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Executive Summary

Molecular motors are a group of biological proteins, which are critical to life because they are
responsible for all transport within cells. They are the primary mechanism for converting chemical
energy to mechanical work at very small scales. There are numerous subfamilies of different proteins,
but they all basically use ATP (adenosine triphosphate) molecules as an energy source to move
∼ 8− 30 nanometers along a microtubule. Understanding how these proteins work can lead to new
therapies for cancer and muscular disorders. A better understanding of how these proteins work
could also make it possible to incorporate these proteins into nanoscale biomimetic devices.
The size of molecular motor proteins makes it impossible to directly observe their function, so

scientists recently began to attempt to use atomistic simulations to model the protein structure and
function. For atomistic modeling, each atom is represented as a particle in space with attributes
such as position, velocity, and charge. The modeling is done by approximating forces between
particles, and changing the position and velocity of each particle as a result of these forces, (F
= ma), for each unit of time. These calculations become very computationally challenging when
modeling biophysical systems because proteins exist in aqueous solutions containing many thou-
sands of atoms and ions which need to be individually modeled in addition to modeling the protein
itself.
The particular part of the molecular motor dynamics simulation that we worked on was the

calculation of long-range electrostatic interactions. In the specific case of long-range forces, the
behavior of charged particle interactions requires a sum over a prohibitively large number of parti-
cles. We use a periodically repeated unit cell to simplify calculations without introducing artificial
boundary effects. We further simplify the calculations by using Ewald summation, a technique in
which a conditionally convergent sum is simplified to a real space sum, and a reciprocal (or Fourier)
space sum. We then are able to increase the efficency of our calculations by using Particle Mesh
Ewald,a method that allows us to use Fast-Fourier Transforms to calculating the Fourier space
term.
Computational efficiency is of utmost importance because modeling molecular motor systems

containing many thousands of atoms is computationally intensive. Our Fortran90 code successfully
combined modules to calculate the complementary error function, Cardinal B-Splines, and mesh
interpolation in order to implement the Particle Mesh Ewald method. With this, we calculated the
real and Fourier of the Particle Mesh Ewald method, and could calculate long-range interactions
for the many thousands of particles needed in molecular motor biophysical simulations.
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1 Introduction

Motor proteins such as kinesin, mysosin and dynein are interesting because they occur in all living
organisms, and are critical to life, but perhaps more directly they could be used to design nanoscale
biomimetic devices if they are understood sufficiently. However the small size of motor proteins
makes them difficult to study; the structure and function cannot be fully elucidated through exper-
imental techniques. Even something as simple as how a kinesin protein walks is still in debate [2].
Direct observation of protein function cannot be performed using current methods of observation,
such as coating the specimen with metals for the electron microscopes, as this prevents the protein
from functioning [5]. Because of this problem, little is known about the conformational changes1

of motor proteins function. Specifically we are working on modeling the electrostatic interactions
of the thousands or even hundreds of thousands of atoms in a molecular motor proteins and the
surrounding aqueous solution. The electrostatic charges derive from the polarity of the water
molecules, the ions in solution, and the charged portions of the molecular motor. The interactions
between these charges are important because they are the main long-range forces in molecular
simulations. Our work primarily is concerned with helping make calculation of the interactions
between individual pairs of atoms as efficient as possible. As each atom interacts with each other
atom, the time required to perform the calculation goes up as the square of the number of atoms.
In order to more efficiently calculate these interactions, we have used a method known as Particle
Mesh Ewald (PME) to model the electrostatic particle interactions. Specifically, our goal has been
to develop a way of modeling biological molecules2 in a realistic environment, that is to say, one
in which the molecule is surrounded by water molecules. PME, an improvement over the Ewald
method [7], makes it possible to compute these interactions more quickly and thus permits the
solution of large problems that would otherwise be inaccessible to modern machines in a reasonable
timescale.

1.1 Biology Motivation

Myosin proteins are responsible for all muscle movement. Muscle cells contain parallel arrays of
actin microfilaments and myosin proteins [5]. The myosin proteins have a lever arm with a pair
of catalytic heads extending out towards a parallel actin filament. By hydrolyzing a molecule of
ATP, the myosin arm binds to the actin filament and then rotates through an angle, in a motion
similar to an oar stroke, pulling the actin filament by around 10 nm. After each pull, the myosin
arm detaches from the actin filament so that it does not interfere with the pull of the other myosin
proteins and then recocks for another stroke. The combination of small pulls by myosin arms along
the length of the cell moves the actin and myosin filaments parallel to each other, contracting the
muscle fiber. This contraction is responsible for all macroscopic motion of animals [20]. Kinesin
proteins are the transportation system for the interior of a cell. They move a variety of cargos
along microtubules. These cargos include organelles, proteins for secretion, RNA, and the mitotic
spindle during mitosis. During cellular mitosis, Dynein proteins move chromosomes [12]. Dynein
proteins are also responsible for the motion of cilia and flagella [5]. The exact method by which
proteins produce motion is not well understood, but some theories have been proposed. It is
known that all of the proteins go through a catalytic cycle involving the breakdown of ATP. The
main components of this cycle involve: the protein binding to a molecule of ATP, binding to an
actin filament or microtubule, splitting the ATP into an adenosine diphosphate molecule and an
inorganic phosphate molecule, moving some portion of the protein through a distance, releasing the

1Changes in the shape of a protein, i.e. motion
2Molecules used by living organisms; generally containing carbon
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two product molecules, and releasing the bond to the structural fiber. However, not all proteins
proceed through this cycle in the same order [20]. The most prevalent theory holds that the cycle
of ATP binding and hydrolysis create strain in the protein that produces motion when it is relieved.
The strain appears to be produced in a spring-like coiled segment called an alpha helix. A lever
arm called the neck linker amplifies this strain into the several nanometer motion of the protein
[8]. An array of protein segments called switches is needed to coordinate binding and release of
the microtubule or filament with motion and the ATP cycle [20]. Because so little is known about
these proteins, they are an active topic of research. Understanding these proteins is important for
a variety of reasons. Chromosomal nondisjunction diseases, like Down syndrome, could be caused
by a malfunction in these proteins. Disruption of normal functioning of kinesin interferes with
development which causes defects, and interferes with cardiovascular and neurological function [20].
Because cancer cells divide frequently and kinesin and dynein proteins are necessary for cellular
division, drugs that interfered with kinesin or dynein function could be effective chemotherapeutic
agents [14]. Motor proteins are the smallest known mechanism for converting chemical energy
to mechanical work, and more efficient than most macroscale motors. Understanding how these
proteins work could also allow the production of biomemetic, nanoscale, motile robots. Far from a
simple process, the eight-nanometer step of a molecular motor protein relies on complex interactions
between hundreds of thousands of atoms, and helps provide organization for the great complexity
of life.

2 Specific problem

Our goal is to calculate the electrostatic forces on an atom so that we can simulate the manner
in which it will move. The electrostatic component of the force between charged particles (atoms)
is predicted by Coulomb’s law3. Using this law, it is possible to calculate the electrostatic force
at a given instant for all particles in the system. If this is done, it will produce an accurate
representation of the electrostatic forces, but unfortunately the computations involved render the
problem intractable for large systems. The goal of our work was to implement another way of
describing the electrostatic interactions in the system, which is still relatively accurate, but is
computationally feasible.

2.1 Solution Strategy

To model a solvated protein and avoid artifacts4 due to boundry condiations, we create a periodic
system by repeating a cell containing the system in which we are interested. This is useful because
all the charge interactions one might expect to encounter in a real biological system are represented,
but the setup is not so complex as to prohibit the computation.

2.2 Ewald

The first large problem we encounter in trying to calculate the electrostatic interactions is that to
find the value we would have to evaluate an infinite conditionally convergent sum. However, the
implementation of a periodic system also allows us to employ the Ewald method, which is specifically

3Coulomb’s law:
F =

q0q1

4πε0r2
(1)

relates the distance and charge of particles to the force they produce
4Behaviors introduced by simulation techniques that do not represent actual behavior
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designed for computing electrostatic interactions in periodic systems. Ewald summation allows us
to convert the conditionally convergent sum into two rapidly convergent sums [18] [10]. This splits
the sum into two portions, one of which is evaluated in real (direct) space and one in reciprocal
(Fourier) space5. The Ewald sum works by neutralizing long range forces with the introduction of a
Gaussian cloud of opposite charge around the particle in question.6 The portion of the charges not
masked by the Gaussians comprises the real space term. The Fourier space reciprocal space term
removes the contribution of the Gaussians, giving the same value as the original sum. Without
the Ewald method, it would be impossible to model the system because even forces far outside the
scope of the model would need to be included. The problem with The Ewald technique is that to
compute the reciprocal space term, we have to compute a Fourier transform, which is very slow
relative to the rest of our program, O(N 2)

2.3 PME

An operation called Fast Fourier Transform exists that can perform the required Fourier Transform
much faster, O(N logN). The problem is that a Fast Fourier Transform can only be preformed on
a function that is defined on a regularly spaced grid. Because the position of the charges in our cell
is not regular it is not initially feasable to use FFTs. Another technique, first proposed by Tom
Darden in [7], called Particle Mesh Ewald (PME) solves this problem. In this technique, Darden
used an interpolating function to assign pieces the charges to a regularly spaced mesh that could
be operated on by a Fast Fourier Transform. This adds additional overhead, but all of the new
operations are O(N) or less, the overall technique is O(N log(n)) which is a significant improvement
over the conventional Ewald. We used an adaptation of the PME method, suggested in [9]. This
uses an alternative interpolating function, called Cardinal B-Splines which are more accurate and
differentiable.

2.3.1 Cardinal B-Splines

The Cardinal B Spline is an interpolating function that we used to construct a charge mesh.
It works in a similar manner to Lagrange interpolating polynomials7, but has several important
advantages. The B-Spline does a more accurate interpolation, the charge mesh constructed using a
given order of B-Spline will more accurately represent the actual charge distribution than would an
interpolation made using Lagrange polynomials of the same order. The other advantage is that they
are differentiable. This is important because differentiating the potential function we construct will
allow one to easily calculate forces on a particle. Because the kinetics equations used in a molecular
dynamics simulation use forces not potentials, this is a very useful property. Lagrange polynomials
are only defined at specific points, and thus are not differentiable. The B-Spline is recursively
defined such that it is differentiable a number of times equal to the order of the function minus
one.

2.4 Equations

Particle mesh Ewald breaks the problem up into three terms, the direct space term(2), the reciprocal
space term (4), and the self-interaction term(5). The Ewald is the real term plus the reciprocal
term and minus the self interaction term.

5A domain in which it is easier to process periodic functins, for more discussion see [16]
6A Gaussian is a function similar to a bell curve, concentrated in the middle and falling off towards both extremes.
7The technique used for interpolation in the original PME method put forth in [7], they are only defined at certain

points and thus are not differentiable
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2.4.1 Ewald Equations

Φdir(r;α) =
∑

n

erfc(α|r + n|)
|r + n| (2)

erfc is the complementary error function:

erfc(x) =
2√
π

∫ ∞

x
e−t2dt (3)

(Computer implementation of erfc given in A.4.1: derfc.F)

Φrec(r;α) =
1

πV

∑

m6=0

exp(−π2m2/α2)

m2
exp(2πim · r) (4)

Uself =
α√
π

N
∑

i=1

q2
i (5)

In these equations, r represents a distance between two particles8, α is a constant which can
be adjusted to tweak the output values, and V is the volume of the unit cell we are looking at. As
mentioned under our description of the PME method, we replicate a particular region many times
to create a realistic biological system. This is the volume of one such region. m and n are just unit
vectors9 normal faces of the unit cell.
The self interaction term, see Appendix A.3: selfTerm.F for code, is a relatively simple function

that simply corrects for the fact that the other terms calculate a particle’s potential relative to its
own charge field, which must be accounted for.
The real space term, see Appendix A.4: realTerm.F for code, calculates short range interac-

tions. It makes use of a cutoff radius to limit computational cost. Because this term is short range,
the contributions to it from distant particles are very small, and neglecting them does not signifi-
cantly impair accuracy. Because computing the interactions from all particles would make this term
O(n2) which would make it the slowest portion of the code, the cutoff radius is very important.
To implement the cutoff radius we make use of integer rounding and division to rapidly compute
which particles are within a certain radius of a given particle, and the calculate their effects on the
given particle. Because the number of particles that must be calculated for each particle is O(1),
this allows the real space term to be O(n).

Ureciprocal =
1

2

N
∑

i=1

N
∑

j=1

qiqjΦrec(rj − ri;α) (6)

10.
In this qi and qj are charges of particles in the system and ri and rj refer to the respective

positions of these charges. α and n are the same as referrered to in the previous equation.

8It also has direction; it is a vector
9a vector whose magnitude is one

10Ewald equations adapted from [10]
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2.4.2 PME Equations

The PME method replaces the reciprocal term with another set of equations that are lower order.
The direct replacement for Ureciprocal is:

Ureciprocal '
∑

k∈C,k 6=0

exp (−π2k2/α2)

k2 k

∣

∣

∣

∣

∣

∣

2A−1
∑

k,l,m=0

Q
(p)
H exp (2πik · sklm)

∣

∣

∣

∣

∣

∣

2

(7)

11.
This depends on the charge mesh Q

(p)
H exp (2πik · sklm), and the sum over C indexes over all

mesh points. The mesh function is calculated calculated using 8

sklm =
N

∑

i=1

∑

n1,n2,n3

qiMn(uli − kl − nlKl)

Mn(u2i − k2 − n2K2)

Mn(u3i − k3 − n3K3)

where Mn is the Cardinal B-Spline of order n given by the recursive function:

F =Mn(u) =
u

n− 1Mn−1(u) +
n− u

n− 1Mn−1(u− 1) (8)

and, for any real number, u, M2(u) = 1− |u− 1| for 0 ≤ u ≤ 2 and M2(u) = 0 for u < 0 u > 2
12

The PME reciprocal space term, see Appendix A.5: recpTerm.F for code, calculates the recip-
rocal contribution using the Particle Mesh Ewald Method as discussed earlier in Section 2.3.

3 Background Research

Before we could begin writing our code for implementing equations 5 - 8 we had to learn several
things: the necessary biology in order to understand the context of what we were coding and
how our code would be used, the underlying mathematics and physics of electrostatic interactions,
the computational techniques that we were going to use (Ewald, PME, Cardinal B-Splines, erfc),
and the coding language, FORTRAN90. Because of the magnitude of this project we also had to
learn how to use Makefiles in order to make repeated compilation feasable. Also because we are
approaching the problem from the perspective of atomistic molecular dynamics rather than the
protein we did not need as much biology as if we were working at the scale of protein interactions.
The next step was to learn the mathematics necessary for the computation, especially Fourier
transforms. Fourier transforms are a method of transforming normal functions into a periodic
space, where the calculations we are trying to do over an infinitely repeating cell become much
easier. Because all of us had already been exposed to calculus we were able to jump to Fourier
transforms and the basics of Cardinal B-Spline. We also needed the basic physics that was required
for the problem, especially Newton’s Third Law and Couloumb’s Law. Next we had to learn the
necessary mathematical methods for the problem. First we learned about Ewald summations;
then we learned about a more complicated but computationally more efficient, for large numbers
of particles, method called Particle Mesh Ewald (PME) which breaks the charges up and assigns
pieces of them to points on a mesh. This allows the use of Fast Fourier Transforms, which require

11PME equation adapted from [7]
12Cardinal B-Spline equations adapted from [9].
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a regularly-spaced mesh. To assign the charges to the mesh we used an advanced mathematical
technique called Cardinal B-Splines. Learning these mathematical techniques in sufficient detail to
use them in our code proved to be the most difficult part of the project and most of the time before
we actually began coding was spent on learning and understanding them. We also had to learn
FORTRAN90 for this project, but did not have time for a full course so we did a warm up project
programming the complimentary error function (erfc), a simple integral that we need for the real
space term, see Equation 3 and code in Appendix A.4.1. Because of the relativly large amounts of
code we worked with, we found it useful to learn and use CVS (Concurrent Versions System) to
manage editing of files, and makefiles to handle compilation. To confirm the accuracy of our code
for calculating several of the functions, we also learned Matlab which we used to produce graphs
and run numerical checks. We also had to learn how to interface with the FFTW library, [11] was
very helpful in this regard.

4 Results

4.1 Complementary Error Function

We have written code that computes the complementary error function (erfc) accurately to the
limits of a double precision real variable. The error function is an integral that cannot be solved
analytically, see equation 3, for all of the cases we need, so we have used a rational Chebyshev
expansion13 to rapidly approximate the erfc to the required accuracy. Our mentor has code that
computed the error function, but it has several problems, one of them fairly severe. The first
problem was that her code was not as accurate as is needed. The second, more troublesome problem
was that her program that used the error function gave different results when ran on IBM AIX and
Linux machines. To correct this we found and wrote several functions to approximate the error
function and tested them on both machines. Eventually we found that the we were encountering a
namespace conflict, the IBM complier had an intrinsic function to evaluate error functions and it
was calling that function automatically. We then ran comparisons of the outputs of five different
error function implementations: our mentor’s original code, our corrected version of that code, the
intrinsic function in the IBM xlf90 compiler, code the naval surface warfare group make available,
and a function we wrote. Our function, the IBM function, and the naval surface warfare codes all
gave correct results out to the limit of accuracy we compared. We decided to use the naval surface
warfare code (code in Appendix A.4.1) because the IBM code was only usable on that compiler,
and we assume that their code has been more completely checked than ours. We also have reason
to believe that the naval surface warfare code may be more accurate than our code. They stated
that it was accurate to 14 decimal places [23], while we are only sure of ours to 12 decimal places.

4.2 Cardinal B-Splines

We have also written code that computes Cardinal B splines of order two through six, see Equation
8. Figure 2 demonstrates that the Cardinal B splines our code generates are symmetric about their
center, as stated in [9]. We also checked, using Matlab, that they obey the sum property they are
supposed to, namely, the sum of all integer values of the spline function is one. To confirm that our
function calculated the spline properly, we made use of a number of mathematical properties of the
spline function, as given in [9]. The most important ones are symmetry, limited range where the
function is nonzero, and the fact that the sum of the function evaluated for all integers is one. The
first two properties are readily evident from 2, made in Matlab. We originally created this graph as

13A series of precalculated terms that can be used to approximate a function
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Figure 1: Output of derfc.F for 1 ≤ x ≤ 10

a debugging tool. The spline function was not giving correct results, so this graph allowed us to see
exactly where the function was incorrect. The varying asymmetries in the graphs of the different
order functions pointed us directly to where the errors were in the code. Higher order splines have
non zero values for a larger domain, allowing them to use more values in interpolation, though
obviously at the cost of more computational time. We confirmed the sum property using output
from our code and numerical tools in matlab. This property is important because we multiply the
Cardinal B-Spline value by the charge of a particle and then make use of its values at integer valued
mesh points. This sum property ensures that the charge field will not have its magnitude distorted
by interpolation.

4.3 Computing Ewald Energy

Our most significant accomplishment has been writing a subroutine that calculates the Coulombic
potential energy of a lattice of atoms using the Particle Mesh Ewald technique. As discussed earlier,
this consists of three terms that add together to give the total electrostatic energy. Our code for the
functions is in Appendices selfTerm.F, realTerm.F and recpTerm.F, computing, respectively, the
self interaction correction, the real space interactions, and the reciprocal space interactions. The
real space term uses the erfc approximation function to perform the most difficult portion of the
math, and a cutoff radius to reduce the computation to O(N). The reciprocal space term uses the
Cardinal B-Spline functions to construct a discrete mesh that approximates the charge distribution
of the particle lattice. A series of loops and if statements allow us to interpolate a charge mesh
from the particles with varying degrees of accuracy. We have currently implemented interpolation
for Cardinal B-Splines of order two through six. We then make use of fast Fourier transforms from
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the FFTW library [21] to perform the required transform to reciprocal space. Our code starts
with a file, lattice.dat (see Appendix B), that describes the geometry of a system of particles. We
have succeeded in producing results that compare well to the conventional Ewald code we used for
comparison. As demonstrated in Appendices C.2 and C.1, our code produces results that agree
with the standard, Conventional Ewald, to within three significant figures. We hope by the final
presentation to test our code on more and larger lattices and run timing studies comparing our
code to the conventional Ewald code.

4.4 Tools Used

We wrote our program in Fortran 90; used the Portland Group high performance pgf90 compiler to
compile our code, and makfiles to handle compilation. We made use of Concurrent Versions System
(CVS) to manage editing between group members. We used the FFTW library for Fast Fourier
transforms, and used erfc code from NERSC [23]. We wrote this report using the LATEXDocument
Preparation System.

5 Conclusions

We were able to calculate the complimentary error function, Cardinal B Splines, a charge mesh, the
self-interaction and real space Ewald terms, and, using FFTW the library, compute the reciprocal
space term. We have combined all these functions into an overreaching Particle Mesh Ewald
Code that can be used to compute long-range interactions for a molecular dynamics simulation.
The overall code adds the real and reciprocal space terms and subtracts the self-interaction term,
yeilding the Coulombic potential of the lattice. We are currently working with a lattice of 32 atoms
with varying charges, but our code is equally capable of addressing the thousands of atoms needed
for large biomolecules and their systems. Because our algorithm is O(n log n) overall, it will run
significantly faster for large numbers of particles than the conventional Ewald code our mentor is
currently using. This should improve the feasibility of simulating biological systems with very large
numbers of particles. The logical next step would be to combine our code with a subroutine that
calculates short range quantum mechanical interactions to run a molecular dynamics simulation.
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A Appendix A: Code

A.1 Main Program

c **********************************************************************

c PME.F

c **********************************************************************

c

c ProTeam’s Particle Mesh Ewald (PME) code.

c

c **********************************************************************

program PME

use global_parameters

use scalars

use serial_arrays

use pmeVar

implicit none

c define constants

pi = two*asin(one)

rtPi = sqrt(pi)

c hardware whoami, whomai is used in parallel code, but at the present

c we our running our code on a serial machine

whoami = 0

alpha = two

maxAtoms = 100

numt = 20

maxt = 30

allocate( numa(0:maxt) )

allocate( itype(maxAtoms) )

allocate( iatnum(maxAtoms) )

allocate( atom(3,maxAtoms) )

allocate( qatom(maxAtoms) )

call ReadInput

c Now that we know meshsize, allocate Qmesh

allocate( Qmesh(0:meshSize,0:meshSize,0:meshSize) )

call SetupFFT ! move outside timesteps in real MD simulation
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call CalcPME

print *, "coulombic potential = ", eCouloumb

stop

end program PME

c **********************************************************************

subroutine CalcPME

c **********************************************************************

use global_parameters

use scalars

use serial_arrays

use pmeVar

implicit none

call CalcReal

call CalcRecp

call CalcSi

eCouloumb = realTerm + recpTerm + selfTerm

return

end

c------------------------------------------------------------------------------

subroutine SetupFFT

c setup for 3D complex-to-complex FFT.

c------------------------------------------------------------------------------

c

use scalars

use serial_arrays

use pmeVar

implicit none

include ’fftw_f77.i’

call fftw3d_f77_create_plan(meshForward,meshSize,meshSize,

. meshSize,FFTW_FORWARD,FFTW_MEASURE + FFTW_IN_PLACE)

call fftw3d_f77_create_plan(meshBackward,meshSize,meshSize,

. meshSize,FFTW_BACKWARD,FFTW_MEASURE + FFTW_IN_PLACE)

return

end
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A.2 Read Input

c **********************************************************************

c ReadInput.F

c **********************************************************************

c ... adaptation of ReadLattice from Vernet

c **********************************************************************

subroutine ReadInput

use global_parameters

use scalars

use serial_arrays

use pmeVar

implicit none

integer, dimension(48) :: itext

integer meshExp,sum

integer itemp, isum, ir, ia, itrap

character*11 fn

real scaleFactor

itrap = 0

c hardwire filename

fn = ’lattice.dat’

c ... initialize arrays

a1 = zero

a2 = zero

a3 = zero

b1 = zero

b2 = zero

b3 = zero

iatnum = 0

qatom = zero

atom = zero

numa = 0

itype = 0

if (whoami .eq. 0) then

open(5,file=fn,status=’old’)

read(5,’(48a1)’) itext

c get real box length (RboxL), box length is assumed to be 1 in the code

c but this will allow numbers to be converted to actual length by

c by multiplying by this number
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read(5,’(f16.10)’) RboxL

print *, "Box Length = ",RBoxL

c Read rcut

read(5,’(f16.10)’) rcut

print *, "cutoff radius = ",rcut

c Read mesh density, convert to a power of two

read(5,’(i2)’) meshExp

print *, ’mesh Exp =’, meshExp

meshSize = 2**meshExp

print *, ’mesh size = ’, meshSize

c Read alpha

read(5,’f15.10’) alpha

print *, "alpha = ",alpha

c Read p, the order of the spline

read(5,’i2’) p

print *, ’p ’, p

c ... read direct (a1, a2, and a3) and reciprocal (b1, b2, and b3) lattice

c basis vectors, and total number of atoms (numa(0)).

c get vectors defining suit direct and recpriprocal cells

read(5,’(3f17.10)’)

& (a1(ir),ir=1,3), (a2(ir),ir=1,3), (a3(ir),ir=1,3),

& (b1(ir),ir=1,3), (b2(ir),ir=1,3), (b3(ir),ir=1,3)

scaleFactor = one/a1(1)

read(5,’(i4)’) numa(0)

print *, "number of atoms = ",numa(0)

if (numa(0) .gt. maxAtoms) then

write(6,’(/,’’==> Error:: numa(0) exceeds maxAtoms’’)’)

write(6,’(4x,’’numa(0) = ’’,i3)’) numa(0)

write(6,’(4x,’’maxAtoms = ’’,i3)’) maxAtoms

itrap = 1

endif

endif

c ... each atomic position line in lattice.dat is of the following form

c (example line from Al Sigma= 3 grain boundary file)

c

c numt at # at. chg. x y z

c 1 13 3.00 1.6662812455 8.6737885974 7.9316165296

c

c numt is a label shared by atoms of the same type. The value of this

c label is stored in itype(atom #) and the total number of atoms of a
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c given type is stored in numa(<type label>). The total number

c of atoms overall (of any type) is stored in numa0).

if (whoami .eq. 0) then

qtot = zero

itemp = 1

isum = 0

do ia = 1,numa(0)

read(5,’(i4,i6,f10.2,3f17.10)’)

& numt, iatnum(ia), qatom(ia), (atom(ir,ia),ir=1,3)

do ir =1,3

atom(ir,ia) = atom(ir,ia)*scaleFactor

end do

! ir (1,2,3) is the (x, y, z) coordinates of an atom, ia is the atom number

c ... the next ’if’ block assumes that all atoms of a given type

c are grouped together in the input file. First atoms of type

c ’1’ are processed, then type ’2’, etc. isum is re-initialized

c when the next type is encountered to re-start number-of-atoms-of-

c this-type counter.

if (numt .gt. itemp) then

itemp = numt

isum = 0

end if

isum = isum + 1

numa(itemp) = isum

qtot = qtot + qatom(ia)

itype(ia) = numt

end do

close(5)

do ia = 1,numa(0)

if (itype(ia) .gt. maxt) then

write(6,’(/,’’==> Error:: numt exceeds maxt’’)’)

write(6,’(4x,’’numt = ’’,i3)’) itype(ia)

write(6,’(4x,’’maxt = ’’,i3)’) maxt

itrap = 1

endif

enddo

sum = 0

do ia = 1,numa(0)

sum = sum + qatom(ia)

end do

if (sum .ne. 0) then

print *, "error lattice has net charge"
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stop

end if

endif

c ... given vectors a1, a2, a3, volume= a1 dotted into (a2 x a3)

unitcv = abs( a1(1)*(a2(2)*a3(3) - a2(3)*a3(2))

& + a1(2)*(a2(3)*a3(1) - a2(1)*a3(3))

& + a1(3)*(a2(1)*a3(2) - a2(2)*a3(1)) )

if(whoami.eq.0) then

write(6,’(/,’’ Lattice input: ’’,48a1)’) itext

write(6,’(/,2x,’’ primitive lattice vectors:’’)’)

write(6,’(/,4x,’’ a1:’’,3f17.10)’) (a1(ir),ir=1,3)

write(6,’(4x,’’ a2:’’,3f17.10)’) (a2(ir),ir=1,3)

write(6,’(4x,’’ a3:’’,3f17.10)’) (a3(ir),ir=1,3)

write(6,’(/,4x,’’ b1:’’,3f17.10)’) (b1(ir),ir=1,3)

write(6,’(4x,’’ b2:’’,3f17.10)’) (b2(ir),ir=1,3)

write(6,’(4x,’’ b3:’’,3f17.10)’) (b3(ir),ir=1,3)

write(6,’(/,2x,’’ unit cell volume:’’,f17.10)’) unitcv

write(6,’(/,2x,’’ atoms:’’)’)

write(6,’(/,5x,’’number’’,5x,’’atomic number’’,23x,’’position’’)

&’)

do ia = 1,numa(0), 1

write(6,’(/,6x,i3,11x,i3,5x,3f17.10)’)

& ia, iatnum(ia), (atom(ir,ia),ir=1,3)

end do

endif

if(itrap .eq. 1) then

print *, ’error’

stop

end if

c put in error handler to terminate program

return

end
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A.3 Self Interaction Term

c **********************************************************************

c selfTerm.F

c **********************************************************************

subroutine CalcSi

c **********************************************************************

use global_parameters

use serial_arrays

use scalars

use pmeVar

implicit none

integer j

pi = two*asin(one)

rtPi = sqrt(pi) !init variables

selfTerm = 0

do j = 1, numa(0), 1

selfTerm = selfTerm + qatom(j)*qatom(j)

end do

selfTerm = -1*alpha/rtPi * selfTerm

return

end
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A.4 Real Space Term

c **********************************************************************

c selfTerm.F

c **********************************************************************

subroutine CalcReal

c **********************************************************************

use global_parameters

use scalars

use serial_arrays

use pmeVar

implicit none

integer i, j, k

real dX, dY, dZ, dsq, d

real derfc

pi = two*asin(one)

rtPi = sqrt(pi)

rcutsq = rcut*rcut

realTerm = zero

c calculate real sum using only terms within rcut

do i = 1, numa(0)

do j = 0, numa(0)

if (i .ne. j) then

c nested ifs are used to reduce the array iterations that must be computed

c if the difference in x, y, or z coordinate alone is greater than rcut

c minimum image is handled peacewise as each term is evaluated to be less

c than rcut

dX = atom(1, i) - atom(1, j)

dX = dX - anint(dX)

if (abs(dX) < rcut) then

dY = atom(2, i) - atom(2, j)

dY = dY - anint(dY)

if (abs(dY) < rcut) then

dZ = atom(3, i) - atom(3, j)

dZ = dZ - anint(dZ)

if (abs(dZ) < rcut) then

dsq = dX*dX + dY*dY + dZ*dZ

if (dsq < rcutsq) then

d = sqrt(dsq)

if (d .ne. 0) then

realTerm = realTerm + derfc(alpha*d)/d

end if
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endif

endif

endif

endif

end if

end do

end do

return

end
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A.4.1 Complementary Error Function

c **********************************************************************

c derfc.F used with permission from Naval Surface Warfare Group

!******************************************************************************

function derfc (x)

!

!******************************************************************************

!

!! DERFC: the complementary error function

!

double precision derfc

double precision an, ax, c, eps, rpinv, t, x, w

double precision a(21), b(44), e(44)

double precision dpmpar, dcsevl

!

! rpinv = 1/sqrt(pi)

!

data rpinv /.56418958354775628694807945156077259d0/

!

data a(1) / .1283791670955125738961589031215d+00/, &

a(2) /-.3761263890318375246320529677070d+00/, &

a(3) / .1128379167095512573896158902931d+00/, &

a(4) /-.2686617064513125175943235372542d-01/, &

a(5) / .5223977625442187842111812447877d-02/, &

a(6) /-.8548327023450852832540164081187d-03/, &

a(7) / .1205533298178966425020717182498d-03/, &

a(8) /-.1492565035840625090430728526820d-04/, &

a(9) / .1646211436588924261080723578109d-05/, &

a(10) /-.1636584469123468757408968429674d-06/

data a(11) / .1480719281587021715400818627811d-07/, &

a(12) /-.1229055530145120140800510155331d-08/, &

a(13) / .9422759058437197017313055084212d-10/, &

a(14) /-.6711366740969385085896257227159d-11/, &

a(15) / .4463222608295664017461758843550d-12/, &

a(16) /-.2783497395542995487275065856998d-13/, &

a(17) / .1634095572365337143933023780777d-14/, &

a(18) /-.9052845786901123985710019387938d-16/, &

a(19) / .4708274559689744439341671426731d-17/, &

a(20) /-.2187159356685015949749948252160d-18/, &

a(21) / .7043407712019701609635599701333d-20/

!

data b(1) / .610143081923200417926465815756d+00/, &

b(2) /-.434841272712577471828182820888d+00/, &

b(3) / .176351193643605501125840298123d+00/, &

b(4) /-.607107956092494148600512158250d-01/, &

b(5) / .177120689956941144861471411910d-01/, &

b(6) /-.432111938556729381859986496800d-02/, &
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b(7) / .854216676887098678819832055000d-03/, &

b(8) /-.127155090609162742628893940000d-03/, &

b(9) / .112481672436711894688470720000d-04/, &

b(10) / .313063885421820972630152000000d-06/

data b(11) /-.270988068537762022009086000000d-06/, &

b(12) / .307376227014076884409590000000d-07/, &

b(13) / .251562038481762293731400000000d-08/, &

b(14) /-.102892992132031912759000000000d-08/, &

b(15) / .299440521199499393630000000000d-10/, &

b(16) / .260517896872669362900000000000d-10/, &

b(17) /-.263483992417196938600000000000d-11/, &

b(18) /-.643404509890636443000000000000d-12/, &

b(19) / .112457401801663447000000000000d-12/, &

b(20) / .172815333899860980000000000000d-13/

data b(21) /-.426410169494237500000000000000d-14/, &

b(22) /-.545371977880191000000000000000d-15/, &

b(23) / .158697607761671000000000000000d-15/, &

b(24) / .208998378443340000000000000000d-16/, &

b(25) /-.590052686940900000000000000000d-17/, &

b(26) /-.941893387554000000000000000000d-18/, &

b(27) / .214977356470000000000000000000d-18/, &

b(28) / .466609850080000000000000000000d-19/, &

b(29) /-.724301186200000000000000000000d-20/, &

b(30) /-.238796682400000000000000000000d-20/

data b(31) / .191177535000000000000000000000d-21/, &

b(32) / .120482568000000000000000000000d-21/, &

b(33) /-.672377000000000000000000000000d-24/, &

b(34) /-.574799700000000000000000000000d-23/, &

b(35) /-.428493000000000000000000000000d-24/, &

b(36) / .244856000000000000000000000000d-24/, &

b(37) / .437930000000000000000000000000d-25/, &

b(38) /-.815100000000000000000000000000d-26/, &

b(39) /-.308900000000000000000000000000d-26/, &

b(40) / .930000000000000000000000000000d-28/

data b(41) / .174000000000000000000000000000d-27/, &

b(42) / .160000000000000000000000000000d-28/, &

b(43) /-.800000000000000000000000000000d-29/, &

b(44) /-.200000000000000000000000000000d-29/

!

data e(1) / .107797785207238315116833591035d+01/, &

e(2) /-.265598904091486733721465009040d-01/, &

e(3) /-.148707314669809950960504633300d-02/, &

e(4) /-.138040145414143859607708920000d-03/, &

e(5) /-.112803033322874914985073660000d-04/, &

e(6) /-.117286984274372522405373900000d-05/, &

e(7) /-.103476150393304615537382000000d-06/, &

e(8) /-.118991140858924382544470000000d-07/, &

e(9) /-.101622254498949864047600000000d-08/, &
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e(10) /-.137895716146965692169000000000d-09/

data e(11) /-.936961303373730333500000000000d-11/, &

e(12) /-.191880958395952534900000000000d-11/, &

e(13) /-.375730172019937070000000000000d-13/, &

e(14) /-.370537260269833570000000000000d-13/, &

e(15) / .262756542349037100000000000000d-14/, &

e(16) /-.112132287643793300000000000000d-14/, &

e(17) / .184136028922538000000000000000d-15/, &

e(18) /-.491302565748860000000000000000d-16/, &

e(19) / .107044551673730000000000000000d-16/, &

e(20) /-.267189366240500000000000000000d-17/

data e(21) / .649326867976000000000000000000d-18/, &

e(22) /-.165399353183000000000000000000d-18/, &

e(23) / .426056266040000000000000000000d-19/, &

e(24) /-.112558407650000000000000000000d-19/, &

e(25) / .302561744800000000000000000000d-20/, &

e(26) /-.829042146000000000000000000000d-21/, &

e(27) / .231049558000000000000000000000d-21/, &

e(28) /-.654695110000000000000000000000d-22/, &

e(29) / .188423140000000000000000000000d-22/, &

e(30) /-.550434100000000000000000000000d-23/

data e(31) / .163095000000000000000000000000d-23/, &

e(32) /-.489860000000000000000000000000d-24/, &

e(33) / .149054000000000000000000000000d-24/, &

e(34) /-.459220000000000000000000000000d-25/, &

e(35) / .143180000000000000000000000000d-25/, &

e(36) /-.451600000000000000000000000000d-26/, &

e(37) / .144000000000000000000000000000d-26/, &

e(38) /-.464000000000000000000000000000d-27/, &

e(39) / .151000000000000000000000000000d-27/, &

e(40) /-.500000000000000000000000000000d-28/

data e(41) / .170000000000000000000000000000d-28/, &

e(42) /-.600000000000000000000000000000d-29/, &

e(43) / .200000000000000000000000000000d-29/, &

e(44) /-.100000000000000000000000000000d-29/

!

eps = epsilon ( eps )

!

! dabs(x) <= 1

!

ax = dabs(x)

if (ax > 1.d0) go to 20

t = x*x

w = a(21)

do 10 i = 1,20

k = 21 - i

w = t*w + a(k)

10 continue
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derfc = 0.5d0 + (0.5d0 - x*(1.d0 + w))

return

!

! 1 < dabs(x) < 2

!

20 if (ax >= 2.d0) go to 30

n = 44

if (eps >= 1.d-20) n = 30

t = (ax - 3.75d0)/(ax + 3.75d0)

derfc = dcsevl(t, b, n)

21 derfc = dexp(-x*x) * derfc

if (x < 0.d0) derfc = 2.d0 - derfc

return

!

! 2 < dabs(x) < 12

!

30 if (x < -9.d0) go to 60

if (x >= 12.d0) go to 40

n = 44

if (eps >= 1.d-20) n = 25

t = (1.d0/x)**2

w = (10.5d0*t - 1.d0)/(2.5d0*t + 1.d0)

derfc = dcsevl(w, e, n) / ax

go to 21

!

! x >= 12

!

40 if (x > 50.d0) go to 70

t = (1.d0/x)**2

an = -0.5d0

c = 0.5d0

w = 0.0d0

50 c = c + 1.d0

an = - c*an*t

w = w + an

if (dabs(an) > eps) go to 50

w = (-0.5d0 + w)*t + 1.d0

derfc = dexp(-x*x) * ((rpinv*w)/ax)

return

!

! limit value for large negative x

!

60 derfc = 2.d0

return

!

! limit value for large positive x

!

70 derfc = 0.d0
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return

end

function dcsevl (x, a, n)

!

!*******************************************************************************

!

!! DCSEVL: evaluate the n term chebyshev series a at x.

! only half of the first coefficient is used.

!

double precision dcsevl

double precision a(n),x,x2,s0,s1,s2

!

if (n > 1) go to 10

dcsevl = 0.5d0 * a(1)

return

!

10 x2 = x + x

s0 = a(n)

s1 = 0.d0

do 20 i = 2,n

s2 = s1

s1 = s0

k = n - i + 1

s0 = x2*s1 - s2 + a(k)

20 continue

dcsevl = 0.5d0 * (s0 - s2)

return

end
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A.5 Reciprocal Space Term

c **********************************************************************

c recpTerm.F

c **********************************************************************

subroutine CalcRecp

c **********************************************************************

use global_parameters

use scalars

use serial_arrays

use pmeVar

implicit none

integer, dimension(3) :: k

integer i1, i2, i3, ksq

real Qsq

pi = two*asin(one)

rtPi = sqrt(pi)

pisq = pi*pi

alphasq = alpha*alpha

recpTerm = zero

Call MeshInterp !use atom(),qatom() to calculate realQmesh()

![mesh=3d allocatable array]

Call meshFFTforward !transforms realQmesh() to recpQmesh(),

! includes FFTW setup?

do i1 = 1, meshSize

do i2 = 1, meshSize

do i3 = 1, meshSize

k(1) = i1

k(2) = i2

k(3) = i3

ksq = dot_product(k,k)

Qsq = dot_product(Qmesh(k), Qmesh(k))

recpTerm = recpTerm+exp(-pisq*ksq/alphasq)/(two*pi*ksq)*

& Qsq

end do

end do

end do

print *, "recp term = ",recpTerm

return

end
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c **********************************************************************

subroutine MeshInterp

c **********************************************************************

use global_parameters

use scalars

use serial_arrays

use pmeVar

implicit none

integer i,j,k,m,n,even, k1,k2,k3,nMP,MP

real sum1, spline

integer, dimension(:,:), allocatable :: nearestMesh

complex test

Qmesh = zero

allocate(nearestMesh(p,3))

pi = two*asin(one)

rtPi = sqrt(pi)

do i=1,numa(0)

do j = 1, 3

nMP = anint(atom(j,i)*meshSize)

nearestMesh(1,j) = nMP

if (nMP > meshSize) then

print *, "error mesh point is ",nMP

stop

end if

do k = 1, (p-1)/2

if (nMP+k > meshSize) then

nearestMesh(1+k,j) = nMP+k - meshSize

nearestMesh(1+p/2+k,j) = nMP-k

else

if (nMP-k < 0) then

nearestMesh(1+k,j) = nMP+k

nearestMesh(1+p/2+k,j) = nMP-k + meshSize

else

nearestMesh(1+k,j) = nMP+k

nearestMesh(1+p/2+k,j) = nMP-k

end if

end if

end do

even = p/2 -(p-1)/2

if (even .eq. 1) then

if (nMP>meshSize) then

MP = nMP-meshSize

else if (MP<0) then
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MP = nMP+meshSize

else

MP = nMP

end if

if (nMP>atom(j,i)) then

nearestMesh(p,j) = MP - k

else

nearestMesh(p,j) = MP + k

end if

end if

end do

do n=1,p

sum1 = zero

do m=1,3

sum1= sum1+qatom(i)*spline((atom(j,i)-

.real(nearestMesh(n,m))/real(MeshSize))*meshSize,p)

end do

k1 = nearestMesh(n,1)

k2 = nearestMesh(n,2)

k3 = nearestMesh(n,3)

Qmesh(k1,k2,k3) = Qmesh(k1,k2,k3)+cmplx(sum1,zero)

end do

end do

return

end

c **********************************************************************

subroutine meshFFTforward

c **********************************************************************

use global_parameters

use scalars

use pmeVar

use serial_arrays

implicit none

include ’fftw_f77.i’

scaleG = one/meshSize**3

call fftwnd_f77_one(meshForward,Qmesh,0)

Qmesh = Qmesh*scaleG

return
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A.5.1 Cardinal B-Spline

c **********************************************************************

c spline.F

c **********************************************************************

function spline(u,order)

c **********************************************************************

implicit none

real u, spline, M2,M3,M4,M5,M6

integer order

select case (order)

case (6)

spline = M6(u)

case (5)

spline = M5(u)

case (4)

spline = M4(u)

case (3)

spline = M3(u)

case (2)

spline = M2(u)

case default

print *, "spline not defined for order ",order

end select

return

end

c **********************************************************************

function M2(u)

c **********************************************************************

implicit none

integer, parameter :: one = 1.0d0

real u, M2, M3

M2 = 0

if (u>0) then

if (u<2) then

M2 = one - abs(u-one)

end if

end if

return

end

c **********************************************************************

function M3(u)

implicit none

integer, parameter :: one = 1.0d0

real u, M2, M3
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M3 = u/2.0d0 * M2(u) + (3.0d0-u)/2.0d0 * M2(u-1.0d0)

return

end

c **********************************************************************

function M4(u)

implicit none

integer, parameter :: one = 1.0d0

real u, M3, M4

M4 = u/3.0d0 * M3(u) + (4.0d0-u)/3.0d0 * M3(u-1.0d0)

return

end

c **********************************************************************

function M5(u)

implicit none

integer, parameter :: one = 1.0d0

real u, M4, M5

M5 = u/4.0d0 * M4(u) + (5.0d0-u)/4.0d0 * M4(u-one)

return

end

c **********************************************************************

function M6(u)

implicit none

integer, parameter :: one = 1.0d0

real u, M5, M6

M6 = u/5.0d0 * M5(u) + (6.0d0-u)/5.0d0 * M5(u-one)

return

end
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B Appendix B: Input Lattice

latttice.dat, a file containing a particle geometry

fcc copper expressed as SC with 32-point basis

.10000000D-9

.25

5

0.343D0

5

13.4808000000 .0000000000 .0000000000

.0000000000 13.4808000000 .0000000000

.0000000000 .0000000000 13.4808000000

.4660840089 .0000000000 .0000000000

.0000000000 .4660840089 .0000000000

.0000000000 .0000000000 .4660840089

32

1 29 3.00 .0000000000 .0000000000 .0000000000

1 29 -3.00 6.7404000000 .0000000000 .0000000000

1 29 3.00 .0000000000 6.7404000000 .0000000000

1 29 -3.00 .0000000000 .0000000000 6.7404000000

1 29 3.00 3.3702000000 3.3702000000 6.7404000000

1 29 -3.00 10.1106000000 3.3702000000 6.7404000000

1 29 3.00 3.3702000000 10.1106000000 6.7404000000

1 29 -3.00 10.1106000000 10.1106000000 6.7404000000

1 29 3.00 6.7404000000 6.7404000000 6.7404000000

1 29 -3.00 6.7404000000 3.3702000000 3.3702000000

1 29 3.00 6.7404000000 10.1106000000 3.3702000000

1 29 -3.00 3.3702000000 6.7404000000 3.3702000000

1 29 3.00 10.1106000000 6.7404000000 3.3702000000

1 29 -3.00 6.7404000000 3.3702000000 10.1106000000

1 29 3.00 6.7404000000 10.1106000000 10.1106000000

1 29 -3.00 3.3702000000 6.7404000000 10.1106000000

1 29 3.00 10.1106000000 6.7404000000 10.1106000000

1 29 -3.00 3.3702000000 3.3702000000 .0000000000

1 29 3.00 10.1106000000 3.3702000000 .0000000000

1 29 -3.00 3.3702000000 10.1106000000 .0000000000

1 29 3.00 10.1106000000 10.1106000000 .0000000000

1 29 -3.00 6.7404000000 6.7404000000 .0000000000

1 29 3.00 3.3702000000 .0000000000 3.3702000000

1 29 -3.00 10.1106000000 .0000000000 3.3702000000

1 29 3.00 3.3702000000 .0000000000 10.1106000000

1 29 -3.00 10.1106000000 .0000000000 10.1106000000

1 29 3.00 6.7404000000 .0000000000 6.7404000000

1 29 -3.00 .0000000000 3.3702000000 3.3702000000

1 29 3.00 .0000000000 10.1106000000 3.3702000000

1 29 -3.00 .0000000000 3.3702000000 10.1106000000

1 29 3.00 .0000000000 10.1106000000 10.1106000000

1 29 -3.00 .0000000000 6.7404000000 6.7404000000
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C Appendix C: Program Outputs

Coulombic potential at the end of PME, and Ewald energy totii are the end values of the programs,
and should be approximatly equal.

C.1 PME

Box Length = 1.0000000000000000E-010

cutoff radius = 0.2500000000000000

mesh Exp = 5

mesh size = 32

alpha = 0.3430000000000000

p 5

number of atoms = 32

Lattice input: fcc copper expressed as SC with 32-point basis

primitive lattice vectors:

a1: 13.4808000000 0.0000000000 0.0000000000

a2: 0.0000000000 13.4808000000 0.0000000000

a3: 0.0000000000 0.0000000000 13.4808000000

b1: 0.4660840089 0.0000000000 0.0000000000

b2: 0.0000000000 0.4660840089 0.0000000000

b3: 0.0000000000 0.0000000000 0.4660840089

unit cell volume: 2449.8923228421

atoms:

number atomic number position

1 29 0.0000000000 0.0000000000 0.0000000000

2 29 0.5000000000 0.0000000000 0.0000000000

3 29 0.0000000000 0.5000000000 0.0000000000

4 29 0.0000000000 0.0000000000 0.5000000000

5 29 0.2500000000 0.2500000000 0.5000000000

6 29 0.7500000000 0.2500000000 0.5000000000

7 29 0.2500000000 0.7500000000 0.5000000000

8 29 0.7500000000 0.7500000000 0.5000000000
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9 29 0.5000000000 0.5000000000 0.5000000000

10 29 0.5000000000 0.2500000000 0.2500000000

11 29 0.5000000000 0.7500000000 0.2500000000

12 29 0.2500000000 0.5000000000 0.2500000000

13 29 0.7500000000 0.5000000000 0.2500000000

14 29 0.5000000000 0.2500000000 0.7500000000

15 29 0.5000000000 0.7500000000 0.7500000000

16 29 0.2500000000 0.5000000000 0.7500000000

17 29 0.7500000000 0.5000000000 0.7500000000

18 29 0.2500000000 0.2500000000 0.0000000000

19 29 0.7500000000 0.2500000000 0.0000000000

20 29 0.2500000000 0.7500000000 0.0000000000

21 29 0.7500000000 0.7500000000 0.0000000000

22 29 0.5000000000 0.5000000000 0.0000000000

23 29 0.2500000000 0.0000000000 0.2500000000

24 29 0.7500000000 0.0000000000 0.2500000000

25 29 0.2500000000 0.0000000000 0.7500000000

26 29 0.7500000000 0.0000000000 0.7500000000

27 29 0.5000000000 0.0000000000 0.5000000000

28 29 0.0000000000 0.2500000000 0.2500000000

29 29 0.0000000000 0.7500000000 0.2500000000

30 29 0.0000000000 0.2500000000 0.7500000000

31 29 0.0000000000 0.7500000000 0.7500000000

32 29 0.0000000000 0.5000000000 0.5000000000

coulombic potential = -55.73290382118157
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C.2 Conventional Ewald

Lattice input: fcc copper expressed as SC with 32-point basis

primitive lattice vectors:

a1: 13.4808000000 0.0000000000 0.0000000000

a2: 0.0000000000 13.4808000000 0.0000000000

a3: 0.0000000000 0.0000000000 13.4808000000

b1: 0.4660840089 0.0000000000 0.0000000000

b2: 0.0000000000 0.4660840089 0.0000000000

b3: 0.0000000000 0.0000000000 0.4660840089

unit cell volume: 2449.8923228421

atoms:

number atomic number position

1 29 0.0000000000 0.0000000000 0.0000000000

2 29 6.7404000000 0.0000000000 0.0000000000

3 29 0.0000000000 6.7404000000 0.0000000000

4 29 0.0000000000 0.0000000000 6.7404000000

5 29 3.3702000000 3.3702000000 6.7404000000

6 29 10.1106000000 3.3702000000 6.7404000000

7 29 3.3702000000 10.1106000000 6.7404000000

8 29 10.1106000000 10.1106000000 6.7404000000

9 29 6.7404000000 6.7404000000 6.7404000000

10 29 6.7404000000 3.3702000000 3.3702000000

11 29 6.7404000000 10.1106000000 3.3702000000

12 29 3.3702000000 6.7404000000 3.3702000000

13 29 10.1106000000 6.7404000000 3.3702000000

14 29 6.7404000000 3.3702000000 10.1106000000
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15 29 6.7404000000 10.1106000000 10.1106000000

16 29 3.3702000000 6.7404000000 10.1106000000

17 29 10.1106000000 6.7404000000 10.1106000000

18 29 3.3702000000 3.3702000000 0.0000000000

19 29 10.1106000000 3.3702000000 0.0000000000

20 29 3.3702000000 10.1106000000 0.0000000000

21 29 10.1106000000 10.1106000000 0.0000000000

22 29 6.7404000000 6.7404000000 0.0000000000

23 29 3.3702000000 0.0000000000 3.3702000000

24 29 10.1106000000 0.0000000000 3.3702000000

25 29 3.3702000000 0.0000000000 10.1106000000

26 29 10.1106000000 0.0000000000 10.1106000000

27 29 6.7404000000 0.0000000000 6.7404000000

28 29 0.0000000000 3.3702000000 3.3702000000

29 29 0.0000000000 10.1106000000 3.3702000000

30 29 0.0000000000 3.3702000000 10.1106000000

31 29 0.0000000000 10.1106000000 10.1106000000

32 29 0.0000000000 6.7404000000 6.7404000000

nri1...3 = 3 3 3

ngi1...3 = 3 3 3

total charge = 0.000000000000000

nri1...3 = 3 3 3

ngi1...3 = 3 3 3

Ewald energy totii = -55.71182724900044
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