
  1 

Project N.G.P. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Team 52 
 

Jamal Osman 
Josh Rice 

Joey Helgeson



  2 

Table of Contents 
 

1. Executive Summary 

2. Introduction 

 a. Significance 

3. Procedure 

4. Results 

5. Conclusion 

6. Bibliography 

7. Appendices 

 a. Source Code 

 b. Screenshots 

 

 

 

 

 

 

 

 

 

 

 

 

 



  3 

Executive Summary 
 

In this project we are making a 3d game using the 
engine 3dgamestudio and C-script. This game will 
demonstrate newtonian physics and realistic gameplay. We 
hope to simulate the different factors of physics that are 
in real life. Also we will incorporate realistic movement 
in the sprites. We hope to progress throughout the year and 
make this a worthwhile project. 

 

Introduction 

The impressive capabilities of the latest generation 
of video game hardware have raised our expectations of not 
only how digital characters look, but also how they move. 
As a result, game developers are becoming increasingly 
interested in animation techniques to generate natural 
looking motion for the complex characters that populate the 
modern game worlds. These characters 
should be able to respond realistically to unpredictable 
user control and interact with their environments in a 
believable way, requirements that traditional hand 
animation and motion capture fail to adequately address. 
Developers are beginning to look at physics as a way to 
address some of the shortcomings of keyframed motion. Until 
recently, physics was considered an off-line process, but 
faster hardware and improved algorithms have helped change 
that perception. As a matter of fact, it is quite common 
these days for games to use real-time dynamics solvers for 
particles, cloth, soft and rigid bodies. 

 
Significance 

 
In this paper we will answer all these questions, but 

in order to keep this paper focused we must concentrate on 
the simulation of just a single type of object. The class 
of objects we will study are called a rigid bodies. Rigid 
meaning the objects cannot bend, compress or deform in any 
way. This paper explains rigid body kinematics and 
dynamics. Kinematics is the study of how an object moves in 
the absence of forces, while dynamics describes how an 
object reacts to them. Together kinematics and dynamics 
provide all the information you need to simulate the motion 
of an object. Along the way I will show you how to 
integrate vector quantities, handle rotations in three 



  4 

dimensions and display your object as it moves and spins 
around the world. 

 
Procedure 

 
As long as we only have single floating point values 

for position and velocity, our physics simulation will be 
limited to motion in a single dimension, and a point moving 
from side to side on the screen is pretty boring. If we 
want our simulation to move in three dimensions, it makes 
sense that we need to track its motion separately in each 
dimension: left and right, forward and back, up and down. 
If we apply the equations of motion to each dimension 
separately, then we can integrate each dimension in turn to 
find the motion of the object in three dimensions. 
 
Or we could just use vectors. 
 
Vectors are a mathematical type representing an array of 
numbers. In three dimensions, vectors have three components 
x, y and z. Each component corresponds to a dimension. In 
this project x is left and right, y is up and down, and z 
is forward and back.  
 
In C-script we will implement vectors using a struct as 
follows: 
 
    struct Vector 
    { 
         float x,y,z; 
    }; 
 
Addition of two vectors is defined as simply adding each 
component together, and multiplying a vector by a floating 
point number is the same as just multiplying each 
component. Lets add overloaded operators to the vector 
struct so that we can perform these operations in code as 
if vectors are a native type: 
 
    struct Vector 
    { 
         float x,y,z; 
 
         Vector operator+(const Vector &other) 
         { 
              Vector result; 
              result.x = x + other.x; 



  5 

              result.y = y + other.y; 
              result.z = z + other.z; 
              return result; 
         } 
 
         Vector operator*(float scalar) 
         { 
              Vector result; 
              result.x = x * scalar; 
              result.y = y * scalar; 
              result.z = z * scalar; 
              return result; 
         } 
    }; 
 
Now, instead of maintaining completely seperate equations 
of motion and integrating seperately for x, y and z, we 
will convert our position, velocity, acceleration and force 
to vector quantities, then integrate the vectors directly 
using the equations of motion: 
 
    F = ma                    (force equals mass times 
acceleration) 
    dv/dt = a               (the derivative of velocity is 
acceleration) 
    dx/dt = v                    (the derivative of 
position is velocity) 
 
Notice how F, a, v and x are written in bold. This is the 
convention used to distinguish vector quantities from 
scalar (single value) quantities such as mass m and time t. 
 
Now that we have the equations of motion in vector form, 
how do we integrate vector quantities? The answer is 
exactly the same as we integrated single values. This is 
because we added overloaded operators for adding two 
vectors together, and multiplying a vector by a scalar. 
This is all we need to be able to drop in vectors in place 
of floats and have everything just work, even with the 
complex RK4 integrator.  
 
For example, here is a simple Euler integration for vector 
position from velocity: 
 
    position = position + velocity*dt; 
 
Notice how the overloaded operators make it look exactly 



  6 

the same as an Euler integration for a single value. But 
what is it really doing? Lets take a look at how we would 
implement vector integration without the overloaded 
operators: 
 
    position.x = position.x + velocity.x * dt; 
    position.y = position.y + velocity.y * dt; 
    position.z = position.z + velocity.z * dt; 
 
Its exactly the same as if we integrated each component of 
the vector separately. This is the cool thing about 
vectors. Whether we integrate vectors directly, or 
integrate each component seperately, we are doing exactly 
the same thing.  
 
From now on every object will have its own mass in 
kilograms so the simulation needs be driven by forces 
instead. There are two ways we can do this. Firstly, we can 
divide force by mass to get acceleration as we are used to, 
then integrate this acceleration to get the velocity, and 
integrate velocity to get position. The second way is to 
integrate force directly to get momentum, then convert this 
momentum to velocity by dividing it by mass, and finally 
integrate velocity to get position. Remember that momentum 
is simply velocity multiplied by mass: 
 
    dp/dt = F               (the derivative of momentum is 
force) 
    v = p/m               (velocity equals momentum divided 
by mass) 
    dx/dt = v               (the derivative of position is 
velocity) 
 
Both methods work, but in my opinion the second way is 
better because it is consistent with the way that we must 
approach rotation. When we switch to the second technique, 
it adds a new level of complexity to our code. Each time 
that momentum changes we need to make sure that the 
velocity is recalculated by dividing momentum by mass. 
Doing this manually everywhere that momentum is changed 
would be error prone and a chore. So we now separate all 
our state quantities into primary, secondary and constant 
values, and add a method called 'recalculate' to the State 
struct which is responsible for updating all the secondary 
values from the primary ones: 
 
    struct State 



  7 

    { 
         // primary 
         Vector position; 
         Vector momentum; 
 
         // secondary 
         Vector velocity; 
 
         // constant 
         float mass; 
         float inverseMass; 
 
         void recalculate() 
         { 
              velocity = momentum * inverseMass; 
         } 
    }; 
 
    struct Derivative 
    { 
         Vector velocity; 
         Vector force; 
    }; 
 
If we make sure that recalculate is called whenever any of 
the primary values change, then our secondary values will 
always stay in sync. This is important because we need to 
use the secondary value velocity when integrating position, 
but we integrate momentum directly from force. This may 
seem like overkill just to handle converting momentum to 
velocity, but as our simulation becomes more complex we 
will have many more secondary values, so its important to 
design a system that scales well. 
 
Finally, a minor point. Notice how I store inverseMass 
(1.0/mass) as well as mass and multiply by the inverse of 
mass when converting momentum to velocity instead of 
dividing by mass directly. This is because floating point 
multiplication is significantly faster than division. It is 
good practice to do this whenever you can in your physics 
simulation. 

 
So far we have covered linear motion, that is, we can 
simulate an object so that it can move in 3D space and have 
forces applied to it, but it cannot rotate. The good news 
is that rotational equivalents to force, momentum, 
velocity, position and mass exist, and once we understand 



  8 

how they work, integration of rotational physics state can 
be performed using the RK4 integrator and our object will 
spin. 
 
So lets start off by talking about how an object rotates. 
The bodies that we are simulating are rigid meaning that 
they cannot deform. The key point to get out of this is 
that when moving freely, a rigid body will move with both a 
linear component (position, velocity, momentum etc.) which 
we have already covered, and a rotational component 
rotating about its center of mass. 
 
The center of mass of the object is the weighted average of 
all points making up the body by their mass. For objects of 
uniform density, the center of mass is always the geometric 
center of the object, for example the center of a sphere or 
a cube. 
 
So how do we represent how the object is rotating? If you 
think about it you'll realize that rotation can only ever 
be around a single axis at any time, so the first thing we 
need to know is what that axis is. We can represent this 
axis with a unit length vector. Next we need to know how 
fast the object is rotating about this axis in radians per 
second.  
 
If we know the center of mass of the object, the axis of 
rotation, and the speed of rotation then we have complete 
information about how the object is rotating. 
 
The standard way of representing rotation over time is by 
combining the axis and the speed of rotation into a single 
vector called angular velocity. This means that the length 
of the angular velocity vector is the speed of rotation in 
radians while the direction of the vector indicates the 
axis of rotation. For example, an angular velocity of 
(2Pi,0,0) indicates a rotation about the x axis doing one 
revolution per second.  
 
But what direction is this rotation in? In the example 
source code I use a right handed coordinate system which is 
standard when using OpenGL. To find the direction of 
rotation just take your right hand and point your thumb 
down the axis - your fingers will now curl in the direction 
of rotation. If your 3D engine uses a left handed 
coordinate system then just use your left hand instead. 
 



  9 

Why do we combine the axis and rate of rotation into a 
single vector? Doing so gives us a single vector quantity 
that is easy to manipulate just like velocity for linear 
motion. We can easily add and subtract changes to angular 
velocity to change how the object is rotating just like we 
can add and subtract from linear velocity. If we stuck with 
a unit length vector and scalar for rotation speed then it 
would be much more complicated to apply changes to angular 
velocity. 
 
But there is one very important different between linear 
and angular velocity. Unlike linear velocity, there is no 
guarantee that angular velocity will remain constant over 
time in the absence of forces. In other words, angular 
momentum is conserved while angular velocity is not. This 
means that we cannot trust angular velocity as a primary 
value and we need to use angular momentum instead. This is 
the reason we switched to integrating momentum from force 
in the previous section. 
 
Just as velocity and momentum are related by mass in linear 
motion, angular velocity and angular momentum are related 
by a quantity called inertia. Inertia is a measurement of 
how much effort it takes to spin an object around an axis, 
and it is a property of how much the object weighs and the 
shape of the object.  
 
Generally inertia is represented as a tensor which in 3D 
physics ends up as a 3x3 matrix. However, We will discuss 
physics in the context of the simulation of a cube. And 
because of the symmetries of the cube, we only need a 
single value: inertia = 1/6 x size2 x mass, where size is 
the length of the sides of the cube. For now lets consider 
this single inertia value as the rotational equivalent of 
mass. 
 
Just as we integrate linear momentum from force, we 
integrate angular momentum directly from the rotational 
equivalent of force called torque. You should think of 
torque just like a force, except that when it is applied it 
induces a rotation around an axis in the direction of 
torque vector rather than accelerating the object linearly. 
For example, a torque of (1,0,0) will cause a stationary 
object to rotate about the x axis.  
 
Once we have angular momentum integrated, we multiply it by 
the inverse of the inertia to get the angular velocity, and 



  10 

using this angular velocity we integrate to get the 
rotational equivalent of position called orientation. 
However, as we will see, integrating orientation from 
angular velocity is a bit more complicated. 
 
This complexity is due to the difficulty of representing 
orientations in three dimensions.  
 
In two dimensions orientations are easy, you just keep 
track of the angle in radians and you are done. In three 
dimensions it becomes much more complex. It turns out that 
you must either use 3x3 rotation matrices or quaternions to 
correctly represent the orientation of an object.  
 
For reasons of simplicity and efficiency I'm going to use 
quaternions to represent the orientation instead of 
matrices. This also gives us an easy way to interpolate 
between the previous and current physics orientation to get 
smooth framerate independent animation as per the time 
stepping scheme. 
 
Now there are plenty of resources on the internet which 
explain what quaternions are and how unit length 
quaternions are used to represent rotations in three 
dimensions. Here is a particularly nice one 
http://www.sjbrown.co.uk/quaternions.html. What you need to 
know however is that, effectively, unit quaternions 
represent an axis of rotation and an amount of rotation 
about that axis, similar to how angular velocity represents 
rotation about an axis, but in a mathematically different 
form. 
 
We will represent quaternions in code as another struct: 
 
    struct Quaternion 
    { 
         float w,x,y,z;               // overloaded 
operators etc. omitted 
    }; 
 
If we define the rotation of a quaternion as being relative 
to an initial orientation of the object (what we will later 
call body coordinates) then we can use this quaternion to 
represent the orientation of the object at any point in 
time. Now that we have decided on the representation to use 
for orientation, we need to integrate it over time so that 
the object rotates according to the angular velocity. 



  11 

 
We are now presented with a problem. Orientation is a 
quaternion but angular velocity is a vector. How can we 
integrate orientation from angular velocity when the two 
quantities are in different mathematical forms? 
 
The solution is to convert angular velocity into a 
quaternion form, then to use this quaternion to integrate 
orientation. For lack of a better term I will call this 
time derivative of the orientation quaternion spin. Exactly 
how to calculate this spin quaternion is detailed in 
http://www-2.cs.cmu.edu/~baraff/sigcourse/notesd1.pdf. 
 
Here is the final result: 
 
    dq/dt = spin = 0.5 w q  
 
Where q is the current orientation quaternion, and w is the 
current angular velocity in quaternion form (0,x,y,z) such 
that x, y, z are the components of the angular velocity 
vector. Note that the multiplication done between w and q 
is quaternion multiplication. 
 
To implement this in code we add spin as a new secondary 
quantity calculated from angular velocity in the 
recalculate method. We also add spin to the derivatives 
struct as it is the derivative of orientation: 
 
    struct State 
    { 
         // primary 
         Quaternion orientation; 
         Vector angularMomentum; 
 
         // secondary 
         Quaternion spin; 
         Vector angularVelocity; 
 
         // constant 
         float inertia; 
         float inverseInertia; 
 
         void recalculate() 
         { 
              angularVelocity = angularMomentum * 
inverseInertia; 
 



  12 

              orientation.normalize(); 
 
              spin = 0.5f * Quaternion(0, 
angularVelocity.x, angularVelocity.y, angularVelocity.z) * 
orientation; 
         } 
    }; 
 
    struct Derivatives 
    { 
         Quaternion spin; 
         Vector torque; 
    }; 
 
Integrating a quaternion, just like integrating a vector, 
is as simple as doing the integration for each value 
separately. The only difference is that after integrating 
orientation we must renormalize the orientation quaternion 
(make it unit length) in order to ensure that it still 
represents a rotation. This is because errors in 
integration accumulate over time and make the quaternion 
'drift' away from being unit length. I like to do the 
renormalization in the recalculate method for simplicity, 
but you can get away with doing it much less frequently if 
cpu cycles are tight. 
 
Now in order to drive the rotation of the object, we need a 
method that can calculate the torque applied given the 
current rotational state and time just like the force 
method we use when integrating linear motion. eg: 
 
    Vector torque(const State &state, float t) 
    { 
         return Vector(1,0,0) - state.angularVelocity * 
0.1f; 
    } 
 
This function returns an acceleration torque to induce a 
spin around the x axis, but also applies a damping over 
time so that at a certain speed the accelerating and 
damping will cancel each other out. This is done so that 
the rotation will reach a certain rate and stay constant 
instead of getting faster and faster over time. 
 
Now that we are able to integrate linear and rotational 
effects, how can they be combined into one simulation? The 
answer is to literally integrate both the linear and 



  13 

rotational physics state simultaneously and everything 
works out. This is because the objects we are simulating 
are rigid so we can decompose their motion into separate 
linear and rotational components. As far as integration is 
concerned, you can treat linear and angular effects as 
being completely independent of each other.  
 
Now that we have an object that is translating and rotating 
through three dimensional space, we need a way to keep 
track of where it is. We must now introduce the concepts of 
body coordinates and world coordinates.  
 
Think of body coordinates in terms of the object in a 
convenient layout, for example its center of mass would be 
at the origin (0,0,0) and it would be oriented in the 
simplest way possible. In the case of the simulation, in 
body space the cube is oriented so that it lines up with 
the x, y and z axes and the center of the cube is at the 
origin.  
 
The important thing to understand is that the object 
remains stationary in body space, and is transformed into 
world space using a combination of translation and rotation 
operations which put it in the correct position and 
orientation for rendering. When you see the cube animating 
on screen it is because it is being drawn in world space 
using the body to world transformation. 
 
We have the raw materials to implement this transform from 
body coordinates into world coordinates in the position 
vector and the orientation quaternion. The trick to 
combining the two is to convert each of them into 4x4 
matrix form which is capable of representing both rotation 
and translation. Then we combine the two transformations 
into a single matrix by multiplication. This combined 
matrix has the effect of first rotating the cube around the 
origin to get the correct orientation, then translating the 
cube to the correct position in world space. See 
http://www.gamedev.net/reference/articles/article695.asp 
for details on how this is done. 
 
If we then invert this matrix we get one that has the 
opposite effect, it transforms points in world coordinates 
into the body coordinates of the object. Once we have both 
these matrices we have the ability to convert points from 
body to world coordinates and back again which is very 
handy. These two matrices become new secondary values 



  14 

calculated in the 'recalculate' method from the orientation 
quaternion and position vector. 
 
We can apply separate forces and torques to an object 
individually, but we know from real life that if we push an 
object it usually makes it both move and rotate. So how can 
we break down a force applied at a point on the object into 
linear force which causes a change in momentum, and a 
torque which changes angular momentum?  
 
Given that our object is a rigid body, what actually 
happens here is that the entire force applied at the point 
is applied linearly, plus a torque is also generated based 
on the cross product of the force vector and the point on 
the object relative to the center of mass of the object: 
 
    Flinear = F 
    Ftorque = F x (p - x)  
 
Where F is the force being applied at point p in world 
coordinates, and x is the center of mass of the object. 
This seems counterintuitive at first. Is the force being 
applied twice accidentally? In fact this is our everyday 
experience with objects clouding the true behavior of an 
object under ideal conditions. 
 
Consider a bowling ball lying on a slippery surface such as 
ice so that no significant friction is present. Now in your 
mind try to work out a way that you can apply a force at a 
single point on the surface of the bowling ball such that 
it will stay completely still while rotating on the spot. 
In truth there is no way to do this. Whatever force we 
manage to apply to the bowling ball, there will always be a 
linear force component which causes the ball to accelerate.  
 
The only way that we can apply a force at a single point 
which makes a rigid body only rotate is if the object is 
constrained to rotate but not move. For example, if we 
apply a force to the tire of a bicycle wheel lifted off the 
ground it appears to result in only a torque, but this is 
only because the axle of the wheel constrains the wheel's 
motion in such a way as to counteract the linear component 
of the force we applied. Consider what would happen to the 
wheel if you were riding the bicycle and the axle 
disappeared.  
 
The final piece of the puzzle is how to calculate the 



  15 

velocity of a single point in the rigid body. To do this we 
start with the linear velocity of the object, because all 
points must move with this velocity to keep it rigid, then 
add the velocity at the point due to rotation.  
 
This velocity due to rotation will not be constant for 
every point in the body if it is rotating, as each point in 
the body must be spinning around the axis of rotation. 
Combining the linear and angular velocities, the total 
velocity of a point in the rigid body is: 
 
    vpoint = vlinear + vangular * (p - x) 
 
Where p is the point on the rigid body and x is the center 
of mass of the object. Knowing the velocity of a point on 
the body is important for many calculations such as 
collision detection and response. 
 

Conclusion 
 

We have covered the techniques required to simulate 
linear and rotational movement of a rigid body in three 
dimensions. By combining the linear and rotational physics 
into a single physics state and integrating, we can 
simulate the motion of a cube in three dimensions as it 
moves and spins around.  

 
Bibliography 

 
http://www.gamedev.net/reference/articles/article695.asp 
http://www.sjbrown.co.uk/quaternions.html
Game Physics, First Edition (The Morgan Kaufmann Series in 
Interactive 3D Technology)  
www.devmaster.net  
Physics for Game Developers  
www.terminal26.de  
 
 

Source Code 
 

/////////////////////////////////////////////////////////////////////////////////// 
// Roller main script 
//////////////////////////////////////////////////////////////////////////// 
// Files to over-ride: 
// * logodark.bmp - the engine logo, include your game title 
// * horizon.pcx - A horizon map displayed over the sky and cloud maps 
//////////////////////////////////////////////////////////////////////////// 

http://www.sjbrown.co.uk/quaternions.html


  16 

// The PATH keyword gives directories where game files can be found, 
// relative to the level directory 
path "C:\\Program Files\\GStudio6\\template"; // Path to WDL templates 
subdirectory 
 
//////////////////////////////////////////////////////////////////////////// 
 
 
//////////////////////////////////////////////////////////////////////////// 
// The engine starts in the resolution given by the follwing vars. 
var video_mode = 8;  // screen size 640x480 
var video_depth = 16; // 16 bit colour D3D mode 
 
///////////////////////////////////////////////////////////////// 
// Strings and filenames 
// change this string to your own starting mission message. 
 
string level_str = <roller.WMB>; // give file names in angular brackets 
 
///////////////////////////////////////////////////////////////// 
// define a splash screen with the required A4/A5 logo 
bmap splashmap = <logodark.pcx>; // the default logo in templates 
panel splashscreen { 
 bmap = splashmap; 
 flags = refresh,d3d; 
} 
 
//////////////////////////////////////////////////////////////////////////// 
// The following script controls the sky 
 
 
///////////////////////////////////////////////////////////////// 
// The main() function is started at game start 
font digit_font=<digfont.pcx>,12,16;bmap rllr=<roller.bmp>;bmap 
rllr2=<roller2.bmp>;bmap pointmap=<gb4.bmp>; 
var point;var balls; var pointballs;var phys=1; var play;FONT 
digit_font2=<font1_blue.pcx>,12,16; 
panel intro 
{bmap=rllr; 
pos_y=0;pos_x=0; 
} 
panel end 
{bmap=rllr2; 
pos_y=0;pos_x=0; 
digits 200,270,2,digit_font,10,point; 
digits 330,270,2,digit_font,10,balls; 



  17 

digits 220,320,2,digit_font2,1,pointballs;} 
panel points 
{bmap=pointmap; 
pos_y=0;pos_x=0; 
digits 10,10,2,digit_font,10,point; 
flags visible,refresh;} 
function main() 
{SKY_CLIP=-90; 
// set some common flags and variables 
// warn_level = 2; // announce bad texture sizes and bad wdl code 
 tex_share = on; // map entities share their textures 
 
// center the splash screen for non-640x480 resolutions, and display it 
 splashscreen.pos_x = (screen_size.x - bmap_width(splashmap))/2; 
 splashscreen.pos_y = (screen_size.y - bmap_height(splashmap))/2; 
 splashscreen.visible = on; 
// wait 3 frames (for triple buffering) until it is flipped to the foreground 
 wait(3); 
 
// now load the level 
 level_load(level_str); 
// freeze the game 
 freeze_mode = 1; 
 
// wait the required second, then switch the splashscreen off. 
 sleep(1); 
   splashscreen.visible = off; 
 bmap_purge(splashmap); // remove splashscreen from video memory 
 
// load some global variables, like sound volume 
 
 
// display the initial message 
 
 
// initialize lens flares when edition supports flares 
 
 
// use the new 3rd person camera 
 
 
// un-freeze the game 
 freeze_mode = 0; 
 
// client_move(); // for a possible multiplayer game 
// call further functions here... 



  18 

intro.pos_x=(screen_size.x - bmap_width(rllr))/2; 
intro.pos_y= (screen_size.y - bmap_height(rllr))/2; 
intro.visible=on; 
sleep(5);intro.visible=off;play=1;end.pos_x=(screen_size.x - bmap_width(rllr))/2; 
end.pos_y= (screen_size.y - bmap_height(rllr))/2; 
 
} 
 
 
///////////////////////////////////////////////////////////////// 
// The following definitions are for the pro edition window composer 
// to define the start and exit window of the application. 
WINDOW WINSTART 
{ 
 TITLE   "3D GameStudio"; 
 SIZE   480,320; 
 MODE   IMAGE; //STANDARD; 
 BG_COLOR  RGB(240,240,240); 
 FRAME   FTYP1,0,0,480,320; 
// BUTTON 
 BUTTON_START,SYS_DEFAULT,"Start",400,288,72,24; 
 BUTTON  BUTTON_QUIT,SYS_DEFAULT,"Abort",400,288,72,24; 
 TEXT_STDOUT "Arial",RGB(0,0,0),10,10,460,280; 
} 
 
/* no exit window at all.. 
WINDOW WINEND 
{ 
 TITLE   "Finished"; 
 SIZE   540,320; 
 MODE    STANDARD; 
 BG_COLOR  RGB(0,0,0); 
 TEXT_STDOUT "",RGB(255,40,40),10,20,520,270; 
 
 SET FONT  "",RGB(0,255,255); 
 TEXT   "Any key to exit",10,270; 
}*/ 
 
 
///////////////////////////////////////////////////////////////// 
//INCLUDE <debug.wdl>; 
var place[3];var place2[3];var camrot=0;var camp;entity* ballcam; 
action baller 
{ballcam=me; 
} 
function camera1 



  19 

{while(1){if(camp==1){while(camera.x>my.x-100){camera.x-=1*time;camera.y = my.y;  
          camera.z = my.z + 80; 
vec_set(temp.x,my.x);vec_sub(temp.x,camera.x);vec_to_angle(camera.pan,temp.x); 
wait(1);} camp=0; 
           
           
}if(camp==0){camera.x = my.x-100;  
          camera.y = my.y;  
          camera.z = my.z + 80; 
vec_set(temp.x,my.x);vec_sub(temp.x,camera.x);vec_to_angle(camera.pan,temp.x); 
           
}if(camp==2){camera.x = my.x-10;  
          camera.y = my.y;  
          camera.z = my.z + 80; 
camera.pan+vec_set(temp.x,my.x);vec_sub(temp.x,camera.x);vec_to_angle(camera.pan,t
emp.x); 
           
}if(camp==3){camera.x = my.x-1;  
          camera.y = my.y;  
          camera.z = my.z - 80; 
vec_set(temp.x,my.x);vec_sub(temp.x,camera.x);vec_to_angle(camera.pan,temp.x); 
           
}if(camp==4){ 
         camera.x=my.x+10;camera.y = my.y;camera.z = my.z ; 
           
           
}if(camp==5){camera.x = my.x+80;  
          camera.y = my.y;  
          camera.z = my.z + 80; 
vec_set(temp.x,my.x);vec_sub(temp.x,camera.x);vec_to_angle(camera.pan,temp.x); 
           
} 
wait(1);} 
}var d1=0; 
function reset 
{while(my.z>-1129){wait(1); 
}phent_settype(my,0,0);my=null;level_load(level_str);d1=0;camp=0;point=0;balls=0;poi
ntballs=0; 
} 
action roller 
{camera1();reset();phys=1;player=me;wait(10);ballcam=me;my.enable_impact=on;my.e
nable_block=on;my.enable_trigger=on;my.trigger_range=10;phent_settype(my,ph_rigid,
ph_sphere);phent_setmass(my,1,ph_sphere); 
temp.x=0;temp.y=0;temp.z=-386; 
ph_setgravity(temp);phent_setfriction(my,30);phent_setelasticity(my,0,10); 
while(my!=null){if(phys==1){if(play==1){ 



  20 

 
if(key_a==1){phent_addcentralforce(my,vector(0,200,0));} 
if(key_d==1){phent_addcentralforce(my,vector(0,-200,0));} 
if(key_w==1){phent_addcentralforce(my,vector(200,0,0));} 
if(key_s==1){phent_addcentralforce(my,vector(-200,0,0));} 
}}if(phys==0){phent_settype(my,0,0);break; 
} 
wait(1); 
} 
} 
 
function door1 
{if(event_type==event_impact&&you.z>my.z+25){while(my.z>67){my.z-=.1*time; 
wait(1);} 
}d1=1; 
} 
action s1 
{my.enable_impact=on;my.event=door1; 
} 
 
action gate1 
{while(my.z>-32){if(d1==1){my.z-=2*time; 
}wait(1); 
} 
} 
function flipcam() 
{if(event_type==event_impact){wait(100);camp=2; 
} 
} 
action camch 
{my.enable_impact=on;my.trigger_range=100;my.event=flipcam; 
} 
function flipcam2() 
{if(event_type==event_impact){camp=1;my.enable_impact=off; 
} 
} 
action camch2 
{my.enable_impact=on;my.transparent=on;my.alpha=70;my.blue=200;my.red=1;my.gre
en=1;my.light=on;my.trigger_range=100;my.event=flipcam2; 
while(1){my.v+=5;wait(1); 
} 
} 
 
function goup() 
{if(event_type==event_impact){camrot=0;place2.x=ballcam.x;place2.y=ballcam.y;my.en
able_impact=off;while(camrot<30){camp=0;wait(1);camrot+=.1; 



  21 

phent_addcentralforce(ballcam,vector(0,0,500));}my.enable_impact=on;camp=0;} 
} 
action jumpup 
{my.enable_impact=on;wait(10);my.event=goup; 
} 
action btube 
{my.transparent=on;my.alpha=60;while(1){my.u+=1*time;wait(1); 
} 
} 
function warp() 
{if(event_type==event_impact){phys=0;pointballs=(point/balls)*100; 
end.visible=on; 
}} 
bmap sparkle=<strall.pcx>; 
function smoke_property()  
{my.alpha-=10*time;MY.SIZE-=2*TIME; 
if (my.alpha<=00) { 
 my.lifespan=0; 
}} 
function fire1() 
{my.size=20;my.bmap=sparkle;my.move=on;my.bright=on;my.vel_z=random(10)-
5;my.vel_x=random(10)-5;my.vel_y=random(10)-
5;MY.RED=1;MY.GREEN=255;MY.BLUE=100; 
my.flare=on;my.alpha=100;my.function=smoke_property;} 
action warps 
{my.enable_impact=on;wait(10);my.event=warp;while(1){effect(fire1,1,my.x,normal);w
ait(1); 
} 
}string redb2=<PART_missile_trail.PCX>; 
 FUNCTION EXPLOFLARE2 
{MY.PASSABLE=ON;my.oriented = off;  
my.facing = on; 
MY.SCALE_X=.001;MY.SCALE_Y=.001;MY.SCALE_Z=.001;VEC_TO_ANGLE(M
Y.PAN,NORMAL); 
my.alpha=100;MY.TRANSPARENT=ON;my.bright=on;MY.RED=RANDOM(255); 
MY.BLUE=RANDOM(255); 
MY.GREEN=RANDOM(255);MY.LIGHT=ON;my.flare=on;MY.TRANSPARENT=O
N;while(MY.ALPHA >= 0) 
 { 
  MY.SCALE_X += 3*TIME;MY.SCALE_Y += 3*TIME;MY.SCALE_Z 
+= 3*TIME;MY.ALPHA-=2*TIME; 
  WAIT(1); 
 }remove(my);} 
function collect 



  22 

{while(vec_dist(my.x,player.x)>30){wait(1);}media_play("bounce.wav",null,100);point+
=1;my.passable=on;my.red=255;my.blue=255;my.green=255;my.light=on;ENT_CREAT
E(REDB2,MY.X,EXPLOFLARE2);remove(my); 
} 
 
action cllct 
{balls+=1;my.passable=on;collect(); 
} 
 
action cam_switcher 
{camp==0;while(1){wait(1);my.passable=on;my.invisible=on;if(vec_dist(my.x,player.x)
<10){camp=4; 
} 
} 
} 
 

Screenshots 
 

 


