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Executive Summary 

 

For centuries man has used the Pythagorean Theorem (a² + b² = c²) to explain the 

relationship between the sides of any right triangle. The Pythagorean Theorem has many 

applications in real world problems, but the potential ability for this equation to define 

any triangle remains unexplored. By replacing the exponential constant (2) with a 

variable (x), we form . Since x is in every term of the equation, solving for x 

analytically is impossibly difficult. Our group solved this problem using computationally 

intensive methods that provided an extremely accurate result.             

xxx cba =+

The goal of this project was to create a precise model of the modified Pythagorean 

Theorem using a combination of Newton’s method and a 3D representation with a 

variable level of detail. To find the exponent on a given triangle, we used Newton’s 

method for approximating solutions of the equation. After finding a sufficient number of 

x values we used a unique graphing method that allowed us to observe the changes in the 

variable x relating to the sides of a triangle, for both two and three-dimensional graphs 

could not display enough variables. This graph will implement the RGB color scale, as 

well as the use of a three dimensional surface to demonstrate the relationship between the 

sides and their respective exponent. The RGB color scale assigns a unique shade to every 

individual triangle, and a height dimension represents the exponent x. To obtain an 
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accurate result, a computer was needed to perform the numerous calculations involved in 

solving Newton’s method many times in a reasonable amount of time. 
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Introduction 
  

This project was motivated by the curiosity of the group members. It will simply 

create a mathematical model of the relationship between an exponent and its respective 

sides. Remember, the most famous mathematical problem in the past several centuries 

was Fermat’s last theorem. This problem answered nothing but the curiosity of the 

mathematicians who solved it and the many that could not before computers. We created 

this project as mathematicians, not as scientists, and have a sincere interest in the 

outcome of this project.  

Begin with a simple 180-degree triangle (a line). If we divide the line (c) into two 

segments, a and b are formed. Therefore, is formed. Comparing this to the 

Pythagorean Theorem  caused us to think about what could be in between the 

exponents 1 and 2. We then formulated our hypothesis . Furthermore, we 

calculated that an equilateral triangle has no solution for x.  Also, we proved an analytical 

solution for an isosceles triangle, which would aid us in solving our hypothesis.  

111 cba =+

222 cba =+

xxx cba =+

After proving that exponents could exist in isosceles triangles, we elaborated on 

our hypothesis by stating that any triangle has a unique variable that can be graphed. To 

find accurate exponents, precise approximations using Newton’s Method were 

discovered. Newton’s method is an iterative tangent line approximation of a value, and 

can be very accurate if repeated many times.  

To represent our results accurately, a two-dimensional graph could not be used, 

for we had more than two variables. A three-dimensional graph would not be sufficient 

either, since we had to represent each individual triangle and its respective exponent in an  

 5



easy-to-read format. We created our own graphing system to represent our results. This 

graph uses the RGB color scale to represent each individual triangle by assigning a 

certain amount of color to each angle to obtain a shade unique to that triangle. Then, the 

triangle’s respective exponent will be assigned as the height variable, allowing us to 

easily see any patterns that may exist in the graph. This custom graphing system will 

allow individuals to easily interpret the information by essentially reducing the results 

down to three variables. 
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Description 
 
 
 Most people know what the Pythagorean Theorem is. And most everybody has 

accidentally applied it to more than just right triangles. That little mistake started to make 

us think, why right triangles, why not all triangles? With much thought, and much trial 

and error, we started to realize what to do.  

 

The Pythagorean Theorem states that in a right (90 degree) triangle, the sum of 

the two legs squared is equal to the third leg squared, like so in fig-1. 

 

fig-1     

 

 

We wanted to know what would happen if instead of a 90-degree angle, you 

changed it to some other angle, and found a variable exponent to use like in fig-2 
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fig-2 

 

 

 We thought this because what happens if you expand the angle even more, to 180 

degrees? Well, let’s look at fig-3 to see. 

 

 fig-3 

  

 

 You get a line.  So at 90 degrees you use and at 180 degrees you use 

. Do you see the similarity; 90 degrees and you use the exponent 2, 180 

degrees and you use the exponent 1, is that coincidence or does every angle have an 

exponent? Our thesis is that in all angles except for equilateral triangles, two 

times any non-zero number cannot equal the same number. 

222 cba =+

111 cba =+

xxx cba =+

 8



 We wanted to work with a limited triangle so there weren’t any twists, so we 

decided to work with isosceles triangles (triangles with two sides the same.) That meant 

that we had to rearrange the formula’s a little bit. Now look at fig-4 to see the modified 

isosceles Pythagorean Theorem. 

 

 fig-4 

  

 

 Now it has changed from  to . This means that our thesis has 

changed a bit too. 

222 caa =+ 222 ca =

Now it is . Now we want to know what the exponent equals, so let’s solve 

for “x.” Look at fig-5-1 

xx ca =2
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fig-5-1 

  

   

With further evaluation, we proved: 

                                 

  

  

 This was a great step for us in searching for the answer to solve any triangle, but 

we still had a lot of thinking to do.  

 So given any set of numbers a, b, c, we need to use computers to approximate “x” 

in      xxx cba =+
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We simplified the problem by dividing both sides by  xc

x

x

x
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Which can be simplified further by using a new  and  . 1a 1b
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c
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111 =+ xx ba  

 

This equation is much simpler; we can now use Newton’s Method to solve for the 

exponent. Newton’s Method is an iterative tangent line approximation; you give a 

guess(n), and it narrows your guess down until it gets an accurate approximation. 

Newton’s Method is described by )(
)(

1
n

n
nn xf

xf
xx

′
−=+  

 

We can rewrite our simpler function as  1)( −+= xx baxf

    Then  bbaaxf xx lnln)( +=′

 

After substituting these functions in, we can now find a solution for a, b, and c. 
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Displaying Results 
 

 Now that exponents can be found, we had to consider displaying our results. 

Since we couldn’t solve it analytically, we weren’t going to have a simple equation. We 

have to display with a graph. A two dimensional graph won’t work, not even a three 

dimensional graph could work since there are 4 variables. We may have used a three 

dimensional graph plus time, but that would be very difficult to read. So we had to think 

of a new way to graph our results. 

Graph 
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Any Triangle 

 
  
We assigned the three angles in a triangle three different colors, red (angle A), green 

(angle B), and blue (angle C). A color represents a certain triangle, which is influenced 

by the triangles major angles. For example, if the largest angle on a triangle is “A”, then 

on our graph, that triangle would be more towards the red corner. If the largest angle was 

“A” and the second largest “Bs”, then the point would be an orange color on the upper 

right of our graph. With that understanding; the very middle, having equal amounts of 

red, green, and blue, would be an equilateral triangle. The white and black lines, having a 

variable amount of one color and the same amount of the other two colors, would have 

two angles of the same, being an isosceles triangle. So basically, every possible triangle 

has a certain color that can be found on our graph.  

 Now we can represent any triangle, but we still haven’t involved the exponent. 

We represented the exponent by using a height elevation on any point on our graph. The 

graph is colorful, and 3 dimensional. You find the triangle in the graph by it’s color, and 

however many units high that point is, that’s the exponent that you multiply the two 

known sides by to get that root of the third side.  
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Implementation 

 The next portion of our problem explains the methods of transposing the above 

explained concept into code. There are two parts of the program that had to be written: 

gathering results and displaying that data. Instead of separating these tasks into different 

programs, we decided to combine the entire process into one central effort for efficiency. 

The entire program, with the exception of the windows code (which has been removed 

because of its length and relatively unimportant monotony), is in the appendix section of 

this report.  

 The implementation of the color triangle has several parts which are all included 

within the main program. The foremost is the Point3d class, which holds the x, y, z 

coordinates, RGB color information, and the lengths of sides a and b of the triangle that 

point represents. In the initialization portion of the program an two-dimensional array of 

Point3d’s is allocated which has [3][4^x] points, where x is the number of subdivisions 

for the central triangle. The next portion of the program is to take a given equilateral 

triangle and subdivide it x number of times using a recursive function called 

DivideMatrix(). DivideMatrix() calls itself numerous amounts of times, taking midpoints 

of the initial triangle and making smaller triangles in each iteration. The DivideMatrix() 

function writes to the point array in such a fashion that each row of the array contains one 

triangle. The next called function is BuildDefinition(), which sorts through each point in 

the Point3d array and finds the RGB color information, along with the solution to  x of 

at that point. The color information and the solution to x (which is derived 

from the color information) is based off of the point’s physical position on the subdivided 

equilateral triangle. Three equations are used to calculate the angles opposite to their 

xxx cba =+
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corresponding side a, b, or c. These equations can be found inside the GetAngle() 

function The angle information is then transformed into color information by the function 

GetColor(). After the angles have been calculated, a possible solution of x can be found. 

For this, the function GetRoot() is called. This function finds the x solution to 

 if sides a, b, and c. GetRoot() sets side c equal to 1.0, and uses the Law of 

Sines to find sides a and b. The function then uses Newton’s Method for approximating 

roots to find a suitable exponent (x) for sides a, b, and c, if possible. There are several 

instances though, where no real-number solution exists for x, as discussed in the results.  

xxx cba =+

After this process is ran, the Point3d array is ready to be transposed into OpenGL (which 

is the language we used to make a 3-D representation of our results). The last function 

that is called is BuildLists() which compiles the point information into an OpenGL object 

referenced later by the DrawGLScene() function. The DrawGLScene() function draws 

the array over and over in real-time, and also translates and rotates the view based off of 

user input.   
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Results 

    After designing, programming, and debugging the program, we found our results to be 

surprising, and much more exciting than we had earlier anticipated. As defined in the 

description portion of this paper, we are using a color-coded triangle where each color 

represents one of three angles on any given triangle, and the height value describes one 

solution to the modified function. 

 When graphed, the function of the exponent for any isosceles triangle is identical 

to the two dimensional cross section shown in figure 6. You will notice by looking at 

figure 6, that the exponent has both positive and negative results. When  ,the 

exponent is negative because the number has to decrease. 

cba >+

cba >+  when the angle 

between a and b is less than 60 degrees. When the angle is greater than 60 degrees, the 

exponent is positive. 

 As seen in figure 9, there are two holes in this graph where the exponent does not 

exist: when the blue value (angle C) goes beneath the midpoint (equilateral triangle) it is 

no longer the dominant angle of the triangle, so the red (angle A) and green (angle B) 

angle values must compensate, which is not always a possibility. Red and green can only 

compensate when angle C is either the largest or smallest angle in the triangle. 
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Fig.6 
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Fig.7 
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Fig.8 
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Fig.9 
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Conclusion 

 Some people have asked members of our group “Does this problem have any 

particular purpose in the real world, or is it simply theory and numbers?” to which we 

grin slightly and begin explaining the importance of any discovery, and how our problem 

shares commonality with one of the greatest mathematical puzzles in the last few 

centuries. Jules Henri Poincaré, a mathematician, theoretical physicist, and a philosopher 

once said, “The mathematician does not study pure mathematics because it is useful; he 

studies it because he delights in it and he delights in it because it is beautiful.” Like 

Poincaré, we all share a passion for discovering the unknown and admiring its allure, but 

more specifically the explanation of a new relationship involving triangles, the shape 

which has had an immeasurable impact on mathematics as a whole. Pythagoras' 

Theorem, which is one of the most commonly taught postulates because of its simplicity, 

serves to explain the relationship between the sides of right triangles. What our group has 

done is expand Pythagoras' Theorem to encompass any triangle, with the exception of an 

equilateral triangle. Granted, what we have found can be explained using other 

relationships, such as the Law of Sines and Cosines, but not in the same fashion. 

Currently, we have not found any practical purpose suited for the modified Pythagorean 

Theorem, but it serves as one more bit of knowledge advancing human understanding.  

  As earlier explained in the description section of our paper, we have implemented 

a non-standard method of graphing our function (which is a four-variable equation after 

canceling-out one variable with substitution) that is far more efficient and easier to 

visualize than a natural four-dimensional function.  
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Recommendations 

 Our problem found many solutions for , and it opened up an endless 

field of possibilities. Such possibilities include complex solutions, using different 

methods to graph results, and most importantly the possibility of finding a natural 

function to  .  

xxx cba =+

xxx cba =+
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Appendix 
 Main Program 
 
 
#include <windows.h>   
#include <gl\gl.h>    
#include <gl\glu.h>    
#include <math.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include "Point3d.h" 
#include <iostream.h> 
#include<cstdlib> 
#include <ctime> 
 
 
 
HDC  hDC=NULL;  // Private GDI Device Context 
HGLRC  hRC=NULL;  // Permanent Rendering Context 
HWND  hWnd=NULL;  // Holds Window Handle 
HINSTANCE hInstance;  // Holds Application 
 
bool keys[256];   // Array Used For The Keyboard Routine 
bool active=TRUE;   // Window Active Flag Set To TRUE By Default 
bool fullscreen=FALSE;  // Fullscreen Flag Set To Fullscreen Mode By 
Default 
 
double rtri=0; 
const double PI=4.0*atan(1.0); 
bool test=true; 
int T=0; 
int c=0; 
 
//Camera Variables 
double rotx=0, roty=0; 
double initx=0.0, inity=0.0, initz=0.0; 
double cx=0, cy=0, cz=0; 
//double ctx=0, cty=0, ctz=5.0; 
double sens=0.05, rot_sens=0.5; 
 
 
 
//Triangle Subdivision Functions and Variable Declaration 
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int level=6; 
int index=0; 
int numtri=4096; 
Point3d PArray[3][4096]; 
Point3d CalcMidPoint(Point3d p1, Point3d p2); 
void DivideMatrix(Point3d point1, Point3d point2, Point3d point3, int lvl); 
void BuildDefinition(); 
double GetAngle(int type, int c, int d); 
double GetAngle(double color); 
double GetColor(double angle); 
double GetDegrees(double r); 
double GetRadians(double d); 
double GetRoot(int c, int d); 
double F(double x, double a, double b); 
double D(double x, double a, double b); 
GLuint DataSet; 
GLvoid BuildLists(); 
         
 
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // 
Standard Windows application declaration 
 
 
 
 
 
GLvoid ReSizeGLScene(GLsizei width, GLsizei height)  // Resize And 
Initialize The GL Window 
{ 
 if (height==0)           
 { 
  height=1;         
  
 } 
 
 glViewport(0,0,width,height);       
 
 glMatrixMode(GL_PROJECTION);       
 glLoadIdentity();          
 
 //Aspect Ratio Of The Window 
 gluPerspective(45.0f,(GLdouble)width/(GLdouble)height,0.1f,100.0f); 
 
 glMatrixMode(GL_MODELVIEW);        
 glLoadIdentity();          
} 
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int InitGL(GLvoid)           
{ 
     
     
 glShadeModel(GL_SMOOTH);     // Enable Smooth 
Shading 
 glClearColor(0.0f, 0.14f, 0.15f, 0.5f);   // Background Color 
 glClearDepth(1.0f);      // Depth Buffer Setup 
 glEnable(GL_DEPTH_TEST);     // Enables Depth Test 
 glDepthFunc(GL_LEQUAL);       
 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);  
 
     
 //Triangle Initialization 
 Point3d p1, p2, p3; 
 p1.Translate( 0.00, 0.00, (sqrt(3.0)/2.0) - (1.0/ (2.0*sqrt(3.0))) ); 
 p2.Translate((-1.0/2.0), 0.00, (-1.0/(2.0*sqrt(3.0)))); 
 p3.Translate(( 1.0/2.0), 0.00, (-1.0/(2.0*sqrt(3.0)))); 
 DivideMatrix(p1, p2, p3, level); 
 BuildDefinition(); 
 BuildLists(); 
  
 return TRUE;           
} 
 
int DrawGLScene(GLvoid)       
{ 
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);  
 glLoadIdentity(); 
    
 glTranslated(initx, inity, initz-6.0); 
 
 //Camera Translation & Rotation 
 glTranslated(cx,cy,cz); 
 glRotated(roty, 1.0, 0.0, 0.0); 
 glRotated(rotx, 0.0, 1.0, 0.0);         
     
 //Scale and Draw Point Array 
 glScaled(5.0, 0.2, 5.0); 
 glPushMatrix(); 
 glCallList(DataSet); 
 glPopMatrix(); 
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 return TRUE;           
} 
 
/******************************************************************* 
*                                                                  * 
* Windows application Code Goes Here along with the killGL         * 
* functions. Code has been removed because it is not very important* 
* to the logic behind this program.                                * 
*                                                                  * 
*******************************************************************/ 
 
 
 
//Recursive Triangle Subdivision Method 
void DivideMatrix(Point3d p1, Point3d p2, Point3d p3, int lvl) 
{ 
     if (lvl > 0) 
     { 
     Point3d mid1_2 = CalcMidPoint(p1, p2); 
     Point3d mid2_3 = CalcMidPoint(p2, p3); 
     Point3d mid3_1 = CalcMidPoint(p3, p1); 
     DivideMatrix(p1,     mid1_2, mid3_1, lvl - 1); 
     DivideMatrix(mid1_2,     p2, mid2_3, lvl - 1); 
     DivideMatrix(mid1_2, mid2_3, mid3_1, lvl - 1); 
     DivideMatrix(mid3_1, mid2_3,     p3, lvl - 1); 
     } 
     else 
     { 
      PArray[0][index]=p1; 
      PArray[1][index]=p2; 
      PArray[2][index]=p3; 
     index++;         
     }  
 
   
} 
 
 
Point3d CalcMidPoint(Point3d p1, Point3d p2) 
{ 
Point3d point=Point3d(0.0, 0.0, 0.0); 
point.Translate( ((p1.x + p2.x)/2.0),((p1.y + p2.y)/2.0),((p1.z + p2.z)/2.0)); 
return point;         
} 
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//Initializes Final List and transposes information to GL Code 
 
GLvoid BuildLists() 
{ 
double r, g, b;  
DataSet = glGenLists(1); 
glNewList(DataSet, GL_COMPILE); 
index=0; 
 for(index=0; index < numtri; index++) 
 { 
      
     glBegin(GL_TRIANGLES); 
      glNormal3f( 0.0, 1.0, 0.0); 
      glColor3d(PArray[0][index].r,PArray[0][index].g,PArray[0][index].b);  
       glVertex3d( 
        PArray[0][index].x,  
        PArray[0][index].y,  
        PArray[0][index].z); 
         
      glColor3d(PArray[1][index].r,PArray[1][index].g,PArray[1][index].b);  
       glVertex3d( 
        PArray[1][index].x,  
        PArray[1][index].y,  
        PArray[1][index].z); 
        
      glColor3d(PArray[2][index].r,PArray[2][index].g,PArray[2][index].b); 
       glVertex3d( 
        PArray[2][index].x,  
        PArray[2][index].y,  
        PArray[2][index].z); 
     glEnd(); 
      
 } 
glEndList(); 
 
} 
 
 
//Defines Color and height of each Point in the Point Array 
void BuildDefinition() 
{ 
     int c,d; 
     for(c=0; c < 3;c++) 
     { 
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      for(d=0; d< numtri;d++) 
      { 
       PArray[c][d].r=GetColor(GetAngle(0, c, d)); 
       PArray[c][d].g=GetColor(GetAngle(1, c, d)); 
       PArray[c][d].b=GetColor(GetAngle(2, c, d)); 
       PArray[c][d].y=GetRoot(c, d);  
      } 
      
     } 
   
 
} 
 
//Returns one of three Angles the point represents 
double GetAngle(int type, int c, int d) 
{ 
 double angle=0.0, y=PArray[c][d].z, x=PArray[c][d].x; 
 if(type==0) 
 { 
  angle=(360.0/sqrt(3.0)) * (y + (1.0 /(2.0*sqrt(3.0) ))); 
 } 
 else if(type==1) 
 { 
  double xp = (x - (sqrt(3.0) * y) + 1.0)/4.0; 
  double yp = (-1.0*sqrt(3.0)*xp) + (1.0/sqrt(3.0)); 
  double d = sqrt( pow(x-xp,2.0) + pow(y-yp,2.0) ); 
  angle = (360.0*d)/sqrt(3.0); 
 } 
 else if(type==2) 
 { 
  double xp = (x + (sqrt(3.0) * y) - 1.0)/4.0; 
  double yp = (sqrt(3.0)*xp) + (1.0/sqrt(3.0)); 
  double d = sqrt( pow(x-xp,2.0) + pow(y-yp,2.0) ); 
  angle = (360.0*d)/sqrt(3.0); 
  
 } 
 return angle; 
} 
 
double GetAngle(double color) 
{ 
 double angle = color*180.0; 
 return angle;   
} 
 
double GetDegrees(double r) 
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{ 
 double d=r*(180.0/PI); 
 return d; 
} 
 
double GetRadians(double d) 
{ 
 double r=d*(PI/180.0); 
 return r; 
} 
 
double GetColor(double angle) 
{ 
 double color=angle / 180.0; 
 return color; 
} 
 
 
//Newton's Root Function to find height of any given triangle 
double GetRoot(int c, int d) 
{  
       double a=0.0; 
       double b=0.0; 
       double newguess=0.0; 
  
  
 if( sqrt(pow(GetAngle(PArray[c][d].b)-60.0, 2.0)) < 0.0001  
  || sqrt(pow(GetAngle(PArray[c][d].g)-60.0, 2.0)) < 0.0001  
  || sqrt(pow(GetAngle(PArray[c][d].b)-60.0, 2.0)) < 0.0001 ) 
 { 
  PArray[c][d].r=0.0; 
  PArray[c][d].g=0.0; 
  PArray[c][d].b=0.0; 
  newguess=5; 
 } 
 else if( sqrt(pow(GetAngle(PArray[c][d].b)-180.0, 2.0)) < 0.0001  
       || sqrt(pow(GetAngle(PArray[c][d].g)-180.0, 2.0)) < 0.0001  
       || sqrt(pow(GetAngle(PArray[c][d].b)-180.0, 2.0)) < 0.0001 ) 
 { 
  PArray[c][d].r=0.0; 
  PArray[c][d].g=0.0; 
  PArray[c][d].b=0.0; 
  newguess=1.0; 
 } 
 else if(sqrt(pow(GetAngle(PArray[c][d].r),2.0)) < 0.00001  
      || sqrt(pow(GetAngle(PArray[c][d].g),2.0)) < 0.00001  
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      || sqrt(pow(GetAngle(PArray[c][d].b),2.0)) < 0.00001 ) 
 { 
  PArray[c][d].r=0.0; 
  PArray[c][d].g=0.0; 
  PArray[c][d].b=0.0; 
  newguess=1.0; 
 } 
 else 
 { 
  
a=sin(GetRadians(GetAngle(PArray[c][d].r)))/sin(GetRadians(GetAngle(PArray[c][d].b)
)); 
  
b=sin(GetRadians(GetAngle(PArray[c][d].g)))/sin(GetRadians(GetAngle(PArray[c][d].b)
)); 
  PArray[c][d].A=a; 
  PArray[c][d].B=b; 
  double guess=2.0; 
  newguess=guess - F(guess, a, b)/D(guess, a, b); 
  while ( sqrt(pow(guess - newguess,2.0)) > 0.00001) 
  { 
   guess=newguess; 
   newguess=guess - F(guess, a, b)/D(guess, a, b);   
  } 
 } 
 if(newguess > 10.0) 
 { 
  newguess=10.0; 
 } 
 else if(newguess < -10.0) 
 { 
  newguess=-10.0; 
 } 
 return newguess; 
} 
 
//Function of modified Pythagoras Theorem 
double F(double x, double a, double b) 
{ 
 double r = 1.0 - (pow(a,x) + pow(b,x));  
 return r;        
} 
 
//Derivative of modified Pythagoras Theorem 
double D(double x, double a, double b) 
{ 
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 double r = -(log(a)*(pow(a,x)) + log(b)*(pow(b,x)));  
 return r; 
}  
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Point Class Header 
 
/****************************** 
*                             * 
*         Point3d.h           * 
*                             * 
******************************/ 
 
 
#ifndef POINT3D_H 
#define POINT3D_H 
 
 
class Point3d  
{ 
      public: 
       Point3d(); 
       Point3d(const Point3d & p); 
       Point3d(double initX, double initY, double initZ);       
       Point3d(double initX, double initY, double initZ, int initindex); 
       Point3d & operator = (const Point3d &); 
       double x; 
       double y; 
       double z; 
       float r, g, b; 
       double A, B; 
       int index; 
       void ChangeColor(float newR, float newG, float newB); 
       void Translate(double newX, double newY, double newZ); 
       void Translate(Point3d temp); 
}; 
#endif 
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Point Class 
 
/****************************** 
*                             * 
*       Point3d.cpp           * 
*                             * 
******************************/ 
 
 
 
#include "Point3d.h" 
 
Point3d::Point3d(): 
     x(0.0), 
     y(0.0), 
     z(0.0), 
     index(0), 
     r(1.0), 
     g(1.0), 
     b(1.0), 
     A(1.0), 
     B(1.0) 
{ 
                                
}; 
 
 
Point3d::Point3d(double initX, double initY, double initZ): 
     x(initX), 
     y(initY), 
     z(initZ), 
     index(0), 
     r(1.0), 
     g(1.0), 
     b(1.0), 
     A(1.0), 
     B(1.0) 
{ 
                                
}; 
 
Point3d::Point3d(double initX, double initY, double initZ, int initindex): 
     x(initX), 
     y(initY), 
     z(initZ), 
     index(initindex), 
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     r(1.0), 
     g(1.0), 
     b(1.0), 
     A(1.0), 
     B(1.0) 
{ 
                                
}; 
 
Point3d::Point3d(const Point3d & p) 
{ 
 x=p.x; 
 y=p.y; 
 z=p.z; 
 r=p.r; 
 g=p.g; 
 b=p.b; 
 A=p.A; 
 B=p.B; 
} 
 
Point3d & Point3d::operator = (const Point3d & p) 
{ 
 x=p.x; 
 y=p.y; 
 z=p.z; 
 r=p.r; 
 g=p.g; 
 b=p.b; 
 A=p.A; 
 B=p.B; 
   
 return *this;        
} 
 
void Point3d::ChangeColor(float newR, float newG, float newB) 
{ 
 r=newR; 
 g=newG; 
 b=newB;                                
}; 
 
void Point3d::Translate(double newX, double newY, double newZ) 
{ 
 x=newX; 
 y=newY; 
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 z=newZ;      
} 
 
void Point3d::Translate(Point3d temp) 
{ 
 x=temp.x; 
 y=temp.y ; 
 z=temp.z;      
} 
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