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 Executive Summary 
 Our project, Simulation of Planetary Accretion, endeavored to answer how and in what 
distributions extra-solar planets form, in order to aid astronomers in detecting such planets in real 
life in a time- and money- efficient manner. 
 Written with the C language, our core program models the interaction of particles in 
three-dimensional space, tracking their individual positions, velocities, masses, and when 
incident, collisions. A host of scripts and other programs allowed us to process and visualize the 
data (see Appendix A). The main mathematical model of the project involves Newton's laws of 
dynamics and gravitation, and is essentially based upon a large loop calculating the variables of 
the particles; the brunt of the difficulty in the program consists of ensuring initializations occur 
properly, and that the program runs as efficiently (quickly) as possible due to the high number of 
repetitions involved. Furthermore, the initial values must be carefully calibrated to faithfully 
reproduce natural conditions. Thus, the results of our work are initially determined by 
concurrence with observed and predicted conditions (1). 
 Owing to that the implementation of the program was achieved only late in the academic 
year, only small simulations were run, aimed at locating initial conditions of an accretion disk 
capable of producing stable distributions of particles (Results, Table 1). 
 
(1) Chambers, J.E. 2004. Planetary Accretion in the Inner Solar System. Earth and Planetary 
Science Letters, 223, 241-252, gives approximate timescales for the formation of planetesimals, 
planetary embryos, and planets. 
 
 
 
 
 
 
 Introduction 
 In recent years, as telescope and other potentially planet-detecting technologies have been 
improving in resolution, quantity, and cost-effectiveness, the search for extra-solar planets, 
particularly those similar to Earth that may harbor life, has been getting increased attention. In 
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order to aid in this search, we are creating a model for the formation of planets from solar 
accretion nebulae, clouds of dust left over from the formation of stars. 
 The accretion theory is the accepted model for the formation of planets and solar systems; 
it holds that particles, interacting chiefly under the force of their own gravity, collide, stick, and 
combine, first into mountain-sized planetesimals, later into Mars- and Moon- sized planetary 
embryos, and finally into terrestrial and Jovian (gaseous) planets. (1) Such models give 
astronomers important information as to where to search in the galaxy for Earth-like planets, 
greatly increasing the rate and decreasing the cost of detection.  
 
 Description/Methodology 
 The mathematical model for our program is based chiefly on Newton's laws of dynamics 
and gravitation; its principal function is to track the positions, velocities, masses, and attractions 
of a cloud of particles around a star, combining the particles when necessary. This is a simplified 
model of particle interactions as it does not take into account thermodynamic factors, an 
approach which treats the accretion disk as a type of fluid (1). Moreover, due to the nature of the 
methods used in the particle-particle n-body simulation, the amount of calculations increases 
quadratically with each new particle, limiting the number of particles that can be practically 
monitored.  
 The specific application of this program is to test the approximate outcomes of varied 
initial conditions such as the size of the star, velocity of angular rotation, and the total mass in 
the system; as such, this project aims to show the probabilities of planets forming given the 
known or inferred characteristics of a system. 
  
Model 
 The equation F =  G (mi mj) / r2 gives the force of one particle i acting on particle j, where 
m represents mass, r is the distance between two particles, and G is the gravitational constant 
(approx. 6.673 x 10-11.) Since F = ma, where a is acceleration, the equation reduces to  a =  G 
(mj) / r2 , which gives a way to determine the acceleration of a particle caused by another. The 
chief function in our program (gravitate()) involves a loop which summates the acceleration of 
one particle from all the others, then repeats the calculation for each particle. 
 Once the acceleration is calculated, kinematics gives the new position of the particles; the 
velocity of the particle is given by vf = vi + a *Δt. The subsequent position is given by xf = xi + v 
* Δt. The use of two separate formulas instead of the more direct xf = xi + v * Δt + 0.5a * Δt2  is 
called the leapfrog method; it allows for the tracking of velocity between timesteps and is 
therefore more accurate in the long run. 
 
 
 
 
 
Program Structure 
(the complete program is in Appendix B for reference) 
 
 Steps in the Program: 
 (Note: Declarations and function prototypes are omitted) 
 (Note: This description applies only to the Static branch of the program which does not 
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employ malloc) 
 1. input() is called and passed the maximum/initial number or particles. 
 2. input() reads the file input0.txt, recording the number of iterations, frequency between 
outputs, and the length of the timesteps. 
 3. input() reads the flags of the particles; a flag is the first number in each line containing 
information about the particle(s) to initialize and tells input() which values to expect and actions 
to take. 
 4. input() assigns the values found in input0.txt to the corresponding variables based on 
the flag, or creates other values using the input values as seeds/parameters. 
 5. output() writes the initial coordinates of the particles to ouput0.txt 
 6. gravitate(), the main method is called. It is set up with four nested loops (presented 
from the inside outwards)- 
  a. Loop k runs each particle that particle i is checked against--if index k is not 
equal to i, the acceleration of i due to k is calculated and added to a running total. 
  b. Loop j runs through the x, y, and z components of each particle; once loop k 
within it finishes  calculating the acceleration, j calculates the velocity and change in position of 
particle i based on the acceleration, old velocity, and timestep. Acceleration is then reset and the 
next component is calculated. 
  c. Loop i runs through each particle to allow the nested loops to calculate the 
accelerations, velocities, and position changes in each particle. 
  d. Loop c runs loop i and contents, then checks if c is a multiple of the frequency. 
If it is, it calls output() to write the positions of the particles. Afterwards, update() is called to 
change the positions of the particles and combine() is called to check if any particles have 
collided. 
 7. output() first checks if the iteration is the multiple of some factor. If it is (meaning the 
output file has reached a certain size), it begins a new file. It then outputs the iteration number 
(c), and the indecies and all coordinates of the particles onto a line. 
 8. update() adds the change in position (delta) of each component of each particle to the 
old position of each component of each particle; it is basically two nested loops and an 
assignment statement. 
 9. combine() contains a two-loop structure that checks each particle against each other 
particle (similar to loops i and k in gravitate()), and if the radii of the two particles (determined 
by the mass) are larger than the distance between the two particles (i and j), the position, 
velocity, and mass of the first particle (i) is updated, and the shift() is called with the index of the 
second particle (j). 
 10. shift() then copies the contents of each particle after j into the particle before j, with 
the net result of shifting each particle above j down one spot, getting rid of it. The counter for the 
number of particles is then decremented so the program skips all the remnant values of particles 
which should no longer be in the simulation. 
 
Selected Program Challenges 
 Though the mathematical model is simple in concept, several challenges arise in creating 
and manipulating the particles. The ideal model for the initialization of an accretion disk entails 
an even distribution of particles with velocities perpendicular to the position vector coming from 
the sun to the coordinates of the point. For simplicity, this discussion will focus on a sphere; in 
order to create a flattened disk, the z coordinates of all points are multiplied by some factor 0 < f 
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< 1.      
 However, choosing based on random distance and directions does not yield an even 
distribution. While a random number will evenly distribute points in one dimension, if the line is 
rotated around an endpoint, forming a circle, the outer sections (of arbitrary length) of the line 
sweep out larger areas than inner sections; thus, when projected onto a circle, a randomly 
generated line of points with equal point distribution per unit length will have more points per 
unit area at the center of the circle than at the outside. 
 Moreover, the sine and cosine functions do not sweep out equal sectors of a circle in 
equal increments of angle A. For example, the sine of 30 is .5. The sine of 60 is .833, and the 
sine of 90 is 1. Thus, the first 30 degrees contains (projecting to a line of length 1, since we are 
discussing one-dimensional components of a vector) .5 the length of the line, the second 30% 
contains .833-.5 = .333 of the line, and the final 30 degrees contains .267 of the line; thus, if an 
angles at random are chosen from 0 to 90 and their vertical (sine) components are projected on a 
line, and if these projections correspond to the y coordinates of a point, points will be more 
densely spaced towards the end of the line (where a larger change in angle corresponds to a 
smaller change in position).  
 Combined and projected into a sphere (with the addition of a second random angle), the 
random radius-direction method yields a cloud of particles concentrated towards the center and 
the poles of the sphere, in pronounced cases creating a bar-like structure within a thin sphere. 
While the radius bias is easy to overcome both logically and computationally, the angle bias 
requires the use of inverse trigonometric functions, taking a comparatively long time. Dr. Klypin 
helped in this regard, suggesting the program create coordinates directly by their components, 
generating x, y, and z positions from -.5 to .5, the net result being an evenly distributed cube. As 
the positions were generated, the program would check them against the volume of a sphere of 
radius .5; if the particle fell within the sphere it would be kept, while others would be discarded. 
This led to a roughly 2 to 1 discard rate, but was still faster than using weighted radius and 
directions. 
 The velocities were more tricky. According to basic vector algebra, two vectors A and B 
are perpendicular if Ax * Bx + Ay * By = 0 Thus, to make the velocity vector B perpendicular to 
position A, B must have x and y coordinates, respectively, 1/Ax and - 1/Ay. However, this yields 
two problems; when either component of A is less than 1, the B component begins growing at an 
exponential rate, yielding values orders of magnitude higher than the median velocity. When the 
average radius becomes very high, though, B dwindles to 0, requiring absurdly large Maximum 
Velocity factors with which to multiply them or else run simulations with essentially unmoving 
particles, a very inaccurate model.  
 After trying numerous math and computation-intensive methods to normalize the 
velocities as they were generated, the team settled on imposing a minimum position component 
of 1 (not a significant source of error for simulations spanning 11 orders of magnitude) and 
dividing each component of the velocity by the root of the sum of the squares of both 
components. This gave values of Bx and By proportional to their unadjusted values (necessary to 
keep the velocity perpendicular to the position), and expressed their magnitudes in terms of their 
relation to the other component. Afterwards, the adjusted velocity components were multiplied 
by (maxPosition - abs(componentPosition)) / (maxPosition), which causes the velocity to 
become larger the closer is to the center of the system (this is seen in planetary orbits; Mercury is 
fastest and Pluto is slowest). Finally, this value (between 0 and a little over 1) was multiplied by 
the maximum position and adjusted for direction. The adjustment of the velocity allowed for 
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easy and predictable control over the rotational velocity of the disk, allowing it to be simulated 
and affected directly. 
 Long before we had made the combination algorithm, we stumbled upon the major 
difficulty in executing our program: the nature of the computations required an exponential 
amount of calculations, meaning running twice as many particles increased the time required by 
roughly fourfold. In order to save as much time as possible, the combine() algorithm employed 
two fairly simple shortcuts. First, the ratio of the two particles being tested (mass[i] / mass[j]), 
which was necessary to determine the new coordinates, was pre-calculated and stored to save the 
time of dividing out a constant factor several times per combination operation.  
 The other trick was to relate mass to the radius of a particle by a constant (if two particles' 
physical radii are found to be larger than their separation, they have collided and are assumed to 
have combined). We assumed the particles were spherical and made of iron (the most abundant 
element in planetary cores), substituted  mass times density for volume, and solved for the radius 
of a sphere with given mass; in the end, we managed to pull out a constant related to the cubed 
root of density and 4/3π, approximating it to .032. Thereafter, radius was assumed to be .032 * 
mass^ (1/3), a much more practical method than passing a cubed root operation countless times, 
considering we did not track density in our program. 
 
 Results and Conclusions 
 The following images represent exploratory/verification executions of our program and 
are designed to give an introduction to the representation of our results and a visualization of the 

principles of our program. 
Fig 1 This is the most basic configuration of 
particles, with its chief application being to test the 
accuracy of modified algorithms; it includes two 
particles in the xy plane, one at (20,20) and the 
other at (-20,-20), both with masses 1010kg. They 
are both given velocities of .05 in opposing 
directions, and have periods of rotation (at which 
point they return to their original positions) of 
approximately 1170 iterations with a timestep of 1. 
 
 
 

Fig 2 This 
image 

represents the nine planets of the solar system 
orbiting the sun for 250 earth years; the 
configuration is not true-to-life (Pluto's orbit is 
actually highly elliptical), but holds the planets 
in ideally stable orbits based on their 
astronomical data. The purpose of this 
simulation is to test the accuracy and the 
efficiency (amount of calculations per unit 
time) of the program, as ten particles 
necessitates numerous computations per 
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particle even for a small number of iterations. 
 
 
 
Fig 3 This is a cloud of 1000 randomly generated 
particles in a sphere. The approximate even 
distribution of these particles is crucial to the 
integrity of the calculations (see Methodology for 
a more thorough discussion); in uneven 
distributions, biases of particles towards the center 
of the poles of the sphere are clearly visible. 
 
 
 
 
 
 Due to late implementations of the proper 
initialization of velocities, necessary for 

simulations attempting to replicate an accretion disk, we were only able to run very rough 
simulations over very short periods, aimed at selecting data paths which to follow in later 
simulations. The values in these simulations are highly arbitrary; the mass of the central star (in 
most cases 1030 kg) is near that of the sun. The maximum radius of the particles ranges from 
Venetian to asteroid belt-distances, with the understanding particles, subject to the gravitational 
pull of those on the outside, will experience an outward force to counter the centripetal net force 
needed to orbit the sun, causing them to move outwards (we encountered this in several of the 
simulations). The velocity of the particles was the most variable part of the simulation, ranging 
two orders of magnitude due to uncertainty in the behaviors of the particles. The masses sit 
between planetesimals (mountain-sized) and planetary embryos (moon- or Mars-sized), and were 
chosen in order to affect a more pronounced interaction between the particles and the sun. 
 The reason for the arbitrary nature of these values is twofold--in the immediate sense, 
larger mass values allow for the simulation mimic a more mature stage in the solar system, 
allowing for extrapolations both forwards and backwards in the simulation. In a more distant 
view, these values represent a baseline by which to compare other sets of parameters; further 
simulations of the program will be performed based on which sets of parameters appear to 
generate stable distributions of particles.  
 
 All of these simulations were run with 749 particles and a sun particle (manually 
initialized), making for a total of 750 particles. A total of 100000 iterations were performed at 60 
seconds each, representing approximately 69 days. The numbers remaining (the last two 
columns) are the number of non-sun particles left after those iterations.  
 
Table 1 
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Simulation Mass of Sun Radius Velocity Mass # after 35yrs # after 69 yrs
1 1e30 1e11 1e3 1e20 208 21
2 1e30 1e11 1e4 1e19 707 707
3 1e30 5e11 1e3 1e19 731 689
4 5e29 1e11 1e3 1e19 410 76
5 1e30 1e11 1e3 1e19 184 21
6 1e30 5e11 5e2 1e19 725 683
7 1e30 1e11 5e2 1e20 190 14

  
 The scope of this simulation, spanning days (Chambers (1) indicates a period of .1 to 1 
million years for planetesimals to form into planetary embryos, with planets only appearing 10-
100 million years after), is imperfect, especially given the possible stochastic variation in a 
random simulation involving only 750 members. However, based on the data, simulations 2, 3, 
and 6 merit further investigation, with over 90% of the members surviving the full period (note: 
on simulation 2 many of the radii are increasing, indicating velocity was too high to form a stable 
system). The simulations containing either greater radius or greater velocity appear to be more 
stable (despite a difference in velocity of a factor of 2, the results of 3 and 6 are for all practical 
purposes the same), indicating the accretion disk likely encompassed a larger radius and faster 
rotation. 
 The next step, after running several more simulations with characteristics similar to 2, 3, 
and 6, is to check whether or not the particles eventually combine with each other (heretofore 
they only interacted with the sun), meaning the conditions not only support the stable existence 
of particles but also foster their interactions. 
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 Appendix A 
 Guide to Planetary Accretion Project Files 
 
 Files: 
 
clean 
doit 
inpgrp.txt 
input0.txt 
main.c 
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packit 
plotit 
saveit 
workit 
writeit.c 
 
      During the course of running the project, the following files are created: 
 
graphitit 
grp 
output***.txt 
Particles 
writeit 
 
Project depends on: 
nedit 
gnuplot 4.0.0 (3.7 works with limited functionality) 
icc (gcc can be used also) 
 
File Documentation 
 
clean: 
 
 usage: ./clean 
 description: Removes output files between executions.  
     
doit: 
 
 usage: ./doit 
 description: Cleans the package, compiles main.c, runs the project, 
 creates a grapher script, and graphs the output, then removes the output 
 script. Use this to execute the project. If gcc is being used, open doit 
 and change "icc" to "gcc". 
 
inpgrp.txt: 
 
 description: This is the file containing the parameters for the graphing 
 scripts. Not having this file will cause a segmentation fault. 
 format: double pointsize, double xRange, double yRange, double zRange, int  
 numParticles 
  
input0.txt:  
 
 description: This file initializes the particle and environment 
 variables for Particles. Not having this file will cause a segmentation  
 fault.  
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 format: The first three values are: 
  int numIterations, int pointFrequency, double timeStep 
   
  Ye olde methodes by wheech particles are definede are of the 
  followeing fifve: 
   
  The methods are referred to as "flags"--each format below 
  contains the flag and its attributes; all values are double 
  unless otherwise noted, directions are in degrees: 
   
  Formats have been formatted for ease of reading; when creating 
  the file, values may be delimited by any combination of 
  spaces, tabs, and carriage returns, but no other characters. 
   
  Corresponds to MP: 
  1   xPosition, yPosition, zPosition, 
      xVelocity, yVelocity, zVelocity, 
      mass 
       
  Corresponds to MPD: 
  2   xPosition, yPosition, zPosition, 
      velocityMagnitude, vDirectionXY, vDirectionXZ, 
      magnitude 
       
  Corresponds to MPDA: 
  3   positionMagnitude, pDirectionXY, pDirectionXZ, 
      velocityMagnitude, vDirectionXY, vDirectionXZ 
      mass 
   
  Random initiation: 
  6 numParticles, maxRadius, minRadius, maxVelocity, maxMass, minMass 
 
  at present minRadius has no effect 
       
   
 
main.c: 
 
 description: The main program. See source (Appednix B) for additional   
 comments. When changing the number or particles in a simulation, both   
 MAXPARTICLES in main.c and the final value in inpgrp.txt must be equal.  
 Additionally, be sure the number of particles specified in input0.txt agrees with 
 these values. Not doing so could cause an incorrect number of particles 
 to be displayed or a run-time error. (Note: doit outputs the compiled 
 program as "Particles") 
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packit: 
 
 usage: ./packit <target directory> 
 description: Purges output files and executables from the package, tars 
 the package, and saves the tar to the target directory. 
  
plotit: 
 
 usage: ./plotit 
 description: complies writeit, creates the graphing script grp, then plots the data.  use this 
instead of doit to view an existing output file. 
  
saveit: 
 
 usage: ./saveit <name> <target directory> 
 description: Saves the input and output files to a tar archive and copies it to the  
 specified location. Use this if you do not want to lose your data upon running   
 packit. 
 
workit: 
 
 usage: ./workit 
 description: Compiles the graph-script maker and opens a nedit workspace 
 with main.c, output0.txt, input0.txt, and inpgrp.txt. This should be the 
 first script run upon successful un-tar-ing of the package. If gcc is  
 being used, open workit and change "icc" to "gcc". 
  
writeit.c: 
 
 description: The source for the graph-script maker program. Creates the 
 file run by doit to make gnuplot plot the correct number of points (this 
 was formerly done by hand but required a prohibitive about of time when 
 working with more than a few particles). Takes input from inpgrp.txt and 
 creates the file grp. 
  
Files created by project: 
 
graphitit: 
 
 usage: gnuplot graphitit 
 description: This file is created and removed by every call of grp, and 
 does not need to be accessed unless there is an error in executing 
 gnuplot. 
 
grp: 
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 usage: ./grp 
 description: This file is automatically created by writeit and is 
 removed by doit upon successful execution. If the user wants to replot a 
 set of data, ./writeit ; ./grp should be executed. 
  
output0.txt: 
 
 description: Contains the iteration number, point numbers, and point 
 coordinates (x,y,z format) outputted by Particles. This file is read by 
 gnuplot, so do not modify it. ouput0.txt is deleted and recreated every 
 time doit executes, so it should be renamed if the user wants to save 
 the data for later plotting or analysis.  
  
Particles 
 
 usage: ./Particles 
 description: The executable of main.c. Requires input0.txt to read data. 
 Particles is recompiled every time doit is called and deleted by packit 
 at the end of every session. If the user wishes to not recompile the 
 program in order to graph, use the following: ./Particles ; ./workit; 
 ./grp 
  
writeit 
 
 usage: ./writeit 
 description: The program that reads inpgrp.txt to create the graphing 
 script grp. It is compiled by workit at the beginning of each 
 worksession, this executable is deleted by packit at the end of every 
 session. 
 
  
 
 Appendix B 
 Source Code for main.c 
 
#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <time.h> 
#include <string.h> 
#define GRAVITY 6.673e-11 
#define SOFTENER 1e-10 
#define MAXPARTICLES 750 
#define pi 3.14159265358979323 
 
//random number between 0 and 1 
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double nRand(); 
 
//take input from keyboard or file 
void input(int quant); 
void inpMP(int i); 
void inpMPD(int i); 
void inpMPDA(int i); 
 
//working with arrays 
void shift(int index); 
 
//manipulating the particles 
void gravitate(); 
void combine(); 
void update(); 
void output(); 
 
 
//Make Particle 
 
//Position and velocity coordinates 
void mp(int pNum, 
   double xp,   double yp,   double zp, 
   double xv,   double yv,   double zv, 
   double pMass); 
 
//Position coordinates, velocity vector 
void mpd(int pNum, 
   double xp,   double yp,   double zp, 
   double mv,   double dxyv,   double dxzv, 
   double pMass); 
 
//Position and velocity vectors 
void mpda(int pNum, 
   double mp,   double dxyp,   double dxzp, 
   double mv,   double dxyv,   double dxzv, 
   double pMass); 
 
    FILE *out, *in; 
    double position[3][MAXPARTICLES], velocity[3][MAXPARTICLES]; 
    double mass[MAXPARTICLES]; 
    double delta[3][MAXPARTICLES]; //stores the change in position until 
all particles have been computed 
  double timeStep; 
  int numParticles = MAXPARTICLES, freq; 
  unsigned long int iterations; 
  int i, j, k;  
  unsigned long int c; 
  int segment; 
  char filename[13]; 
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int main (void) 
{ 
 //initialization of files and random seed 
  srand((unsigned)time(NULL)); 
  out = fopen("output0.txt","w"); 
  if ((out = fopen( "output0.txt","a")) == NULL) 
   { 
    printf("Can't open FILE\n"); 
   } 
 
  in = fopen("input0.txt","r"); 
   
  input(MAXPARTICLES); 
   
  segment = (int)(freq * ( 1.2e5 / numParticles)); 
  printf("%d\n", segment); 
  output(); 
 
  gravitate(); 
 
  return(0); 
 
} 
 //returns a double from (almost) 0 to 1 
 double nRand() 
  { 
   unsigned int randN; 
   double retRand; 
    randN = rand() % 65000 + 1; 
    retRand = randN / 65001.0; 
    return retRand; 
  } 
 
 /* 
  Note on Nomenclature: Variable names ending with p or P refer to 
position EXCEPT for numP, which refers to the Number of Particles to 
make under flag 5; v or V refer to velocity; and M to mass. Variable 
names of form dx** refer to the direction either on the xy or xz axes 
of either position or velocity. mv and mp refer to the magnitudes of 
velocity and position. 
 
  Note on coordinate systems: By default, I named the two-axis system 
xy. That is, when looking at a two-dimensional plot in gnuplot, one 
sees the x and y axis. However, adding a third z dimension causes an 
apparent error in nomenclature, as from the perspective of gnuplot, 
the z axis represents the height (that is, looking from above at a 
three-dimensional image will yield a projection along the x-y axis.) 
In traditional coordinate systems, x and z form the "horizontal 
plane", while this program uses x and y for said plane. Thus, in order 
to have a two-dimensional image, z calculations must be excluded 
because z is the last axis calculated. 
        z 
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        ! 
        !       Program's coordinate axes 
        !___x 
       / 
      / 
     y 
 
       y 
       ! 
       !        Traditional coordinate axes 
       !___x 
      / 
     / 
    z 
 
  */ 
 
 
 void input(int quant)  //reads particle data and initialization type 
from a file 
 { 
  double iterDummy;  /*although iterations is an int, reading it as a 
double allows exponential notation (1e6)*/ 
  fscanf(in, "%lf%d%lf", &iterDummy, &freq, &timeStep); 
  iterations = (unsigned long int)iterDummy; 
 
 
  double maxP, maxV, minP, minV, maxM, minM;  //these values are used on 
flag 6 
   for (i = 0; i < quant ; i++)   //keep reading values while 
maxParticles isn't reached. 
  { 
   int flag;  /*Tells which protocol to use. This must be the first 
value in every particle declaration from the input file.*/ 
 
   fscanf(in, "%d", &flag); 
   if (flag == 1)  //flags 1 - 3 manually initialize particles 
    { 
    inpMP(i); 
    } 
   if (flag == 2) 
    { 
    inpMPD(i); 
    } 
   if (flag == 3) 
    { 
    inpMPDA(i); 
    } 
     
   if (flag == 6) //randomly initialize x particles with the specified 
minimum and maximum ranges for position, velocity, and mass. 
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     //all velocities are counter-clockwise and perpendicular to the 
position vectors 
     //Minimum position and velocity are not used. 
    { 
     int numP, j=0; 
     fscanf(in, "%d%lf%lf%lf%lf%lf",&numP, &maxP, &minP, &maxV, &maxM, 
&minM); 
 
     double xSide, ySide, zSide, xVel, yVel, zVel, mass, xAdj, yAdj; 
     while(j < numP) 
      { 
          //create test values... 
     xSide = nRand() - .5; 
     ySide = nRand() - .5; 
     zSide = nRand() - .5; 
     
 
 
        //...if the particle is inside the sphere... 
     if (sqrt(xSide * xSide + ySide * ySide + zSide * zSide) <= .5 && 
sqrt(xSide * xSide + ySide * ySide + zSide * zSide) >= minP / (2 * maxP)) 
        //...make the particle... 
     { 
     xSide = (xSide * 2 * (maxP - 1)) + 1; 
      
     ySide = (ySide * 2 * (maxP - 1)) + 1; 
      
     zSide = (zSide * .2 * (maxP - 1)) + 1; 
      
      if (xSide >= 1 || xSide <= -1) 
      { 
       xVel = (1/ xSide); 
      } 
      else 
      { 
       if(xSide > 0) 
       {  
         xVel = 1; 
       } 
       else 
       { 
         xVel =-1; 
       } 
      } 
      if (ySide >= 1 || ySide <= -1) 
      { 
       yVel = (1/ ySide); 
      } 
      else 
      {  
       if(ySide > 0) 
       {  
         yVel = 1; 
       } 
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       else 
       { 
         yVel =-1; 
       } 
      } 
        
       
     zVel = 0; 
     /*this normalizes the xVel and yVel variables, expressing them as the 
ratio of their proportions to each other; gives an answer from about 0 to 1 
(for some reason it goes over 1 sometimes) The second line multiplies the 
velocities by their position from the center and the maximum velocity*/ 
     xAdj = xVel / sqrt(xVel * xVel + yVel * yVel); 
     xAdj *= ((maxP - abs(xSide)) / maxP) * maxV; 
      
     yAdj = yVel / sqrt(xVel * xVel + yVel * yVel); 
     yAdj *= ((maxP - abs(ySide)) / maxP) * maxV;  
      
     /*Adjusts directions so velocities are clockwise.*/ 
     if((int)(fabs(xSide)/xSide) + .1 == (int)(fabs(ySide)/ySide) + .1)  
//find the sign of the number 
     {  
      yAdj *= -1; 
     } 
     else 
     { 
      xAdj *= -1; 
     } 
      
      
     mass = (nRand() * (maxM - minM)) + minM; 
      
     mp(i + j, 
        xSide, ySide, zSide, 
        xAdj, yAdj, zVel, 
        mass); 
     j++;        //...and update the counter 
     } 
 
      } 
     i += j; 
      
    } 
  } 
} 
 
 void inpMP(int i) 
  { 
   char d; 
   double xp, yp, zp, xv, yv, zv, mass; 
   fscanf(in, "%lf%lf%lf%lf%lf%lf%lf", &xp, &yp, &zp, &xv, &yv, &zv, &mass); 
   mp(i, 
        xp, yp, zp, 
        xv, yv, zv, 
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        mass); 
 
  } 
 void inpMPD(int i) 
  { 
   double xp, yp, zp, mv, dxyv, dxzv, mass; 
   fscanf(in, "%lf%lf%lf%lf%lf%lf%lf", &xp, &yp, &zp, &mv, &dxyv,  &dxzv, 
&mass); 
   mpd(i, 
       xp, yp, zp, 
       mv, dxyv, dxzv, 
       mass); 
 
  } 
 
 void inpMPDA(int i) 
  { 
   double mp, dxyp, dxzp, mv, dxyv, dxzv, mass; 
   fscanf(in, "%lf%lf%lf%lf%lf%lf%lf", &mp, &dxyp, &dxzp, &mv, &dxyv, &dxzv, 
&mass); 
          mpda(i, 
      mp, dxyp, dxzp, 
      mv, dxyv, dxzv, 
      mass); 
  } 
 
 //Make Particle based on coordinates 
 void mp(int pNum, 
    double xp,   double yp,   double zp, 
    double xv,   double yv,   double zv, 
    double pMass) 
  { 
   position[0][pNum] = xp; 
   position[1][pNum] = yp; 
   position[2][pNum] = zp; 
   velocity[0][pNum] = xv; 
   velocity[1][pNum] = yv; 
   velocity[2][pNum] = zv; 
   mass[pNum] = pMass; 
 
  } 
 //Make Particle treating the velocity as a vector 
 void mpd(int pNum, 
    double xp,   double yp,   double zp, 
    double mv,   double dxyv,   double dxzv, 
    double pMass) 
  { 
   dxyv *= pi/180.0; 
   dxzv *= pi/180.0; 
   position[0][pNum] = xp; 
   position[1][pNum] = yp; 
   position[2][pNum] = zp; 
   velocity[0][pNum] = mv * cos(dxyv) * cos (dxzv); 
   velocity[1][pNum] = mv * cos(dxzv) * sin (dxyv); 
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   velocity[2][pNum] = mv * sin(dxzv); 
   mass[pNum] = pMass; 
  } 
 
 //Make Particle treating both position and velocity as vector 
quantities 
 void mpda(int pNum, 
    double mp,   double dxyp,   double dxzp, 
    double mv,   double dxyv,   double dxzv, 
    double pMass) 
  { 
   dxyp *= pi/180; 
   dxzp *= pi/180; 
   dxyv *= pi/180; 
   dxzv *= pi/180; 
   position[0][pNum] = mp * cos(dxyp) * cos (dxzp); 
   position[1][pNum] = mp * cos(dxzp) * sin (dxyp); 
   position[2][pNum] = mp * sin(dxzp); 
   velocity[0][pNum] = mv * cos(dxyv) * cos (dxzv); 
   velocity[1][pNum] = mv * cos(dxzv) * sin (dxyv); 
   velocity[2][pNum] = mv * sin(dxzv); 
   mass[pNum] = pMass; 
  } 
 
   
 /*  
  THIS IS NEEDED BY THE COMBINE ALGORITHM 
  Shifts the contents of all arrays back one at the given point and 
decrements numParticles to represent the combination of two particles 
 */ 
 void shift(int index) 
 { 
  int l, m; 
  for (l = index; l < numParticles - 1; l++) 
   { 
    mass[l] = mass[l+1]; 
    for(m = 0; m < 3; m++) 
     { 
      position[m][l] = position[m][l+1]; 
      velocity[m][l] = velocity[m][l+1]; 
     } 
    
   } 
   numParticles--; 
 
 } 
 /* 
  Calculates the force of gravity on each particle from all other 
particles, repeats for all particles, moves the particles, then checks 
to see if any have combined, and if so updates the arrays and 
numParticles (decreases the total number in the system.) Then outputs 
the the results if the current iteration divides evenly into the 
frequency of output. Repeats _iteration_ times. 
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  */ 
 void gravitate() 
 { 
 
  double acceleration = 0.0; 
  for(c = 0; c < iterations ; c++) 
   { 
  for(i = 0; i < numParticles; i++) //Affected particle 
  { 
   for(j = 0; j < 3; j++) //Directional component 2 = xy, 3=xyz 
   { 
    for(k = 0; k < numParticles; k++) //Acting particle 
    { 
     if(k != i) 
     { 
     acceleration += (mass[k] / pow(((position[0][k]-position[0][i]) * 
(position[0][k]-position[0][i]) + (position[1][k]-position[1][i]) * 
(position[1][k]-position[1][i]) + (position[2][k] - position[2][i]) * 
(position[2][k] - position[2][i]) + SOFTENER * SOFTENER), 3.0/2.0)) * 
(position[j][k]-position[j][i]); 
     } 
    } 
     velocity [j][i] += GRAVITY * acceleration * timeStep; 
     delta[j][i] = velocity[j][i] * timeStep; 
     acceleration = 0.0; 
      
   } 
 
 
  } 
 
  if(c %  freq == 0) 
   { 
   if( c % 2500 == 0) 
    { 
    printf("%2.4lf%%\n", (c / (double)iterations) * 100); 
    } 
   output(); 
   //tracker(); 
   } 
   update(); 
   combine(); 
 
   } 
 } 
 /* 
  Checks to see if any particles have collision coordinates, then 
  combines them, adjusting their positions, velocities, and masses 
  Called after update() in gravitate() 
 */ 
 void combine() 
 { 
  double ratio; 
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  for(i = 0; i < numParticles - 1; i++) 
   { 
    for(j = i+1; j < numParticles; j++) 
     { 
     if((.032 * (pow(mass[i], .3333333) + pow(mass[j], .3333333))) >= 
sqrt((position[0][j]-position[0][i]) * (position[0][j]-position[0][i]) + 
(position[1][j]-position[1][i]) * (position[1][j]-position[1][i]) + 
(position[2][j] - position[2][i]) * (position[2][j] - position[2][i])) && j 
!= i) 
      { 
              ratio = mass[i]/mass[j]; 
       position[0][i]= (ratio * position [0][j] + position[0][i]) / (1 + 
ratio); 
        
       position[1][i]= (ratio * position [1][j] + position[1][i]) / (1 + 
ratio); 
       position[2][i]= (ratio * position [2][j] + position[2][i]) / (1 + 
ratio); 
       velocity[0][i]= (mass[i] * velocity[0][i] + mass[j] * 
velocity[0][j])/(mass[i] + mass[j]); 
       velocity[1][i]= (mass[i] * velocity[1][i] + mass[j] * 
velocity[1][j])/(mass[i] + mass[j]); 
       velocity[2][i]= (mass[i] * velocity[2][i] + mass[j] * 
velocity[2][j])/(mass[i] + mass[j]); 
       //printf("Position[%d]= %5.5f %5.5f %5.5f\n", i, position[0][i], 
position[1][i], position[2][i]); 
       //printf("Velocity[%d]= %5.5f %5.5f %5.5f\n", i, velocity[0][i], 
velocity[1][i], velocity[2][i]); 
       printf("Combined %d (%f) with %d (%f) at iteration %d\n", i, mass[i], 
j, mass[j], c); 
       mass[i] += mass[j]; 
       shift(j); 
        
      } 
     } 
   } 
 } 
 /* 
   creates new positions for the particles at the end of every 
timestep 
 */ 
 void update() 
 { 
 
  for(i = 0; i< 3; i++) //components 
  { 
   for(j=0; j < numParticles ; j++) 
   { 
    position[i][j] += delta[i][j]; 
   } 
  } 
 } 
  
 /* 
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   writes every particle's position on a line in a file 
 */ 
 void output() 
 { 
   
  //make a new file if the old one gets too big 
  if(c % segment == 0) 
   { 
    fclose(out); 
    sprintf(filename, "output%d.txt", c / segment); 
    printf("%s\n" , filename); 
    out = fopen( filename,"w"); 
   } 
   
   fprintf(out, "%d\t", c); 
  for(i = 0 ; i < numParticles ; i++) 
  { 
   fprintf(out, "%d\t", i); 
    for(j = 0 ; j < 3 ; j++) //components 
    { 
     fprintf(out, "%.1f\t", position[j][i]); 
 
    } 
 
  } 
   fprintf(out, "\n"); //begins a new line 
 } 
 


