account when designing this algorithm.

First, the program must use the data it is encrypting as well as a key to determine what

operations must be performed on the block of data. Secondly, all functions used within

the algorithm must be uniquely reversible. That is there must exist a one-to-one

correspondence between the plaintext space and the ciphertext space. Thirdly, there must

exist some method based upon the key of determining how data is to be used within the

12

algorithm, and eventually, what will be done with it. The algorithm works as follows

(also in Figure 1):

 Efficiency is a major concern for our algorithm. Although the individual

encryption functions used to directly modify data are relatively simple and efficient,

finding solutions to the chaotic system can present a computational problem. To

minimize time consumed by this part of the algorithm, care has been taken to make the

chaotic system as computationally inexpensive as possible (with the primary goal time

optimization, and the secondary goal is memory space optimization). It is not necessary

for the chaotic system to mimic any particular natural system, but it must have the same

basic properties.

N-Body Encryption Algorithm

Encrypts a message based upon a series of permutation functions, keyed into an instance
of the n-body problem which is simulated for each block of plaintext interpreted as a
point in space.

Definitions

• A chaotic system (n-body system) A
• A set of parameters of size n (i.e. location of all equal mass objects) P called

points
• P is also the key
• A set of n reversible functions F[k] and their inverses ~F[k]

Encryption Algorithm

• Input P into A
• Sequentially number all points in P
• Loop while there is still some unencrypted data
• Convert a block of data into a point R
• Place R in the chaotic system
• Determine which point in P the point R will be attracted to called K
• Create a ciphertext block consisting of K
• Append to the ciphertext block F[k](R)
• Continue with the loop

13

Figure 1

· Implementation in C++

For the implementation of the encryption algorithms we are using, we have decided to

implement them in C++ primarily for efficiency, as well as for the familiarity of the

language in numerical applications. The class hierarchy for our primary algorithm calls

for several small helper classes to assist in the computations for the primary algorithm

class (Figure 2).

14

Figure 2

15

V. Discussion, Results & Conclusions

A. General Conclusions

 We formed our conclusions based upon the data that we gathered. From the data it

appears that the original text is sufficiently scrambled so as to flout any person trying to

break the code using a brute force method. The simple encryption would work

moderately well so long as the attacker does not have the code, but with the code it is

only a matter of hours before they could crack the code.

 Thus the easiest way to have a somewhat secure code is to have the algorithm kept

secret. This would lengthen the life of your code. If you are worried about corporate

workplaces where many different people will be using the code and the possibility of the

code being leaked is high, you must create a code that would stay secure even if the

attacker has the algorithm used to encrypt the information.

B. Advantages & Disadvantages: A Comparison of Methods

 Encryption using a chaotic system benefits from the fact that it has been proven that

the differential equations involved in the n-body problem have no closed-form solution.

Additionally, using parameterized permutation functions means that an attacker will not

be able to exploit a patterns in a large sections of ciphertext. Additionally, the attacker

will almost be unable to deduce the set of parameters for the n-body problem itself, even

if he had access to ciphertext-plaintext pairs.

 This method of encryption does have some drawbacks. One is that it is a symmetric

algorithm, which means that key exchange must be handled with a specialized protocol or

algorithm. Additionally, the use of floating point arithmetic is slower than integer

16

arithmetic (although the behavior of floating point numbers as continuous-like variables

provides much more variation than does integer arithmetic), and is machine dependent.

Although it can be handled through the software to ensure uniformity, this would again

slow down the process of encryption, as each encrypted block requires thousands of

floating point operations. This is still feasible for use on normal workstations, and higher-

performance computers, but would make implementation on specialized hardware for

encrypting data in real-time infeasible as it would require a significant amount of buffer

space as it ran the n-body simulations. The decryption process does not require any

floating point arithmetic, however, and therefore specialized real-time decrypting would

be very viable.

17

VI. Acknowledgements

Jim Mims – Computer science teacher, and Science Fair sponsor. Mims has provided

assistance in obtaining the required materials, and has arranged for presentations relating

to our topic.

VII. References

· Bolotashvili, Givi. Solution of the Linear Ordering Problem (NP=P). <

http://arxiv.org/abs/cs.CC/0303008 >

· Menezes, Alred, Paul Van Oorschot, and Scott Vanstone. Handbook of Applied

Cryptography. CRC Press, 1996.

· Peitgen, Heinz-Otto, Dietmar Saupe. Chaos & Fractals: New Frontiers of Science.

Springer Verlag, 1992.

· Schneier, Bruce. Applied Cryptography: Protocols, Algorithms, and Source Code in

C, Second Edition. John Wiley & Sons, 1995.

· Stinson, Douglas. Cryptography: Theory & Practice, Second Edition. Chapman &

Hall, 2002.

http://arxiv.org/abs/cs.CC/0303008

