

Expanding on the Pythagorean Theorem

New Mexico

Supercomputing Challenge

Final Report

March 3, 2006

Team Number 75

Onate High School

Team Members:

Kyle Fitzpatrick

Brett Beckett

Meghan Scott

Kevin Christeson

Teacher:

Donald Downs

Josefina Dominguez

Table of Contents

Executive Summary……………………………………… 3

Introduction………………………………………………. 5

Description………………………………………………... 7

 Displaying Results………………………………………....... 12

 Implementation…………………………………………....... 14

Results……………………………………………………... 16

Conclusion…………………………………………………. 21

Recommendations…………………………………………. 22

Acknowledgements……………………………………….. 22

Sources…………………………………………………….. 22

Appendix…………………………………………………… 23

 2

Executive Summary

For centuries man has used the Pythagorean Theorem (a² + b² = c²) to explain the

relationship between the sides of any right triangle. The Pythagorean Theorem has many

applications in real world problems, but the potential ability for this equation to define

any triangle remains unexplored. By replacing the exponential constant (2) with a

variable (x), we form . Since x is in every term of the equation, solving for x

analytically is impossibly difficult. Our group solved this problem using computationally

intensive methods that provided an extremely accurate result.

xxx cba =+

The goal of this project was to create a precise model of the modified Pythagorean

Theorem using a combination of Newton’s method and a 3D representation with a

variable level of detail. To find the exponent on a given triangle, we used Newton’s

method for approximating solutions of the equation. After finding a sufficient number of

x values we used a unique graphing method that allowed us to observe the changes in the

variable x relating to the sides of a triangle, for both two and three-dimensional graphs

could not display enough variables. This graph will implement the RGB color scale, as

well as the use of a three dimensional surface to demonstrate the relationship between the

sides and their respective exponent. The RGB color scale assigns a unique shade to every

individual triangle, and a height dimension represents the exponent x. To obtain an

 3

accurate result, a computer was needed to perform the numerous calculations involved in

solving Newton’s method many times in a reasonable amount of time.

 4

Introduction

This project was motivated by the curiosity of the group members. It will simply

create a mathematical model of the relationship between an exponent and its respective

sides. Remember, the most famous mathematical problem in the past several centuries

was Fermat’s last theorem. This problem answered nothing but the curiosity of the

mathematicians who solved it and the many that could not before computers. We created

this project as mathematicians, not as scientists, and have a sincere interest in the

outcome of this project.

Begin with a simple 180-degree triangle (a line). If we divide the line (c) into two

segments, a and b are formed. Therefore, is formed. Comparing this to the

Pythagorean Theorem caused us to think about what could be in between the

exponents 1 and 2. We then formulated our hypothesis . Furthermore, we

calculated that an equilateral triangle has no solution for x. Also, we proved an analytical

solution for an isosceles triangle, which would aid us in solving our hypothesis.

111 cba =+

222 cba =+

xxx cba =+

After proving that exponents could exist in isosceles triangles, we elaborated on

our hypothesis by stating that any triangle has a unique variable that can be graphed. To

find accurate exponents, precise approximations using Newton’s Method were

discovered. Newton’s method is an iterative tangent line approximation of a value, and

can be very accurate if repeated many times.

To represent our results accurately, a two-dimensional graph could not be used,

for we had more than two variables. A three-dimensional graph would not be sufficient

either, since we had to represent each individual triangle and its respective exponent in an

 5

easy-to-read format. We created our own graphing system to represent our results. This

graph uses the RGB color scale to represent each individual triangle by assigning a

certain amount of color to each angle to obtain a shade unique to that triangle. Then, the

triangle’s respective exponent will be assigned as the height variable, allowing us to

easily see any patterns that may exist in the graph. This custom graphing system will

allow individuals to easily interpret the information by essentially reducing the results

down to three variables.

 6

Description

 Most people know what the Pythagorean Theorem is. And most everybody has

accidentally applied it to more than just right triangles. That little mistake started to make

us think, why right triangles, why not all triangles? With much thought, and much trial

and error, we started to realize what to do.

The Pythagorean Theorem states that in a right (90 degree) triangle, the sum of

the two legs squared is equal to the third leg squared, like so in fig-1.

fig-1

We wanted to know what would happen if instead of a 90-degree angle, you

changed it to some other angle, and found a variable exponent to use like in fig-2

 7

fig-2

 We thought this because what happens if you expand the angle even more, to 180

degrees? Well, let’s look at fig-3 to see.

 fig-3

 You get a line. So at 90 degrees you use and at 180 degrees you use

. Do you see the similarity; 90 degrees and you use the exponent 2, 180

degrees and you use the exponent 1, is that coincidence or does every angle have an

exponent? Our thesis is that in all angles except for equilateral triangles, two

times any non-zero number cannot equal the same number.

222 cba =+

111 cba =+

xxx cba =+

 8

 We wanted to work with a limited triangle so there weren’t any twists, so we

decided to work with isosceles triangles (triangles with two sides the same.) That meant

that we had to rearrange the formula’s a little bit. Now look at fig-4 to see the modified

isosceles Pythagorean Theorem.

 fig-4

 Now it has changed from to . This means that our thesis has

changed a bit too.

222 caa =+ 222 ca =

Now it is . Now we want to know what the exponent equals, so let’s solve

for “x.” Look at fig-5-1

xx ca =2

 9

fig-5-1

With further evaluation, we proved:

 This was a great step for us in searching for the answer to solve any triangle, but

we still had a lot of thinking to do.

 So given any set of numbers a, b, c, we need to use computers to approximate “x”

in xxx cba =+

 10

We simplified the problem by dividing both sides by xc

x

x

x

x

x

x

c
c

c
b

c
a

=+

Which can be simplified further by using a new and . 1a 1b

⎟
⎠
⎞

⎜
⎝
⎛=

c
aa1 ⎟

⎠
⎞

⎜
⎝
⎛=

c
bb1

111 =+ xx ba

This equation is much simpler; we can now use Newton’s Method to solve for the

exponent. Newton’s Method is an iterative tangent line approximation; you give a

guess(n), and it narrows your guess down until it gets an accurate approximation.

Newton’s Method is described by)(
)(

1
n

n
nn xf

xf
xx

′
−=+

We can rewrite our simpler function as 1)(−+= xx baxf

 Then bbaaxf xx lnln)(+=′

After substituting these functions in, we can now find a solution for a, b, and c.

 11

Displaying Results

 Now that exponents can be found, we had to consider displaying our results.

Since we couldn’t solve it analytically, we weren’t going to have a simple equation. We

have to display with a graph. A two dimensional graph won’t work, not even a three

dimensional graph could work since there are 4 variables. We may have used a three

dimensional graph plus time, but that would be very difficult to read. So we had to think

of a new way to graph our results.

Graph

 12

Any Triangle

We assigned the three angles in a triangle three different colors, red (angle A), green

(angle B), and blue (angle C). A color represents a certain triangle, which is influenced

by the triangles major angles. For example, if the largest angle on a triangle is “A”, then

on our graph, that triangle would be more towards the red corner. If the largest angle was

“A” and the second largest “Bs”, then the point would be an orange color on the upper

right of our graph. With that understanding; the very middle, having equal amounts of

red, green, and blue, would be an equilateral triangle. The white and black lines, having a

variable amount of one color and the same amount of the other two colors, would have

two angles of the same, being an isosceles triangle. So basically, every possible triangle

has a certain color that can be found on our graph.

 Now we can represent any triangle, but we still haven’t involved the exponent.

We represented the exponent by using a height elevation on any point on our graph. The

graph is colorful, and 3 dimensional. You find the triangle in the graph by it’s color, and

however many units high that point is, that’s the exponent that you multiply the two

known sides by to get that root of the third side.

 13

Implementation

 The next portion of our problem explains the methods of transposing the above

explained concept into code. There are two parts of the program that had to be written:

gathering results and displaying that data. Instead of separating these tasks into different

programs, we decided to combine the entire process into one central effort for efficiency.

The entire program, with the exception of the windows code (which has been removed

because of its length and relatively unimportant monotony), is in the appendix section of

this report.

 The implementation of the color triangle has several parts which are all included

within the main program. The foremost is the Point3d class, which holds the x, y, z

coordinates, RGB color information, and the lengths of sides a and b of the triangle that

point represents. In the initialization portion of the program an two-dimensional array of

Point3d’s is allocated which has [3][4^x] points, where x is the number of subdivisions

for the central triangle. The next portion of the program is to take a given equilateral

triangle and subdivide it x number of times using a recursive function called

DivideMatrix(). DivideMatrix() calls itself numerous amounts of times, taking midpoints

of the initial triangle and making smaller triangles in each iteration. The DivideMatrix()

function writes to the point array in such a fashion that each row of the array contains one

triangle. The next called function is BuildDefinition(), which sorts through each point in

the Point3d array and finds the RGB color information, along with the solution to x of

at that point. The color information and the solution to x (which is derived

from the color information) is based off of the point’s physical position on the subdivided

equilateral triangle. Three equations are used to calculate the angles opposite to their

xxx cba =+

 14

corresponding side a, b, or c. These equations can be found inside the GetAngle()

function The angle information is then transformed into color information by the function

GetColor(). After the angles have been calculated, a possible solution of x can be found.

For this, the function GetRoot() is called. This function finds the x solution to

 if sides a, b, and c. GetRoot() sets side c equal to 1.0, and uses the Law of

Sines to find sides a and b. The function then uses Newton’s Method for approximating

roots to find a suitable exponent (x) for sides a, b, and c, if possible. There are several

instances though, where no real-number solution exists for x, as discussed in the results.

xxx cba =+

After this process is ran, the Point3d array is ready to be transposed into OpenGL (which

is the language we used to make a 3-D representation of our results). The last function

that is called is BuildLists() which compiles the point information into an OpenGL object

referenced later by the DrawGLScene() function. The DrawGLScene() function draws

the array over and over in real-time, and also translates and rotates the view based off of

user input.

 15

Results

 After designing, programming, and debugging the program, we found our results to be

surprising, and much more exciting than we had earlier anticipated. As defined in the

description portion of this paper, we are using a color-coded triangle where each color

represents one of three angles on any given triangle, and the height value describes one

solution to the modified function.

 When graphed, the function of the exponent for any isosceles triangle is identical

to the two dimensional cross section shown in figure 6. You will notice by looking at

figure 6, that the exponent has both positive and negative results. When ,the

exponent is negative because the number has to decrease.

cba >+

cba >+ when the angle

between a and b is less than 60 degrees. When the angle is greater than 60 degrees, the

exponent is positive.

 As seen in figure 9, there are two holes in this graph where the exponent does not

exist: when the blue value (angle C) goes beneath the midpoint (equilateral triangle) it is

no longer the dominant angle of the triangle, so the red (angle A) and green (angle B)

angle values must compensate, which is not always a possibility. Red and green can only

compensate when angle C is either the largest or smallest angle in the triangle.

 16

Fig.6

 17

Fig.7

 18

Fig.8

 19

Fig.9

 20

Conclusion

 Some people have asked members of our group “Does this problem have any

particular purpose in the real world, or is it simply theory and numbers?” to which we

grin slightly and begin explaining the importance of any discovery, and how our problem

shares commonality with one of the greatest mathematical puzzles in the last few

centuries. Jules Henri Poincaré, a mathematician, theoretical physicist, and a philosopher

once said, “The mathematician does not study pure mathematics because it is useful; he

studies it because he delights in it and he delights in it because it is beautiful.” Like

Poincaré, we all share a passion for discovering the unknown and admiring its allure, but

more specifically the explanation of a new relationship involving triangles, the shape

which has had an immeasurable impact on mathematics as a whole. Pythagoras'

Theorem, which is one of the most commonly taught postulates because of its simplicity,

serves to explain the relationship between the sides of right triangles. What our group has

done is expand Pythagoras' Theorem to encompass any triangle, with the exception of an

equilateral triangle. Granted, what we have found can be explained using other

relationships, such as the Law of Sines and Cosines, but not in the same fashion.

Currently, we have not found any practical purpose suited for the modified Pythagorean

Theorem, but it serves as one more bit of knowledge advancing human understanding.

 As earlier explained in the description section of our paper, we have implemented

a non-standard method of graphing our function (which is a four-variable equation after

canceling-out one variable with substitution) that is far more efficient and easier to

visualize than a natural four-dimensional function.

 21

Recommendations

 Our problem found many solutions for , and it opened up an endless

field of possibilities. Such possibilities include complex solutions, using different

methods to graph results, and most importantly the possibility of finding a natural

function to .

xxx cba =+

xxx cba =+

Acknowledgements

 We would like to greatly thank our math teacher Mr. Downs for helping us get

through our tough spots. We want to thank Mr. Dominguez, our parents, and all of the

people involved in the Supercomputing Challenge.

Sources

Kempf, Frazier; OpenGL Reference Manual; ©1997; Addison Wesley

Woo, Neider, Davis; OpenGL Programming guide; ©1997; Addison Wesley

Foley, van Dam, Feiner, Hughes; Computer Graphics, Principles and Practice, ©1987;

Addison Wesley

 22

Appendix
 Main Program

#include <windows.h>
#include <gl\gl.h>
#include <gl\glu.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include "Point3d.h"
#include <iostream.h>
#include<cstdlib>
#include <ctime>

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Window Handle
HINSTANCE hInstance; // Holds Application

bool keys[256]; // Array Used For The Keyboard Routine
bool active=TRUE; // Window Active Flag Set To TRUE By Default
bool fullscreen=FALSE; // Fullscreen Flag Set To Fullscreen Mode By
Default

double rtri=0;
const double PI=4.0*atan(1.0);
bool test=true;
int T=0;
int c=0;

//Camera Variables
double rotx=0, roty=0;
double initx=0.0, inity=0.0, initz=0.0;
double cx=0, cy=0, cz=0;
//double ctx=0, cty=0, ctz=5.0;
double sens=0.05, rot_sens=0.5;

//Triangle Subdivision Functions and Variable Declaration

 23

int level=6;
int index=0;
int numtri=4096;
Point3d PArray[3][4096];
Point3d CalcMidPoint(Point3d p1, Point3d p2);
void DivideMatrix(Point3d point1, Point3d point2, Point3d point3, int lvl);
void BuildDefinition();
double GetAngle(int type, int c, int d);
double GetAngle(double color);
double GetColor(double angle);
double GetDegrees(double r);
double GetRadians(double d);
double GetRoot(int c, int d);
double F(double x, double a, double b);
double D(double x, double a, double b);
GLuint DataSet;
GLvoid BuildLists();

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); //
Standard Windows application declaration

GLvoid ReSizeGLScene(GLsizei width, GLsizei height) // Resize And
Initialize The GL Window
{
 if (height==0)
 {
 height=1;

 }

 glViewport(0,0,width,height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 //Aspect Ratio Of The Window
 gluPerspective(45.0f,(GLdouble)width/(GLdouble)height,0.1f,100.0f);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

 24

int InitGL(GLvoid)
{

 glShadeModel(GL_SMOOTH); // Enable Smooth
Shading
 glClearColor(0.0f, 0.14f, 0.15f, 0.5f); // Background Color
 glClearDepth(1.0f); // Depth Buffer Setup
 glEnable(GL_DEPTH_TEST); // Enables Depth Test
 glDepthFunc(GL_LEQUAL);
 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);

 //Triangle Initialization
 Point3d p1, p2, p3;
 p1.Translate(0.00, 0.00, (sqrt(3.0)/2.0) - (1.0/ (2.0*sqrt(3.0))));
 p2.Translate((-1.0/2.0), 0.00, (-1.0/(2.0*sqrt(3.0))));
 p3.Translate((1.0/2.0), 0.00, (-1.0/(2.0*sqrt(3.0))));
 DivideMatrix(p1, p2, p3, level);
 BuildDefinition();
 BuildLists();

 return TRUE;
}

int DrawGLScene(GLvoid)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 glTranslated(initx, inity, initz-6.0);

 //Camera Translation & Rotation
 glTranslated(cx,cy,cz);
 glRotated(roty, 1.0, 0.0, 0.0);
 glRotated(rotx, 0.0, 1.0, 0.0);

 //Scale and Draw Point Array
 glScaled(5.0, 0.2, 5.0);
 glPushMatrix();
 glCallList(DataSet);
 glPopMatrix();

 25

 return TRUE;
}

/***
* *
* Windows application Code Goes Here along with the killGL *
* functions. Code has been removed because it is not very important*
* to the logic behind this program. *
* *
***/

//Recursive Triangle Subdivision Method
void DivideMatrix(Point3d p1, Point3d p2, Point3d p3, int lvl)
{
 if (lvl > 0)
 {
 Point3d mid1_2 = CalcMidPoint(p1, p2);
 Point3d mid2_3 = CalcMidPoint(p2, p3);
 Point3d mid3_1 = CalcMidPoint(p3, p1);
 DivideMatrix(p1, mid1_2, mid3_1, lvl - 1);
 DivideMatrix(mid1_2, p2, mid2_3, lvl - 1);
 DivideMatrix(mid1_2, mid2_3, mid3_1, lvl - 1);
 DivideMatrix(mid3_1, mid2_3, p3, lvl - 1);
 }
 else
 {
 PArray[0][index]=p1;
 PArray[1][index]=p2;
 PArray[2][index]=p3;
 index++;
 }

}

Point3d CalcMidPoint(Point3d p1, Point3d p2)
{
Point3d point=Point3d(0.0, 0.0, 0.0);
point.Translate(((p1.x + p2.x)/2.0),((p1.y + p2.y)/2.0),((p1.z + p2.z)/2.0));
return point;
}

 26

//Initializes Final List and transposes information to GL Code

GLvoid BuildLists()
{
double r, g, b;
DataSet = glGenLists(1);
glNewList(DataSet, GL_COMPILE);
index=0;
 for(index=0; index < numtri; index++)
 {

 glBegin(GL_TRIANGLES);
 glNormal3f(0.0, 1.0, 0.0);
 glColor3d(PArray[0][index].r,PArray[0][index].g,PArray[0][index].b);
 glVertex3d(
 PArray[0][index].x,
 PArray[0][index].y,
 PArray[0][index].z);

 glColor3d(PArray[1][index].r,PArray[1][index].g,PArray[1][index].b);
 glVertex3d(
 PArray[1][index].x,
 PArray[1][index].y,
 PArray[1][index].z);

 glColor3d(PArray[2][index].r,PArray[2][index].g,PArray[2][index].b);
 glVertex3d(
 PArray[2][index].x,
 PArray[2][index].y,
 PArray[2][index].z);
 glEnd();

 }
glEndList();

}

//Defines Color and height of each Point in the Point Array
void BuildDefinition()
{
 int c,d;
 for(c=0; c < 3;c++)
 {

 27

 for(d=0; d< numtri;d++)
 {
 PArray[c][d].r=GetColor(GetAngle(0, c, d));
 PArray[c][d].g=GetColor(GetAngle(1, c, d));
 PArray[c][d].b=GetColor(GetAngle(2, c, d));
 PArray[c][d].y=GetRoot(c, d);
 }

 }

}

//Returns one of three Angles the point represents
double GetAngle(int type, int c, int d)
{
 double angle=0.0, y=PArray[c][d].z, x=PArray[c][d].x;
 if(type==0)
 {
 angle=(360.0/sqrt(3.0)) * (y + (1.0 /(2.0*sqrt(3.0))));
 }
 else if(type==1)
 {
 double xp = (x - (sqrt(3.0) * y) + 1.0)/4.0;
 double yp = (-1.0*sqrt(3.0)*xp) + (1.0/sqrt(3.0));
 double d = sqrt(pow(x-xp,2.0) + pow(y-yp,2.0));
 angle = (360.0*d)/sqrt(3.0);
 }
 else if(type==2)
 {
 double xp = (x + (sqrt(3.0) * y) - 1.0)/4.0;
 double yp = (sqrt(3.0)*xp) + (1.0/sqrt(3.0));
 double d = sqrt(pow(x-xp,2.0) + pow(y-yp,2.0));
 angle = (360.0*d)/sqrt(3.0);

 }
 return angle;
}

double GetAngle(double color)
{
 double angle = color*180.0;
 return angle;
}

double GetDegrees(double r)

 28

{
 double d=r*(180.0/PI);
 return d;
}

double GetRadians(double d)
{
 double r=d*(PI/180.0);
 return r;
}

double GetColor(double angle)
{
 double color=angle / 180.0;
 return color;
}

//Newton's Root Function to find height of any given triangle
double GetRoot(int c, int d)
{
 double a=0.0;
 double b=0.0;
 double newguess=0.0;

 if(sqrt(pow(GetAngle(PArray[c][d].b)-60.0, 2.0)) < 0.0001
 || sqrt(pow(GetAngle(PArray[c][d].g)-60.0, 2.0)) < 0.0001
 || sqrt(pow(GetAngle(PArray[c][d].b)-60.0, 2.0)) < 0.0001)
 {
 PArray[c][d].r=0.0;
 PArray[c][d].g=0.0;
 PArray[c][d].b=0.0;
 newguess=5;
 }
 else if(sqrt(pow(GetAngle(PArray[c][d].b)-180.0, 2.0)) < 0.0001
 || sqrt(pow(GetAngle(PArray[c][d].g)-180.0, 2.0)) < 0.0001
 || sqrt(pow(GetAngle(PArray[c][d].b)-180.0, 2.0)) < 0.0001)
 {
 PArray[c][d].r=0.0;
 PArray[c][d].g=0.0;
 PArray[c][d].b=0.0;
 newguess=1.0;
 }
 else if(sqrt(pow(GetAngle(PArray[c][d].r),2.0)) < 0.00001
 || sqrt(pow(GetAngle(PArray[c][d].g),2.0)) < 0.00001

 29

 || sqrt(pow(GetAngle(PArray[c][d].b),2.0)) < 0.00001)
 {
 PArray[c][d].r=0.0;
 PArray[c][d].g=0.0;
 PArray[c][d].b=0.0;
 newguess=1.0;
 }
 else
 {

a=sin(GetRadians(GetAngle(PArray[c][d].r)))/sin(GetRadians(GetAngle(PArray[c][d].b)
));

b=sin(GetRadians(GetAngle(PArray[c][d].g)))/sin(GetRadians(GetAngle(PArray[c][d].b)
));
 PArray[c][d].A=a;
 PArray[c][d].B=b;
 double guess=2.0;
 newguess=guess - F(guess, a, b)/D(guess, a, b);
 while (sqrt(pow(guess - newguess,2.0)) > 0.00001)
 {
 guess=newguess;
 newguess=guess - F(guess, a, b)/D(guess, a, b);
 }
 }
 if(newguess > 10.0)
 {
 newguess=10.0;
 }
 else if(newguess < -10.0)
 {
 newguess=-10.0;
 }
 return newguess;
}

//Function of modified Pythagoras Theorem
double F(double x, double a, double b)
{
 double r = 1.0 - (pow(a,x) + pow(b,x));
 return r;
}

//Derivative of modified Pythagoras Theorem
double D(double x, double a, double b)
{

 30

 double r = -(log(a)*(pow(a,x)) + log(b)*(pow(b,x)));
 return r;
}

 31

Point Class Header

/******************************
* *
* Point3d.h *
* *
******************************/

#ifndef POINT3D_H
#define POINT3D_H

class Point3d
{
 public:
 Point3d();
 Point3d(const Point3d & p);
 Point3d(double initX, double initY, double initZ);
 Point3d(double initX, double initY, double initZ, int initindex);
 Point3d & operator = (const Point3d &);
 double x;
 double y;
 double z;
 float r, g, b;
 double A, B;
 int index;
 void ChangeColor(float newR, float newG, float newB);
 void Translate(double newX, double newY, double newZ);
 void Translate(Point3d temp);
};
#endif

 32

Point Class

/******************************
* *
* Point3d.cpp *
* *
******************************/

#include "Point3d.h"

Point3d::Point3d():
 x(0.0),
 y(0.0),
 z(0.0),
 index(0),
 r(1.0),
 g(1.0),
 b(1.0),
 A(1.0),
 B(1.0)
{

};

Point3d::Point3d(double initX, double initY, double initZ):
 x(initX),
 y(initY),
 z(initZ),
 index(0),
 r(1.0),
 g(1.0),
 b(1.0),
 A(1.0),
 B(1.0)
{

};

Point3d::Point3d(double initX, double initY, double initZ, int initindex):
 x(initX),
 y(initY),
 z(initZ),
 index(initindex),

 33

 r(1.0),
 g(1.0),
 b(1.0),
 A(1.0),
 B(1.0)
{

};

Point3d::Point3d(const Point3d & p)
{
 x=p.x;
 y=p.y;
 z=p.z;
 r=p.r;
 g=p.g;
 b=p.b;
 A=p.A;
 B=p.B;
}

Point3d & Point3d::operator = (const Point3d & p)
{
 x=p.x;
 y=p.y;
 z=p.z;
 r=p.r;
 g=p.g;
 b=p.b;
 A=p.A;
 B=p.B;

 return *this;
}

void Point3d::ChangeColor(float newR, float newG, float newB)
{
 r=newR;
 g=newG;
 b=newB;
};

void Point3d::Translate(double newX, double newY, double newZ)
{
 x=newX;
 y=newY;

 34

 z=newZ;
}

void Point3d::Translate(Point3d temp)
{
 x=temp.x;
 y=temp.y ;
 z=temp.z;
}

 35

	
	Executive Summary
	 Introduction

