

Manipulating the Matrix

New Mexico Adventures in
Supercomputing Challenge

Final Report
April 2, 2003

Team Number 66
Silver High School

Team Members:
Rebecca F. Ashton, Senior
Ruben M. Guadiana, Senior
Teacher: Mrs. Peggy Larisch

Acknowledgements

The authors wish to acknowledge the following individuals for the guidance and assistance
provided in the overall preparation of this report:
• Mrs. Peggy Larisch – Teacher, Silver High School, Advanced Computer Studies
• Mr. Berry Estes – Nuclear Engineer (Retired), Sandia National Laboratories

Table of Contents

E.0 Executive Summary.. E-1
1.0 Introduction..1
2.0 Project Proposal ...3
3.0 Analytical Methodology ..4
4.0 Results..9
5.0 Conclusions..10
References..12
Appendix #1 (American Standard Code for Information Interchange)14
Appendix #2 (JAVA Program Code)...15
Appendix #3 (JAVA Class Code)..21
Appendix #4 (Example of Program Output Code) ..24

E-1

E.0 Executive Summary

The purpose of this project is to create a Java computer application that will encrypt and
decrypt data in a secure manner using fundamental matrix multiplication. Consequently, the
team developed an original computer program that utilizes matrix mathematical techniques to
create a unique encryption/decryption process. Though many people are not aware of it,
encryption is used daily, whether it be an individual using a credit card to order products over
the Internet, a code employed to transmit secret information to selected military/diplomatic
groups, or someone simply signing into an email account with a password. As the use of
encryption increases, the need for a more secure and easier to use method of cryptography
increases simultaneously. By encrypting data using matrix multiplication and random
numbers, an ambiguous key can easily be created.

The method of encryption employed by the program created for this project first builds a
character array (arrays act as matrices) containing the position(s) and ASCII value (see
Appendix #1) of a specific character in the user-input message. Using a randomly generated
seed, a second array, with square dimensions congruent to the length of the character array, is
formulated. These two arrays are multiplied together, producing the product array, which has
the same dimensions as the original character array. The seed used to create the random array
is multiplied by 26 times the length of the message and affixed to the end of the product array.
This process is repeated for every character found in the message to be encrypted and the
product arrays are saved to a data file. This data is the secure key that can then be passed
safely from user to user.

In order to decrypt this data file, the computer program separates the encrypted arrays,
uncovers the disguised seed, and recreates the random arrays used during encryption. The
inverses of these arrays are then found and multiplied by the product arrays, returning the
original character arrays containing character positions and ASCII values. Using this data, the
program pieces the original message back together and returns it, unflawed, to the user.

The cryptographic Java computer program created for this project correctly employs matrix
multiplication to both encrypt and decrypt data. This mathematical model proved to be
effective and the computer program successfully encrypted data into a secure and ambiguous
key (see example in Appendix #4) and also correctly decrypted this data. The simplicity of the
program allows the user to easily encrypt and decrypt data, only prompting the user for either
the message to be encrypted or the location of the data file to be decrypted.

The project conquered its intended tasks, as the cryptographic computer program is both secure
and easy to use. Though the techniques used in this project differ greatly from techniques used
by other cryptographic programming techniques, the originality and simplicity of the idea
resulted in an encryption/decryption technique that is highly successful. To further improve the
quality of the project, it is recommended that a superior method be created which enables the
program to separate arrays during the decryption process; this, in the opinion of the team, will
improve the security of the key.

1

1.0 Introduction

1.1 Purpose

The Science of Cryptography, or the principles and methods of transforming an intelligible
message into one that is unintelligible, and then retransforming that message back to its original
form1, has existed for almost 4000 years. Ancient Egyptians used cryptography to encipher
messages on monuments using hieroglyphics; simultaneously, ancient Hebrews enciphered
certain words in their scriptures. About 2000 years later, Julius Caesar created the Caesar
cipher, a simple monoalphabetic cipher that replaced each letter of a message by another letter
in the alphabet a fixed distance away. Since then, numerous other unique methods of
encryption have been created, including the Jefferson Cylinder, which was developed in the
1790s by Thomas Jefferson and this device encrypted data using disks with random alphabets.
The Wheatstone disc was created in 1817 by Wadsworth and used two concentric wheels to
generate a polyalphabetic cipher. The use of encryption, as well as the need for more
dependable encryption techniques, increased dramatically during World War II as countries
attempted to pass vital messages to allies without enemies intercepting and decrypting the code.
One of the most popular cipher machines used at this time was the Enigma Rotor Machine,
which was developed by Albert Scherbius, and consisted of a series of rotor wheels with
internal cross-connections that provided substitution using a continuously changing alphabet2.

Advancement in encryption and decryption methods continues today. With the use of the
Internet increasing daily, the need for a more secure method of cryptography rises
simultaneously. Because online shopping is both convenient and easy, one of the main targets
of data encryption on the Internet is credit card numbers3. Improved techniques to encrypt
passwords are needed to prevent hackers from breaking into personal emails or illegally
obtaining confidential information.

In order to investigate this ever-rising demand for superior encryption techniques, the purpose
of this project is to create an improved cryptographic system that is both secure and easy to use.
The encryption method developed in this project incorporates the fundamentals of matrix
multiplication to create a key of random numbers unreadable to the naked eye and almost
impossible to decrypt without knowledge of the techniques used to encrypt data. Proper
decryption of the key also depends on identifying the inverse of a matrix; multiplying this
inverse by the key matrix returns the original matrix, which contains the desired information.

1.2 Scope

The objective of this project is to create a method of encryption and decryption that is both
more secure and easier to use than those currently being utilized today. The methods
developed in this project to create and break down an unintelligible key will incorporate the
American Standard Code for Information Interchange (ASCII) (See Appendix #1), random
number generators, and matrix multiplication.

2

1.3 Computer Program

A Java computer program created by the team members is used to encrypt and decrypt
messages for this project. The multiple dimension arrays available in this programming
language act as the matrices, which are multiplied together to encrypt and decrypt messages.
Because these arrays are capable of holding an infinite number of characters, there is no limit to
the length of the message that can be encrypted and decrypted by this program. The first array
used in multiplication consists of the positions and the numerical ASCII value (see Appendix
#1) of each specific character. The second array is comprised of numbers created by
incrementing the seed, a number randomly generated by the computer, by one for each cell in
the array. The computer program performs the required matrix based operations –
multiplication, adjoint, determinant, seed definition, inverse multiplication – to encrypt/decrypt
the user-input data. The program is an original code developed by the team based on the
information and materials given in the referenced documents (see References).

3

2.0 Project Proposal

2.1 Description of Project

This project develops a computer program that has the ability to encrypt and decrypt data using
fundamental matrix multiplication (see Section 3.1). ASCII values (see Appendix #1) represent
characters in encryption, and are used to identify letters in decryption. These values are the
only constants in the program, as the other matrices used in the encryption process are filled
with numbers created by incrementing a randomly generated seed by one. These matrices
multiply character matrices, which contain position(s) and the ASCII value of a specific
character. This multiplication process produces the key, a data file containing only numbers.
Because these numbers have been augmented through the matrix multiplication process, they
will be meaningless to persons without the decryption techniques.

In order to decrypt the key, the computer program imports and reads the data file created in the
encryption process. The data from this file fills a very large matrix where each row represents
one product matrix created during encryption. Further separation of this matrix reforms
original, one-row character matrices. From these matrices, seeds are uncovered, and random
matrices are recreated. An inverse program created by The MathWorks and the National
Institute of Standards and Technology and available at http://math.nist.gov/javanumerics/jama
then finds the inverses of the recreated random matrices. Character matrices are multiplied by
the inverse of their specific random matrices, returning the original character matrix. The
program reads these matrices, piecing together the original message using the positions and
ASCII values uncovered during the decryption process.

http://math.nist.gov/javanumerics/jama

4

3.0 Analytical Methodology

3.1 Mathematical Bases

Matrix multiplication is used in both the encryption and decryption processes and is thus the
basis of the mathematical and analytical models used in this project. For matrix multiplication,
it is important to remember that in order for a product of two matrices to be defined, the
dimensions of these matrices must satisfy:

(n * m) (m * p) = (n * p)

where (n * m) denotes a matrix with n rows and m columns4. The matrix product of two
matrices is formed by multiplying every row of the first matrix with every column of the
second matrix5. A matrix having one row is used as the first matrix because it represents the
size of the character matrices used in the encryption process. Following is an example of the
matrix multiplication process:

Each row of the first matrix is multiplied by the corresponding columns of the second matrix.
Adding the products of these individual multiplications returns the final answer.

To find the inverse of a matrix, a matrix must be square, meaning it has the same number of
rows and columns, i.e. an (n * n) matrix. The formula6 to find an inverse matrix is:

 A-1 =

When calculating the adjoint matrix, each element in the matrix is replaced by its cofactor. The
cofactor of an element is the value obtained by finding the determinant formed by the elements
not in that particular row or column. After creating the cofactor matrix, a positive or negative
sign is applied to each element, starting with a positive charge and alternating for each element.
This matrix is then transposed, meaning the first column becomes the first row, the second

[5 11 17 10]
3 4 7 9
9 5 12 5
5 8 2 15
1 2 6 5 [*

5 * 3 + 11 * 9 +
17 * 5 + 10 * 1

5 * 4 + 11 * 5 +
17 * 8 + 10 * 2

5 * 7 + 11 * 12 +
17 * 2 + 10 * 6

5 * 9 + 11 * 5 +
17 * 15 + 10 * 5 [

[209 231 261 405]

adjoint A
determinant A

] =

]

5

column becomes the second row, etc. This new matrix is the adjoint of the original matrix6.
The process used to calculate the adjoint matrix of a 3 * 3 matrix follows.

The cofactor of 1 in the above matrix:

The cofactor of 6 in the above matrix:

The matrix filled with cofactors, positive and negative signs applied:

The cofactor matrix is transposed, the resulting matrix being the adjoint matrix:

When finding the value of the determinant of a matrix, each integer in the first column is
multiplied by its cofactor. These values are added together, the resultant being the determinant
of the matrix6. In order for a matrix to have an inverse, the determinant cannot equal zero7.
This is due to the fact that the inverse matrix is defined as the adjoint divided by the
determinant, so a matrix with a determinant of zero would return an undefined answer8. This is
how the determinant of the above 3 * 3 matrix is found:

[] 7 1 5
0 2 6
4 9 3

0 6
4 3

7 1
4 9 = 63 – 4 = 59

= 0 – 24 = -24

[] +(-48) -(-24) +(-8)
-(-42) +(1) -(59)
+(-4) -(42) +(14)

= [-48 24 -8
42 1 -59
-4 -42 14]

[] -48 24 -8
42 1 -59
-4 -42 14

= [] -48 42 -4
24 1 -42
-8 -59 14

[] 7 1 5
0 2 6
4 9 3 = 7

2 6
9 3 + 0

1 5
9 3 + 4

1 5
2 6

= 7(-48) + 0(-42) + 4(-4) = -352

6

Now that the adjoint matrix and the determinant have been calculated, these values are
substituted into the inverse formula. Solving this equation will return the inverse of the original
3 * 3 matrix:

A-1 =

The two mathematical models presented above are the basis of the encryption and decryption
processes created by this project. Matrix multiplication is used to encrypt data, creating a key
that is unreadable to the naked eye. The inverse matrix is used in the decryption process.
Multiplying a product matrix by the inverse of one of the matrices used during multiplication
will return the other matrix used during multiplication. In this case, these calculations would
return the original character matrices, which will be used to piece the original message back
together.

3.2 Computer Applications

When encrypting a message using the computer program created specifically for this project,
the user is first prompted to enter the message to be encrypted. After the user inputs the
message, it is read by the program and fills an array (arrays act as matrices) initialized to the
length of message, including spaces. With the message contained inside an array, each
character has a specific numerical position. These position values start at zero and end at x-1,
where x is the numerical length of the message. The program scans the message array, filling a
character array with the position(s) of a specific character. The numerical ASCII value of the
character is attached to the end of the array containing its corresponding position(s). These
character arrays consist of 1 row with n +3 columns, where n is the total number of times the
character is used in the message; three columns are added to the array to compensate for the
addition of the ASCII value, disguised seed, and the number used to separate the arrays in the
data file (-2). The last two positions of the array remain at zero until after the multiplication of
arrays has been completed. A unique array is created for each character that is present in the
message. Characters not found in the message are disregarded.

For each character array that is created during the scanning process, a corresponding array of
numbers is created in order to complete the matrix multiplication process. Because this array
will be used as the multiplier, it must have square dimensions equivalent to number of columns
of the character array. This array is created by first generating a random seed and then
incrementing this number by one as it fills each cell in the array created specifically for a
character. Different random seeds are generated and separate arrays are created for each
character array produced by the program.

The character array and random array are then multiplied together, returning a product array
with dimensions equivalent to the original character array. Because the seed is transported
along with this product array, it must be disguised to look like the other numbers in the array.
In order to accomplish this resemblance, the randomly generated seed used to create the

1
-352 [] -48 42 -4

24 1 -42
-8 -59 14* = [] 3/22 -21/176 1/88

-3/44 -1/352 21/176
1/44 59/352 -7/176

7

random array is multiplied by 26 times the length of the product array and attached to the end
of the array. This final key array contains the masked seed and values from the matrix
multiplication process. This procedure is repeated until every character in the message has
been transformed into an unrecognizable key array. These key arrays are then saved to a data
file, which acts as the lock and key of the encryption process and can be safely passed from
user to user (see Figure 3.1).

Flow Chart for Encryption

User runs program
and inputs
message

Message fills
an array

initialized to
length of
message

Program scans message
for specific characters,
returning the numerical

position(s) of the
character

The positions
fill an array

specific to the
character

ASCII code of
character is

attached to the
end of array
containing its

position(s)

A randomly generated
seed is created for

each character and is
incremented by one as
it fills an arrary created

specifically for its
character matrix

These two matrices
are multiplied together

The seed is multiplied
by 26*n, where n

equals the length of
the array, and then

attached to the end of
the character matrix

This matrix,
containing the

disguised seed and
values from the

matris multiplication,
is saved to a data file

Figure 3.1

8

In order to decrypt data, a user must have both the key data file and the correct decryption
techniques. The decrypt program reads the file and fills a massive array with the data
contained in it, skipping a line in the array each time a separator number (-2) is encountered.
Because of this separation process, each line of this array represents one of the numerous
product arrays created during the encryption process. These rows of this array are then further
separated into single row arrays. The disguised seed is removed from its predetermined
position and divided by 26(x-1), where x is the total number of items in the array; x2+(x-2) is
then subtracted from the resulting number in order to obtain the original seed. Using this seed,
the random array is recreated by incrementing this number by one every time it is entered into
the newly recreated random array. An inverse program created by The MathWorks and the
National Institute of Standards and Technology, available at
http://math.nist.gov/javanumerics/jama, then finds the inverse of this array, which is
subsequently multiplied by the product array. This multiplication returns the original character
array, containing the initial positions and ASCII value of a specific character. After each
character array from the key data file has gone through this inverse multiplication process,
ASCII values are converted back into their corresponding characters and placed in the correct
position. This process pieces the original message back together, which is then returned,
unflawed, to the user (see Figure 3.2).

Flow Chart for Decryption

Data file read
by decrypt

program

These values fill one
huge array -- each
line represents one

product array

Each row of this array
is separated,

recreating the product
arrays created in

encryption

Seeds are removed from
predetermined positions and

divided by 26(x-1), where x = total
number of items in the product

array. (x 2 + (x-2)) is then
subtracted from this number to

obtain the original seed.

Random arrays are
recreated by incrementing

the seed by one each
time it is entered into the

array

Inverses of random arrays
are calculated using an

inverse program and then
multiplied by product arrays

This multiplication returns
original character arrays

which are pieced together
to recreate the message
and return it to the user

Figure 3.2

http://math.nist.gov/javanumerics/jama

9

4.0 Results

The calculations performed by the computer program allow the user to readily encrypt and
decrypt data using matrix multiplication. The values resulting from the encryption process are
saved to a data file, which can be safely passed from user to user. Because the values of the
data file have been augmented through matrix multiplication, the data can only be decrypted by
a person with knowledge of the correct techniques or access the computer program created for
this project. Thus, even if the data file was somehow intercepted, the data contained in it is
temporarily safe as cracking the code would be very difficult and time consuming as the
numbers contained in the data will be incomprehensible without the decryption techniques.

4.1 Computer Calculations

Because the matrix multiplication technique applied to this program consists of both
multiplication and division, careful attention to each component of the overall procedure was
required in order to ensure correct encryption. To check the accuracy of the values calculated
within the program, identical calculations were performed by a graphing calculator. The results
of both calculations were compared, and, after the computer calculations were verified to be
correct, the encryption process was proven to be complete and correct (see Appendix #4 for
Program Output Code). The program’s calculation of inverse matrices was also verified in
order to ensure correct decryption of data.

Reading the data files proved to be the next major problem encountered while creating the
computer program, as the whole data file had to be imported at one time. In order to break the
data file into usable arrays, an array of arrays was created. To accomplish this task, a class was
written that would read numbers imported from the massive data file and separated them into
the original arrays used during encryption (See Appendix #3). First, the numbers were
imported into a huge, single-row array. The class read this huge array and separated the arrays
created during encryption, placing each one in its own separate object. The computer program
used separator numbers (-2), which were placed between arrays during encryption, to
distinguish and separate arrays. This array was then further broken down until all original
character arrays were reformed into their initial form.

10

5.0 Conclusions

5.1 Mathematical Models

By multiplying matrices together to encrypt data, a very ambiguous key data file was created.
The random number generator used to create the seed of one of the matrices used in
multiplication increased the security of the data. The use of matrix multiplication was also a
successful mathematical model for decryption because of its inverse properties. By finding the
inverse of the random matrix, it was very easy to return encrypted character matrices back to
original form. The use of matrix multiplication allowed the program to successfully encrypt and
decrypt data and is thus a reliable mathematical model. The results obtained from applying
these mathematical models in the computer program were shown to be both correct and
acceptable (see Appendix #4).

5.2 Computer Program

The Java computer program created specifically for this project met all defined requirements
needed to easily encrypt and decrypt data (See Appendix #2 & #3). The computer program
produced a secure key using multiplication of arrays, which represented matrices. Decryption
of data also incorporated multiplication of arrays, but the inverse of the random array was first
found using a program created by The MathWorks and the National Institute of Standards and
Technology and available at http://math.nist.gov/javanumerics/jama. The program successfully
completed its intended tasks, as it encrypted data into a form unreadable by the naked eye and
also decrypted data, returning it, unflawed, to its original form.

5.3 Results

Matrix multiplication proved to be a successful mathematical technique for modeling data to be
encrypted and decrypted. The computer program developed for this project incorporated both
constant ASCII values and random number generators, which were used to create an
unintelligible and secure key (examples available in Appendix #4). The properties of
multiplying product matrices by the inverse of the random matrices used during multiplication
also proved to be very beneficial for the decryption process, as this is how original character
matrices were found. The individual work and teamwork involved in developing the
cryptographic program that employs matrix multiplication to encrypt and decrypt data resulted
in the creation of a better method of encryption and decryption that is both secure and easy to
use. In order to encrypt data, a user simply types a message into the program, and, after the
multiplication has been completed, passes the camouflaged key to another user without worry
of premature decryption. If the data file were somehow intercepted, cracking the code would
be very difficult and time consuming. The simplicity of the program and complexity of the key
make these methods of encryption and decryption very reliable and straightforward.

http://math.nist.gov/javanumerics/jama

11

5.4 Recommendations

To improve the project beyond what had been accomplished to date, it is recommended that
classes be created in the program for the different steps of the encryption and decryption
processes. By doing so, the program will become more efficient and easier to debug. The
program also could be converted into a Graphical User Interface (GUI), which would allow for
encryption and decryption over the Internet. To further improve the security of the key, a more
advanced method of separating arrays during encryption and decryption needs to be created and
implemented in the program.

12

References

1. Seth, Anuj. “Basics of Cryptography”. http://www.anujseth.com/crypto/basics.html (8
January 2003).

2. Seth, Anuj. “A Brief History of Cryptography”.

http://www.anujseth.com/crypto/history.html (8 January 2003).

3. ThinkQuest Team 27158. “Introduction and History of Its Development”.

http://www.library.thinkquest.org/27158/history.html (30 October 2002).

4. Weisstein, Eric W. “Matrix Multiplication – from MathWorld”.

http://mathworld.wolfram.com/MatrixMultiplication.html (13 November 2002).

5. Lundmark, Hans. “Matrix multiplication: an interactive micro-course for beginners”.
http://www.mai.liu.se/~halun/matrix/matrix.html (13 November 2002).

6. Bourne, M. “Method 2”. http://www.np.edu/~bms/Mat_Det/method2.htm (27

January 2003).

7. Mr. Meanie. “Matrix Math”.
http://easyweb.easynet.co.uk/~mrmeanies/matrix/matrices.htm (27 January 2003).

8. Gladwin, Thomas. “Matrix algebra”. http://www.ppsw.rug.nl/~gladwin/matalg.html

(29 January 2003).

http://www.anujseth.com/crypto/basics.html
http://www.anujseth.com/crypto/history.html
http://www.library.thinkquest.org/27158/history.html
http://mathworld.wolfram.com/MatrixMultiplication.html
http://www.mai.liu.se/~halun/matrix/matrix.html
http://www.np.edu/~bms/Mat_Det/method2.htm
http://easyweb.easynet.co.uk/~mrmeanies/matrix/matrices.htm
http://www.ppsw.rug.nl/~gladwin/matalg.html

13

Appendices

Appendix #1 – American Standard Code
for Information Interchange (ASCII)

Appendix #2 – JAVA Program Code, matrix.java

Appendix #3 – JAVA Class Code, MatrixHouse.java

Appendix #4 – Example of Program Output Code

14

Appendix #1

American Standard Code for Information Interchange (ASCII)

ASCII Character ASCII Character ASCII Character ASCII Character
0 null 32 Space 64 @ 96 `
1 start of heading 33 ! 65 A 97 a
2 start of text 34 " 66 B 98 b
3 end of text 35 # 67 C 99 c
4 end of transmission 36 $ 68 D 100 d
5 enquiry 37 % 69 E 101 e
6 acknowledge 38 & 70 F 102 f
7 bell 39 71 G 103 g
8 backspace 40 (72 H 104 h
9 horizontal tab 41) 73 I 105 i

10 NL line feed, new line 42 * 74 J 106 j
11 vertical tab 43 + 75 K 107 k
12 NP form feed, new page 44 , 76 L 108 l
13 carriage return 45 - 77 M 109 m
14 shift in 46 . 78 N 110 n
15 shift out 47 / 79 O 111 o
16 data link escape 48 0 80 P 112 p
17 device control 1 49 1 81 Q 113 q
18 device control 2 50 2 82 R 114 r
19 device control 3 51 3 83 S 115 s
20 device control 4 52 4 84 T 116 t
21 negative acknowledgement 53 5 85 U 117 u
22 synchronous idle 54 6 86 V 118 v
23 end of trans. Block 55 7 87 W 119 w
24 cancel 56 8 88 X 120 x
25 end of medium 57 9 89 Y 121 y
26 substitute 58 : 90 Z 122 z
27 escape 59 ; 91 [123 {
28 file separator 60 < 92 \ 124 |
29 group separator 61 = 93] 125 }
30 record separator 62 > 94 ^ 126 ~
31 unit separator 63 ? 95 _ 127 DEL

15

Appendix #2

JAVA Program Code
matrix.java

/* Ruben and Rebes Encryption Program 1.61
 12.8.02 - 3.30.03
 first complete finish.61
*/
import Jama.*;
import TerminalIO.*;
import java.util.*;
import java.io.*;

public class matrix {
 public static void main (String [] args) {
/***/
 //declare variables
 int count = 0, space, count2 = 0, sizeFinal = 500, count3 = 0, sizeMat = 0;
 int[][] spaceTimes, foreAdd;
 int[] cryptMess = new int[0], finalCode = new int[500], codeIn = new int[0],
randomMatricies = new int[500],
 randIn = new int[0];
 boolean found = false;
 Random generator = new Random();
 KeyboardReader reader = new KeyboardReader();
 String message; //message before it becomes an array
 char[] array, checker;
/***/

 //fill finalCode with -1 so it can be trimmed once it is filled
 for (int i = 0; i < finalCode.length; i++)
 finalCode[i] = -1;
/***/

 //input message to be encrypted
 System.out.println ("Enter message to go into an array: ");
 message = reader.readLine();

 //declare array to be as long as amount of characters in message
 array = new char[message.length()];

 /*fill array with the characters from message*/
 for (int i = 0; i < message.length(); i++){
 array[i] = message.charAt(i);

16

 }
/***/
//search array for individual character
 checker = new char[message.length()];
 for (int c = 0; c < array.length; c++){
 for (int i = 0; i < checker.length; i++){
 found = false;
 if (checker[i] == array[c]){
 found = true;
 break;
 } //if loop
 } //for loop
 if (found == false){
 checker[count] = array[c];
 count++;
 ArrayList spaceOccur = new ArrayList();
 int seed = generator.nextInt(99) + 1;
 space = 0;
 for (int i = 0; i < array.length; i++){
 if (array[i] == array[c]){
 spaceOccur.add(space, new Integer(i)); //fills array withoccurances of character
 space++;
 }//if
 } //closes for loop

 int asciiNum = array[c] & 0x00FF;
 spaceOccur.add(spaceOccur.size(), new Integer(asciiNum));//putsascii decimal number at
end of occurance array
//***
 //test out spaceOccur to make sure it fills correctly
 /*uncomment to view the code before encryption
 for (int i = 0; i < spaceOccur.size(); i++)
 System.out.println ((Integer)spaceOccur.get(i) + " ");*/
//***
 //builds x * x matrix out of a random seed
 spaceTimes = new int[spaceOccur.size()][spaceOccur.size()];
 for (int i = 0; i < spaceTimes.length; i++){
 for (int i2 = 0; i2 < spaceTimes.length; i2++){
 spaceTimes[i][i2] = seed;
 seed += 1;
 }
 }//closes for
//***
 // This is the function that multiplies the matricies but doesn't add them
 foreAdd = new int[spaceOccur.size()][spaceOccur.size()];
 for (int i = 0; i < spaceOccur.size(); i++){

17

 for (int i2 = 0; i2 < spaceOccur.size(); i2++){
 foreAdd[i][i2] = ((Integer)spaceOccur.get(i)).intValue() * spaceTimes[i][i2];
 }
 }
//***
 //This function takes the multiplied matrix and adds it appropiately and displays code out
 cryptMess = new int[spaceOccur.size() + 2];
 int p;
 for (p = 0; p < spaceOccur.size(); p++){
 for (int i2 = 0; i2 < spaceOccur.size(); i2++){
 cryptMess[p] += foreAdd[i2][p]; // adds the productsof foreAdd to come out with
the code matrix
 }
 }
 cryptMess[p] = (int)seed * (int)cryptMess.length * 26;
 p ++;
 cryptMess[p] = -2;
/***/
 //builds finalCode to house the message after it is finished encrypting
 for (int i = 0; i < cryptMess.length; i++){
 finalCode[count2] = cryptMess[i];
 count2++;
 }
/***/
 }//closes if loop
 }//closes for loop
/***/
 //determine the used size of finalCode for use below
 for (int i = 0; i < finalCode.length; i++){
 if (finalCode[i] == -1){
 sizeFinal = i;
 break;
 }
 }
/***/
 System.out.println (" ");
 //print finalCode for testing
 for (int i = 0; i < sizeFinal; i++)
 System.out.print (finalCode[i]);
 System.out.println (" ");
/**/
 //writes finalCode to file
 try{
 FileOutputStream fileOut = new FileOutputStream("crypt.dat");
 DataOutputStream dataOut = new DataOutputStream(fileOut);
 dataOut.writeInt(sizeFinal);

18

 for (int i = 0; i < sizeFinal; i++){
 dataOut.writeInt(finalCode[i]);
 }
 dataOut.close();
 }catch(IOException e){
 System.err.println("Error during output: " + e.toString());
 }//closes catch
/***/
/***/
/***/
/***/
/***/
/***/
/***/
 //START WITH THE DECRYPTION SIDE, AND CRYPT.DAT
 //input encrypted message from file
 try{
 FileInputStream fileIn = new FileInputStream("crypt.dat");
 DataInputStream dataIn = new DataInputStream(fileIn);
 int length = dataIn.readInt(); //fills codeIn array with entirefile
 codeIn = new int[length];
 for (int i = 0; i < length; i++){
 codeIn[i] = dataIn.readInt(); //fills codeIn array with entirefile
 }
 }catch(EOFException e){
 System.out.println("\nAll done.");
 }catch(IOException e){
 System.err.println("Error in input" + e.toString());
 }
//***
 //declare variables for codeIn
 int p = 0, rowCount = 0, colCount = 0, numOfZero = 0;
//***
 //count occurances of 0 which determines how many arrays withincodeIn there are
 for (int i = 0; i < codeIn.length; i++){
 if (codeIn[i] == -2)
 numOfZero++;
 }
//***
 //declare variables for codeIn
 int[][] codeHouse = new int[numOfZero][250];
 int[] newRow = new int[numOfZero];
//***
 //break codeIn back into the seperate arrays for decryption
 while (p < codeIn.length){
 if (codeIn[p] != -2){

19

 codeHouse[rowCount][colCount] = codeIn[p];
 colCount++;
 }
 else if (codeIn[p] == -2){
 colCount = 0;
 rowCount++;
 }
 p++;
 }
//***
 //cut off excess cells from codeHouse
 for (int i = 0; i < numOfZero; i++){
 for (int i2 = 0; i2 < 250; i2++){
 if (codeHouse[i][i2] == 0){
 newRow[i] = i2;
 break;
 }
 }
 }
//***
 //now ready for the class to be implemented
 MatrixHouse[] codeHouses = new MatrixHouse[numOfZero];
 for (int i = 0; i < codeHouses.length; i++)
 codeHouses[i] = new MatrixHouse();
//***
 for (int i = 0; i < codeHouses.length; i++)
 codeHouses[i].setSmall(codeHouse, i, newRow[i]);
//***
//***
//***
 //create matrixhouses for the seeds, to make seeds into matricies
 MatrixHouse[] seeds = new MatrixHouse[codeHouses.length];
 for (int i = 0; i < seeds.length; i++)
 seeds[i] = new MatrixHouse();
//***
 for (int i = 0; i < seeds.length; i++)
 seeds[i].setSeed(codeHouses[i].seed(),codeHouses[i].getL());
//***
 //create a Matrix that will call the inverse of seed[i]
 Matrix[] seedi = new Matrix[codeHouses.length];
 for (int i = 0; i < seedi.length; i++)
 seedi[i] = new Matrix(seeds[i].getRand());
//***
 //find inverse of random[]
 for (int i = 0; i < seedi.length; i++){
 seedi[i] = seedi[i].inverse();

20

 }
//***
 //construct an empty matrix to house the multiplied
 MatrixHouse[] occures = new MatrixHouse[codeHouses.length];
 for (int i = 0; i < occures.length; i++)
 occures[i] = new MatrixHouse();
//***
 //fill occures with the occurances of the character
 for (int i = 0; i < occures.length; i++)
 occures[i].setOccure(seedi[i], codeHouses[i].getArray(), codeHouses[i].getLength());
//***
 //determine size of message
 int endSize = 0;
 for (int i = 0; i < occures.length; i++)
 endSize += occures[i].getOLength();
//***
 //construct a character array to house the message
 char[] mess = new char[endSize];
 for (int i = 0; i < numOfZero; i++)
 occures[i].makePos(endSize);
//***
 //fill mess with the correct characters and their occurances
 for (int i = 0; i < numOfZero; i++){
 if (occures[i].charAt(i) != '`')
 mess[i] = occures[i].charAt(i);
 }
//***
 //print mess
 for (int i = 0; i < mess.length; i++)
 System.out.print (mess[i]);
//***
 }// closes main
}//closes program

21

Appendix #3

JAVA Class Code
MatrixHouse.java

/*This is the class needed to house the random matricies
 being pulled in from the file. Actually works and does
 everything needed
*/
import Jama.*;

public class MatrixHouse {
 //declare variables
 private int[] array, occure;
 private int[][] twoD, foreAdd, twoDSeed;
 private double[][] rand, code;
 private int L = 0;
 private char[] har;

 public MatrixHouse(){
 twoD = new int[0][0];
 }

//***
 //methods in order alphabetically

 public char charAt(int count){
 return har[count];
 }

 public int[] getArray(){
 return array;
 }

 public char getChar(){
 char character;
 character = (char)occure[occure.length - 1];
 return character;
 }

 public int getL(){
 return L;
 }

 public int getLength(){

22

 return array.length;
 }

 public int getOLength(){
 return occure.length - 1;
 }

 public double[][] getRand(){
 rand = new double[twoDSeed.length][twoDSeed.length];
 for (int i = 0; i < twoDSeed.length; i++){
 for (int i2 = 0; i2 < twoDSeed.length; i2++){
 rand[i][i2] = (double)(twoDSeed[i][i2]);
 }
 }
 return rand;
 }

 public void makePos(int size){
 har = new char[size];
 for (int i = 0; i < har.length; i++)
 har[i] = '`';
 char charactera;
 charactera = (char)occure[occure.length - 1];
 for (int i = 0; i < occure.length - 1; i++)
 har[occure[i]] = charactera;
 }

 public int seed (){
 L = array.length;
 int s = (array[array.length - 1] / ((array.length + 1) * 26)) - (array.length + 1);
 int c = array.length - 2;
 int g = 0;
 if (c >= 2) {
 g = (s - ((c * c) + (c - 2)));
 }
 else if (c < 2){
 g = s;
 }
 return g;
 }

 public void setOccure(Matrix g, int[] w, int length){
 foreAdd = new int[length][length];
 for (int i = 0; i < length - 1; i++){
 for (int i2 = 0; i2 < length - 1; i2++){
 foreAdd[i][i2] = (int)(w[i] * g.get(i, i2));

23

 }
 }
 occure = new int[length - 1];
 for (int i = 0; i < occure.length; i++){
 for (int i2 = 0; i2 < occure.length; i2++){
 occure[i] += foreAdd[i2][i];
 }
 //System.out.print (" " + occure[i] + ":"); //un-comment for printing of occurances
 }
 }

 public void setSeed (int seed,int l){
 //take size of array and build the x * x to multiply
 int root = l - 1;
 twoDSeed = new int[root][root];
 for (int i = 0; i < root; i++){
 for (int i2 = 0; i2 < root; i2++){
 twoDSeed[i][i2] = seed;
 seed += 1;
 }
 }
 }

 public int[] setSmall(int[][] a, int b, int c){
 //set a to littleArray[]
 array = new int[c];
 for (int i = 0; i < c; i++)
 array[i] = a[b][i];
 return array;
 }

}//closes

24

Appendix #4

Example of Program Output Code

"If everything seems under control, you're just not going fast enough." - Mario Andretti

Output Code:

5614571858227670-2288429584264-25646580859705070-212463612524812586012647
2127084127696128308128920129532130144130756131368131980132592118560-2443
96447524510845464458204617646532468884724443186-210691108149256-237590379
66383423871839094394703984627846-216839170041716913780-235540360233650636
9893747237955384383892126000-27380756277445850-23283533169335033383734171
20020-2506825110351524519455236652787532085362937960-22803828329286202891
12920219656-2271132736727621278752812921294-2199621231872-217402176881797
4182601854613104-217861180661827111960-210278104048736-251614520675252052
9735342653879543325478536920-2780921832-2274028183952-2156234520-25427557
64056-217439176701790110530-2549756125304-2909992168424-2438245333328-2275
420520-2

"Obstacles are those frightful things you see when you take your eyes off your goal." - Henry
Ford

Output Code:

2344246225803250-2439844785928-2719672967696-2298273011830409307003099131
2823157327846-223297235442379124038242852453222256-2210202127021520217702
202017108-2597360786136-22444224668248942512017940-2756167617176726772817
783678391789467950180056806118116661854-221953222047322141422235522329622
4237225178226119227060228001228942229883230824231765232706233647234588235
529191360-25657457049575245799958474589495942432760-2972699501017410398106
229828-249326499265052651126517265232652926535265412633748-260166309660268
9571885824-28457861887797410-22080621047212882152914664-2437984417444550449
26453024567827664-2107261100911292115757176-248097485994910149603501055060
75110927846-210633107986968-2857887425720-28669951040-210177103088424-212304
124648320-214408145729464-2217023671456-2

"Do not worry about your difficulties in Mathematics. I can assure you mine are still greater." -
Albert Einstein

Output Code:

10293104221055111050-2648465539984-21578316015162471647916711169431717519188-
2311121312141313161314181315201316221317241318261319281320301321321322341323
361324381325401326421327441328461329481242424-259272597786028460790612966180
26230832292-24078141432420834273443385440364468745338459894664031512-2887490

25

017488-284208847928537685960865448712887712882968888050336-222882508272829
482652-2535085399254476549605544455928564125689636140-221863220772229113910-
237747380663838538704390233934227664-2125751270010712-2399124056841224418804
2536431924384844504451604581631824-25563572058775200-21217612411126461288193
60-215155155641597316382167919100-210496610576010655410734810814210893610973
011052411131811211255848-24123641751422664278143296438114432624102-217344176
12178801814811388-213380135289672-22862305432462730-2878289097488-26586670063
44-2324634362080-2591260544680-211282114467488-210113102886344-2

	Manipulating the Matrix
	Acknowledgements
	
	
	
	Flow Chart for Encryption
	Flow Chart for Decryption

	Appendix #1 – American Standard Code
	for Information Interchange (ASCII)
	
	Appendix #2
	Example of Program Output Code

