Pioneering Economical Space Propulsion

New Mexico
Supercomputing Challenge
Final Report
April 05, 2006

Team 81
Sandia Preparatory School

Team Members
Garrett Lewis
Zachary Rosenberg

Teacher
Neil McBeth

Mentor
Louis Friedman

Pioneering Economical Space Propulsion

THIS PAGE INTENTIONALLY LEFT BLANK

Pioneering Economical Space Propulsion 3

II. Table of Contents

Lo COVET ettt ettt et ettt e e e ettt et e et e et esnneas 1
II. Table OF CONLENLSooutiiiiieiieeie ettt ettt et ettt esht e et esab e et ebeesaeeebeens 3
III. EXECULIVE SUIMIMATYviieiiieeiiieeiieeeiiieeeiteeetteeeteeessaeessseeessseeesssesessseesssseesssseesnsseesnsseesssseesnssees 6
LAV 5 7 o) e (0101 11« E SRR SR 7
L. INEEOAUCTION ..ttt sttt e st b e st e e e it e beeeaeas 7

Vo MOAEL ...ttt st et e ettt e s at e e bt e ab e e bt e s it e e b e e eaeeeaeen 10
Lo PUIPOSE ettt ettt ettt e e et e e e ettt e e et e e e e s nbaeeesesntaee e e nsaeeeennnsaeeeennnees 10

20 IMIISSTON 1ttt ettt ettt ettt e b e et e b e e ea bt e sbb e et e e e hbeeabeeeab e eabeesabe e bt e enbeeneesateenne 10

3. SyStEMS ULIHZEA .. .ccoiiiieiiie ettt et s e st e e s aee e sreeesnsaeens 12

A. Chemical: Star 48 Rocket MOtOT.......coouiiiiiiiiiiiiiieceeeeeee e 12

B. Nuclear: Nuclear-Electric lon Thruster...........coccoeviiiiiiniiiiiiieeeeceeeeeeen 13
C. Solar: Solar Sail.........cooiiiiiiieieee e 14

D. Antimatter: Antimatter-Initiated Microfusion..........cceceevierieniiiieniienieieeiene 15
4. General MathematiCScoouiiiirieiiiierieee ettt st ettt enee 17

5. COAING PIOCESS ..cueveieiiii ettt ettt ettt ste e e st e e st eeessbeeesaseeessseesnseesnseesnseeens 21
VL RESUILS. ...ttt et ettt e b e et e s bt et e bt e e abeesabeenbeesaees 24
L € ') 1 TS O U T PR PRRR PSR PS 24
2. GeNeTal ODSEIVALIONSeevieuiiiiieiieieeiiesteete ettt et ettt et et e st e ebeeatesbeebeentesaeeseeneenaeenees 26

VL CONCIUSION ...ttt ettt et et et e sb e et e sbt e et e bt e eabeesaneenbeennees 28
1. General CONCIUSIONS.eeitiriiiiieiteie ettt ettt ettt et saeesaeeae e ses 28

2. Continuing Work and Recommendationscceeevieiiiiniieniienieeniiecie e 29

Pioneering Economical Space Propulsion 4

VIIL ACKNOWICAZEMENLSeieiiieiiieiieciie ettt ettt ettt te e st e esbeeseaeenbaesnaeenseennnas 31
DXL REIETEICES. ...ttt ettt et sttt ettt st e sb e et eat e s bt ebesaeesae et 32
X APPendix B: Gt COde ...ooiiiiiiieiiieiieee ettt ettt ettt et e e et esnbeebeennnas 35
LN 4 U T 0117 W) o) OO PO PRT PRSI 35
2. ASSEMDIYINTO.CPP ettt et et aae e 38
3. CREMICALCPD «eeereeiieeit ettt ettt ettt ettt et s e et et e e teesabeenbeeeabeenbeennbeenbeeennas 40
I 0141 A7 o) o ORI 42
5. HONMANNLCPP .ttt ettt ettt ettt et et e e te e st e esbeessbeesbeesaaeenbeeesseenseesnseenseennnes 44
0. NUCLEAT.CPP ittt ettt ettt ettt e et e s st e e teesabeesbeessseenseesnbeenseennnes 46
T OTDIE.CPP cevteentteiie ettt ettt ettt et et e et e st e s bt e bt e eab e e bt eeabe e haeenbeetaeeateenateenbeeennas 49
T o 1) (o o7 o) o SO O RRPRURPROUUPTRPRR 50
L e T0) 17 o) o OO RURPSRPR 52
L0, SOLATSATLCPP voovvieiieeiieiie ettt ettt ettt et ae e et e et e et e e bt e sabeenbeeenaeenbeeennes 68
11, S0larSaIlX CPP c.veerieiieiienieeet ettt sttt 71
12, SHAALKCPP ettt ettt ettt et sttt naes 74
13, Antimatther.N.. ..o 75
14, ChemiCal.Ni....c.c.ooii ettt ettt et 77
LT O 1] 7 o PP PSRPRORPS 78
16, HORMAND ...ttt ettt ettt ettt e et e st e ebeesaaeeneas 79
L7, INUCIEAT ...ttt ettt et e st e e bt e saeeeabe e s et e e bt e snbeenbeesaeeenbeesnnas 80
LT 0 3y o7 1 4 RSP PS 81
1O, PRIYSICS .ttt ettt et ettt e b e sttt et e e bt e at e et e e aaeebeeennes 82

20

e R ETETEIICE. N oot e e e e —————————as &3

Pioneering Economical Space Propulsion 5

21, SOlArSAILI .o e &4
22, S0larsailX N ..o 85
230 SAAFXN e 87
XL APPENAIX C: CRATTSeeeiiiiiieeiieiie ettt ettt ettt e sbe et esebe e seesnbeesseeenseensaeenseenseennnas 88
L. MEthOd ONE ...ttt 88

2. MEROA TWO e 91

Pioneering Economical Space Propulsion 6

III. Executive Summary

For decades mankind has strived to reach beyond the confines of Earth; over the past
half-century, space travel has evolved from an overzealous idealistic fantasy to a hard reality.
Yet in that time, the cost of exploration has remained astronomical due, in large part, to the price
of propulsion. A number of systems have been proposed to remedy this problem, including
chemical, solar, nuclear, anti-matter, and many other systems, but high entry costs have largely
prevented mainstream entrance into new fields.

This project was designed to provide a computational model in C++ that demonstrates
estimated costs of a hypothetical mission to Pluto using systems of the four propulsion methods
described above. Data output from the developed program was then interpreted by two methods,
both broad and specific, to determine the most effective system for the mission throughout the
coming century, assuming typical research efforts.

The project was selected largely due to rising interest in antimatter systems, as well as the
recent return-to-flight of the Space Shuttle and ever-extending exploration of the outer solar

system.

Pioneering Economical Space Propulsion 7

IV. Backqground

1. Introduction

Through the past 47 years, since Sputnik was launched by the Soviet Union, the primary
method of space propulsion has been through the use of chemical propellants. This method,
however, is not necessarily the most efficient means, both because of the massive cost of towing
the large amounts of fuel needed along with the payload and the relatively low efficiency of the
energy produced from the fuel mass and resources put into the system. A number of recent
projects, though, have given rise the possibility of implementation of alternative methods of
propulsion in space flight.

The space shuttle is a recognizable example of chemical a propulsion system.
Unfortunately, within this system, approximately 10% of the total mass of a craft is composed of
the fuel used to propel it, making the cost to send one kilogram of payload into space about
$10,000, creating astronomical final expenses. Recent developments of hybrid solid rockets
have allowed for more control of the burning of the fuel, and a corresponding increase in
efficiency, but, nonetheless, the problems persist.

Recently, the Planetary Society made an attempt to propel a craft, Cosmos I, using solar
sails. Solar sails utilize the momentum of photons to accelerate through space and hypothetically
reach nearly the speed of light if given enough time at sufficient proximity to a light source.
However, despite the high efficiency of solar sail propulsion, the cost of the sails themselves are
enormously high as a result of the need for low areal densities, only a few atoms thick and yet
capable of withstanding innumerable micro meteor impacts while supporting surface areas of

several hundred square kilometers. Another form of space-going sail has been proposed in the

Pioneering Economical Space Propulsion 8

form of the so-called Magsail, which utilizes charged particles on the solar wind to propel the
craft, but the much greater efficiency of the former type makes it the target of this project.

Space Propulsion 100 (SP-100), a futuristic Russian craft that utilized nuclear power as
means of propulsion, has also spurred examination of new technologies with the high mass
conversion ratios achieved within the propellant. Yet, nuclear propulsion raises environmental
concerns over the necessity to cultivate radioactive materials on earth and potentially produces
temperatures beyond those with which researchers are currently able to work with, reducing the
desirability of such methods. Nonetheless, of the methods herein examined, nuclear systems
such as that of Deep Space I, a recently-launched American vessel, are receiving the greatest
following.

A rising star, Energy Density

1.0E+18
. o _ 1.0E+16
antimatter-annihilation B 1 0E«14
' ‘ 2 1.0E+12
propulsion provides by far ? 1.0E+10
[#] 1.0E+08
& 1.0E+06 1
. =
the most efficient means of $ 1.0E+04-
L 1.0E+02
space propulsion. 1.0E+00 T ST !
Chemical Fission Fusion Antimatter
Antimatter, as the name
Comparison of energy produced by four methods. [17]

implies, is essentially the
exact opposite of matter, of which the universe is almost universally composed at the current
time. It has the same mass as matter, but the exact opposite charge and spin. As an example, a
proton with a positive charge of one electron Volt will counter an antiproton with a negative
charge of one electron Volt. When such particles collide, they instantaneously annihilate one

another producing, by Einstein’s Theory of General Relativity, massive amounts of pure energy.

Pioneering Economical Space Propulsion 9

In the split second after the annihilation of two such particles, numerous subatomic particles,
including pions (m), are created.

For approximately 18 attoseconds, these pions carry a mass at approximately 97% of the
speed of light and thus make an effective means to propel a craft. Additionally and ultimately, a
strong series of gamma-rays is emitted which has no direct use as propellant but can be used to
heat a secondary system and produce thrust by other means as well as provide power to craft
subsystems. Although the production efficiency of antimatter is currently too small for practical
use, the predicted exponential growth of the technology of production and storage provides hope

that this one-day might be a viable option for propulsion systems.

Pioneering Economical Space Propulsion 10

V. Model

1. Purpose

Through the use of a computational model, this project has been designed to give an
accurate series of predictions leading to the cost of an explorative mission in space for each of
four propulsion devices. These devices individually represent the four general categories of
propulsion by Chemical, Nuclear, Solar, and Antimatter Annihilation systems, with the precise
mechanisms being defined by both practicality and appropriateness to the specific mission
defined.

Through this model, the ultimate potential for each method to be used on a massive scale
in future space exploration may be determined and, through extrapolation, allow for more

effective distribution of resources to develop advanced systems for any proposed mission in the

field.

2. Mission

For this model, a wholly

Hohmann Transfer Orhit Low Thrust Transfer Orhit

hypothetical mission was devised |
to send a space probe toward the

orbit of Pluto. This ultra light

probe, weighing only 10 kg, is to
be used for unspecified scientific
research at the final orbit where, Two possible transfer orbits [24]

presumably, the planet lies. A

Pioneering Economical Space Propulsion 11

more complex system of modeling the planets’ positions and gravitational fields was discarded
from the model for ease of code construction and calculation within the orbits, rather, each
method of propulsion was held solely responsible for producing the force necessary to establish a
transfer ellipse from earth’s orbit to that of Pluto. Likewise, the potential of gravity assist was
not implemented in the mission design.

Without these interferences, each system was provided with an equal footing from which
to make the transfer, reducing the primary target of the mission to a simple change in velocity.
Thus, the sole remaining concern appears with the cost of achieving the thrust needed to

complete the mission. Range of Thrust and lg, for Different Propulsion Systems

4000 T 1 T T
The selection of Pluto i
as the mission target was
lon Maagnetic
derived from the recent push 15C’DL Electric Propulsion -
to expand human knowledge 1000 B4, E1
P s 2 Sloctro Solar Hz X Nuclear, antimatter, laser (Hz)
S 800 | thermal
of the outer reaches of the & NH1,N2H4
“'é 600 .
solar system by means of Augmented
400 N, H .o NH4 Chemical -
. . ——-_-——
such missions as Deep Space 300 N
I and New Horizons, which 200 :
was launched shortly after
. . 1m] | | |
this project. As we learn 0.1 s 10 100 1000
more and more about the Thrust (N)
) Ranges of specific impulse and thrust for various
inner solar system and the systems [15]

nature of other stars beyond our sun, there remains a large void in out knowledge from the areas

immediately beyond the great Gas Giants of Jupiter, Saturn, Uranus, and Neptune. Here, beyond

Pioneering Economical Space Propulsion 12

the reach of manned flight or real-time communication, the light of the sun shines so feebly that
it would barely be differentiated from another star, and yet, these areas of Pluto, the Kuiper Belt,
and the Oort Cloud are possibly the best places to find primordial samples of the materials that
formed the Earth. For those reasons, it is becoming ever more important to explore these
regions and develop the systems to enact this exploration.

To complete this mission, the probe will carry a propulsion system based on one of four
published concepts—either a standard chemically propelled rocket device using multistage
boosters, a fission-based nuclear electric propulsion (NEPP) system, immense solar sails, or a
mechanism modeled for antimatter-initiated microfusion (AIM). Each of these systems seems to
provide the most appropriate concept within the fundamental form that it represents for this

mission, as will be described by more in-depth means in Section V.3.

3. Systems Utilized

A. Chemical: Star 48 Rocket Motor

The chemical propulsion system used in the model is based largely on that used by the
New Horizons mission launched in January, 2006 and destined for Pluto itself. This centers on
the Star 48A rocket motor that has been implemented as a Payload Assistant Module on the third
stage of a Boeing Delta Launch Vehicle (PAM-Delta). This device is used directly with the
primary launch vehicle (LV) and thus does not require a separation in Earth orbit that is
necessary for each of the other systems. Nonetheless, the decreased mass found by separation
provides sufficient incentive to enact the process before the final burn is initiated.

As with all rocket motors, the Star class uses solid chemical propellants at maximum

capacities of slightly over two Metric Tonnes (MT). This allows for controlled burnout over the

Pioneering Economical Space Propulsion 13

duration of the flight, although this computational model does not initially have such capabilities.
However, the extra control is countered by a slight loss of efficiency in the mass conversion
ratio, which pulls down the total thrust available for the mission.

Ultimately, however, this is one of the best available systems on which to model the
chemical device for this project. Thus, this system has been implemented according to
specifications for the immediate years and adapted according to the research parameters for
chemical systems to determine the efficacy of the system both today and in later years relative to

the other systems.[zg]

B. Nuclear: Nuclear-Electric lon Thruster
Due to the
immense heat and

radioactivity that creates

HECHERGE
PLATIA

correspondingly high

=

stresses on direct nuclear
propulsion systems such
as those that heat a

gaseous or plasma

propellant and those that
Sample ion propulsion system [15])
use detonations of

miniature warheads for thrust, an indirect nuclear-electric system was chosen to provide the basis

of the nuclear propulsion in the model. More specifically, an ion accelerator described in [23]

Pioneering Economical Space Propulsion 14

was selected for its near-term applicability and high Specific Impulse (Isp), a measure of the
relative thrust produced by the mechanism.

This device uses energy acquired through the decay series of Uranium-235 to produce
electricity by means similar to those implemented at earth-based power reactors, merely on a
smaller scale. This electricity is then run through a series of solenoids to produce magnetic
fields and accelerate ions as a typical rocket would accelerate heated combustion products.

On a limiting note, the relatively miniscule capacity of the thruster leads to very slight
thrust at lower power levels. The only possibility to remedy this is a straightforward increase in
the power that is achieved by increasing the fission rate of the Uranium and producing the heat to
run the generator.

The most difficult portion of developing these systems, however, remains short lifetimes
of power production units (PPUs) due to those temperatures described above, and it is these
difficulties that continue to hold back advances in the field of nuclear propulsion, keeping the
cost above that of chemical devices. The model seeks to find a remedy to this in research over
the course of the century without compromising the accuracy of the analysis through a slightly
varied research function relative to the other units. Further, environmental activism places the
field on shaky ground that provides little room for advancement in the face of both political and

economic pressure.m]

C. Solar: Solar Sail

The solar-powered propulsion system that was modeled is the relatively simple concept
of a solar sail, a device that utilizes the pressure of photons produced by a light-emitting object to

accelerate through space. The light source may be anything, but the very slight order at which

Pioneering Economical Space Propulsion 15

the light transfers momentum to the sail necessitates that the source be either the nearest star, in
this case the sun, or a fantastic laser beyond the current capabilities of humans. As the latter is
seemingly impractical in its requirements for size, precision, and power, the sole viable power
source is the sun’s light.

The photon pressure should not be confused with the solar wind, an incessant outward
stream of ions, which, even under optimal usage by a magnetic sail, produce forces several
orders of magnitude below those of the light reaching the sail.

Seemingly perfect due to the lack of need for a fuel and infinite Isp, solar sails are
restrained by the immense sail areas and miniature areal densities that must be devised to create
pressure sufficient to propel the craft. While areas must reach kilometers on a side for many
missions, they must be only a few nanograms thick to prevent the build-up of insurmountable
masses that must be accelerated. Further, the sail must stand up to the beatings of various space

debris and retain functional sails throughout the mission to achieve the full orbital radius of the

target.[lg]
D. Antimatter: Antimatter-Initiated Microfusion
. _ Transformation of
The ultimate 270 -2 +y) antiproton and proton

.) = + <f,+ from matter to ener
mechanism for any device ptp— L3z7 L3 G‘ +U,u) [17] 2/

g | L5z~ -15(+7,)
requiring energy, antimatter '

annihilation ultimately provides U

a system with pure energy. In ..
U —e +U, to, .) .
. ' = e Te tneutrmmes — ¥ Ty +neutrinos
the case of electron-positron g —e Uty

interaction, this is in the form

Pioneering Economical Space Propulsion 16

of a high-intensity gamma-ray, while in the case of proton-anti-proton interaction there is a series
of subatomic particles produced, including neutrinos and pions, with the latter being charged
particles moving at approximately 97% of the speed of light that may be directed as any ion to
produce thrust.

As in nuclear systems, however, this means of direct propulsion is a poor use of the
energy derived of the reaction. Rather, a much more efficient use of the products of the reaction
is found in Antimatter-Initiated Microfusion. This system uses the destruction of antimatter to
catalyze fusion in a small pellet containing a few small nuclei, in this case Deuterium-Helium-3
combined with a solution of Uranium-238 that provides not only the high energy desired from an
extended series of fusion reactions, but a bonus in the decay of the Uranium to heat a propellant
and accelerate out of a typical nozzle while the charged byproducts of the nuclear reactions are
electrically accelerated out of the craft in a system similar to that of the nuclear model.

The almost imperceptible volume of antimatter needed to complete a standard mission
may be stored relatively easily in an advanced version of the Penning Trap, developed at
Pennsylvania State University once it is produced and provide thrust orders of magnitude greater
than the other methods while the volume remains orders lower.

The drawback for antimatter is the almost nonexistent production capacity for antimatter
that leads to production efficiencies of very nearly zero for the immediate timeframe that create
inversely high prices for even the minute amounts needed for a space mission. The only hope to
make antimatter a competitive system is that it will follow in the path of liquid Oxygen and

increase exponentially in production efficiency for an extended period of time.!'”

Pioneering Economical Space Propulsion 17

4. General Mathematics

Underlying each of the systems

Pe e Pa e modeled herein except the solar sails,

which serve as a special case due to their
Rocket diagram for equation [24] unique method of obtaining thrust, is the

thrust equation that is derived of the pressure gradient in any rocket and, in a modified state, in

electrical acceleration systems. The basic equation states:

F =mgVe + (PeAe — POAe) [28]

Where F is force, m is mass, V is volume, p is pressure, and A is area of the exit to the
reaction chamber. This equation governs almost all motion of spacecraft at some level,
regardless of specific parameters, although many systems are better described by more specific
parameters, such as the rocket equation, which is named non-creatively for the objects it

describes:

m pro?ellant 1 28]
M final

Av = golsp In[l +

Here, the change in velocity is equated against the gravitational acceleration at Earth’s
surface, g, the Isp, and the natural log of the mass of the propellant relative to the empty mass of
the system. By solving this equation, several steps are skipped that would otherwise slow the
computation using only the thrust equation used above. This is particularly influential in this

model, which relies heavily on the delta-v.

Pioneering Economical Space Propulsion 18

In the cases of the nuclear and antimatter systems modeled, where the propellant was
accelerated to much greater speeds than in the chemical systems, this equation was transformed

into a relativistic form:

2v

Minitial \ ¢ _4
Av M final
o 2,)
(mlnltlal) c +1
M final

e

Here, the exhaust velocity is reintroduced along with the speed of light that define how
the propellant’s mass increases with increasing energy and thus how the craft will accelerate. If,
though, the exhaust velocity or Isp and delta-v are known, the equations above may be
reorganized to solve for the required propellant mass to be implemented in the cost function, as
was the case with the three devices that fit these equation.

Of course, there was further calculation required to determine the delta-v and,
particularly, the exhaust velocity. In the case of both the nuclear and chemical systems, this was
an easy process due to the familiarity that the scientific community has built with each
mechanism over the decades that has allowed for extensive simplification of advanced systems
of equations to only a few short bullets.

Antimatter systems, though, are much less researched and therefore much less known.
This results in the introduction of numerous abstract parameters used to define portions of the
propulsion systems and cost functions that are not fully understood. More precise descriptions

and definitions for this device are available in section X.1, as well as [16] and [22].

Pioneering Economical Space Propulsion 19

On a completely different system of equations, solar sails are much more direct in the
standards that govern their motion. They rely on simple momentum transfer from the photons to
the sail, and yet, their orbital motion quickly turns this straightforward analysis into a
convoluted, extensive chain of solutions that only lead back to the same parameter later in the

system. Ultimately, however, the system may be simplified to a small system for demonstration:

5 456E - 6(1+ R)

> [12]
'AU
F=pA [14]
2
2Fr
AU
=—NY 14
B - [14]
22 Msolar ﬂCOSSGr
F=rg° - + [14]
2 2
. —2t@ BcosZaysinar
52, [14]
r 3

These five equations define the planar motion of the sail with p as pressure, R as
reflectivity, and r as the radius in the first equation. The second is simply force as a product of
pressure and area, but the third becomes slightly more obscure with B referring to characteristic

acceleration and m to mass of the entire craft. The fourth and fifth equations use the polar

Pioneering Economical Space Propulsion 20

coordinates P(r, 0) with the angle of the sail relative to the radial vector and p as the heliocentric
gravitational constant. Using variations on this system and basic Newtonian physics, the

position of the sail may be easily determined.

The scientific and engineering advances that allow the model to enact variations in the
price of various aspects of the mission for each system are produced as an exponential function
of time remaining to launch, and while the precise values of each function vary throughout the

model to account for

wf . r - r - 11] variations in the properties

W History of Antiproeton Production J
1 of the parameters across

i -_ -
Hbar Tech Goal g5

=

-
=

L
1

functions as well as across

=
=
1
1

I] files. The equations all

Antiprotens | Year
s 3
= =

. involved some form of the

! f= -
b [. basic equation graphed
III. — -
wl] below with k on the
LBL Discewery J
N - L. 1 [P IR
150 10 1T 1550 TIH 200 2010 Hzn Vertlcal aXlS:

fwar Beam Deliversd

Antimatter production and furute predictions[13]

time*time
k =10 time*100

Pioneering Economical Space Propulsion 21

Graph of the fundamental equation defining research

Sample Research Trend

Parameter Value

0 20 40 60 80 100

Year

Thus, it can be seen that the mathematics within the model provide a strong foundation
for the model that would be difficult to achieve on a manual level, especially in the case of the
necessarily iterative solar sailing model. When calculating for the entire 100-year period over
which the model runs, it becomes apparent at what level the mathematics is simplified through

the use of pion4.exe.

5. Coding Process

Using Microsoft Visual C++ NET as a platform, the code was assembled using a
combination of standard C++ libraries and functions written specifically for the task at hand. To
accommodate these newly written functions in fields ranging from data pertaining to the
Hohmann transfer orbit to the pre-launch mission costs, a series of classes has been built to
interact in a primary file, pion4d.cpp (X.9), and ultimately, return the estimated price of each

propulsion system.

Pioneering Economical Space Propulsion 22

This class structure is key to the flow of the code for several reasons, not the least of
which is the organization it provides. By separating related functions, such as those related to
antimatter and those pertaining to orbital mechanics, a short list of partial systems could easily be
monitored and ordered within the primary functions without the clutter that would be associated
with building the 2,500 lines in one file. Effectively, the classes allowed the solver to simply
solve one case and then move on to the next while using only one small file at a time, freeing
memory and making debugging easier. Rather than jumping through the equivalent of over 50
pages of text and back again, he had merely to track a steady descent through no more than
approximately five pages and typically less than one.

The structure also provided ease of handling during stages of partial completion. In such
cases, the programmer was able to retain relatively sloppy, half-completed portions of the code
in separate areas while testing finished parts. Thus, there was no final build that resulted in vast
numbers of errors, but only small, easily-remedied problems.

These classes also contained limited hierarchy that allowed them to inherit some
fundamental functions in certain cases, particularly in the relationship between the orbit (X.7)

and hohmann (X.5) classes.

Once the code produced functional output to the console (Primitive version of Method
Two, X.9, described below), a process of reorganizing was initiated in a new project folder to
expand the functionality of the model and provide usable data. This was ultimately achieved by
developing a new central function (Method One, X.9, also described below) that implements the
original model for each of 100 years and providing the user with a function to choose either the

old or the new when first opening the program.

Pioneering Economical Space Propulsion 23

Method Two provided the initial functionality of the model by allowing the user to define
an interval of time available prior to launch and implementing the selection into a _tmain
function that called the appropriate class functions for each of the systems and solved for the
total mission cost. During this process, it simultaneously output the data achieved at every step
to the console to be perused by the user and permit easy identification of any sources of error in
development. With the advent of Method One at later stages, however, this console output was
expanded to a file stream that dropped into a *.doc file (Sample at XI.2) that could be resaved for
future reference, allowing easier tracking of data.

If, though, the user should choose to follow Method One when prompted, the program
begins an automatic process of iterating through the systems of equations to solve for the price of
each propulsion means over the coming century. Herein, the user is provided with a *.xlIs file
(XI.1) that gives a table of each final value that may be once again resaved and analyzed. This
method is particularly useful for the trend determinations that the project sought.

The code remains in an evolutionary state, awaiting further adjustments to improve the

program as described in VIL.2.

Pioneering Economical Space Propulsion 24

VI. Results

1. Graphs

While Method Two provided only individual data points, the output of Method One was
easily transposed into a series of graphs to demonstrate the estimated trends of the cost functions
for the four systems analyzed. These graphs give four views of the trends from the very broad in
the case of the first to a heavily magnified version in graph four, with intermediate levels
between. This is achieved through manipulation of the scale of the vertical axis; the horizontal
remains at the same level throughout, delineating the 100-year period to 2106.

The graphs will be further analyzed in Section 2.

Graph 1:

Estimated Costs Through 2106 Launch Date (1)

9E+12
8E+12 -
7TE+12 -
6E+12 -
5E+12 -
4E+12 A
3E+12 -
2E+12 -
1E+12 -

O TTTTTT T T T T T T I T ITTITTITT

1 11 21 31 41 51 61 71 81 91

Price ($)

Years to Launch

—— Chemical — Nuclear-Electric Solar — Antimatter

Graph 2:

Pioneering Economical Space Propulsion

Price (%)

Estimated Costs Through 2106 Launch Date (2)

5000000000

4000000000 -

3000000000 -

2000000000 -

1000000000 -

0

1 11 21 31 41 51 61 71 81 091

Years to Launch

—— Chemical — Nuclear-Electric Solar — Antimatter

Graph 3:

Price ($)

Estimated Costs Through 2106 Launch Date (3)

1000000000

800000000 - \

600000000 -
400000000 -

200000000 -

0

1 11 21 31 41 51 61 71 81 091

Years to Launch

—— Chemical — Nuclear-Electric Solar — Antimatter

25

Pioneering Economical Space Propulsion 26

Graph 4:

Estimated Costs Through 2106 Launch Date (4)

800000000

750000000 + \X
700000000 -
650000000 -
600000000 -
550000000 -

sooo00000 4

450000000 -

400000000 | —————————

350000000 TTT riT
1 11 21 31 41 51 61 71 81 91

Years to Launch

Price ($)

—— Chemical — Nuclear-Electric Solar — Antimatter

2. General Observations

The data, both from Method I (Graphs above and Chart XI.1) and Method Two (Chart
XI1.2), indicated that among near-term missions, antimatter propulsion systems are wholly
impractical with cost estimates not falling below US$1 billion until the 20" year. This presents
costs over the immediate era that are several orders of magnitude greater than those of every
other system. The three remaining concepts give cost estimates for the defined mission that
move nearly in unison, with solar sails requiring approximately US$150 thousand in excess of
the NEPP, which in turn presents prices of approximately US$75 thousand beyond those of a
chemically propelled craft.

At 50 years, the AIM system reaches its lowest estimated cost of approximately

US$729.3 million. From that point, it joins the uniform rise in required funding, remaining

Pioneering Economical Space Propulsion 27

around US$90 million above the solar system. It does, however, show very slight trend toward
the cost of the others.

The individual data points devised by the program to generate the costs for the mission
indicate a heavy skewing of responsibility toward the cost of human operations rather than the
fuels and propulsion devices. The sole exception to this is the noted in the price of antimatter for
the first 50 years. At that point, the falling price changes fail to significantly affect the total
mission cost, reflecting on the heavy impact of labor pricing. Further, this labor impact led to a

direct increase in overall price for each system.

Pioneering Economical Space Propulsion 28

VII. Conclusions

1. General Conclusions

For near-term applications, the data provided by the program largely supports the

estimates set forth by previous research for the systems. /7231128

Beyond that, the trends rise
roughly in accordance with expectations at a general level. Although it is difficult to determine
long-term costs, the trends do follow rough precedents set forth by science since the
Renaissance.

The cost functions of the three higher systems were expected to ultimately converge and
intersect with the chemical model, but they instead, with the exception of antimatter, follow this
standard. Rather, they remained at a roughly constant level above the cost of a chemical thruster
device throughout the 100 years modeled. This discrepancy, though, is not of such magnitude
that the data may be seen as inconclusive. While nuclear and solar mechanisms greatly reduce
fuel consumption in orbit, there is very little to restrain the costs of manpower and launch
systems that are required to implant the craft in an initial orbit about the sun. When this is added
to the price of research and development, the effects of advances in the latter are largely wiped
out among the three less-expensive devices.

The AIM system modeled herein, however, demonstrates drastic change through the first
half-century and a continuing, albeit less noticeable, approach toward the costs of the other
systems beyond that. Instead of the nearly linear growth demonstrated in the lower three systems
after manpower’s addition, it retains an inversely exponential trend altered only slightly by the
pricing pressures in the latter half of the century. Thus, although the model indicates that

antimatter systems are not an effective pursuit for this mission, there are indications that

Pioneering Economical Space Propulsion 29

missions of a sufficiently later date or increased payload may provide a base for antimatter
systems.

The increased payload necessitated for, perchance, a return mission or a manned mission
would greatly increase the volume of fuel required for all systems and thus increase the effects of
improved technology in any of these mechanisms. This could potentially pull these functions
into sufficiently new paths to make any of the three more-advanced systems more desirable than

a chemical version that is most desirable in this analysis.

2. Continuing Work and Recommendations

Although functional and effective as a means of demonstrating the potential of antimatter
as a propulsion method, this model does not fully incorporate potential variations in the prices of
labor or launch mechanisms. Nor does it provide the options of expanded changes in orbital
velocity for farther-reaching missions or expanded payloads for return voyages, including
potential manned exploration. Further work on the program over the coming months will
attempt to a least partially remedy some of these shortcomings.

Primary consideration in this respect will go to the orbital and payload questions, as they
seem to hold the greatest potential to significantly affect the systems beyond what the current
model indicates. This will be achieved by a means similar to Method One that iterates over the
period in question to determine the gradient produced by these attributes to a mission. Ideally,
Calculus methods will be implemented on the output to further determine the affects of these
mechanisms.

There also remains the potential of an expanded time frame undergoing analysis to

attempt to better pinpoint any point of intersection experienced by the cost functions of the

Pioneering Economical Space Propulsion

30

mechanisms in question.

Fast Tropsic _ Brake(0.04N) Brake(0.04Nex) Brake(D034N) Brake SPT(U.04N)
C, HEms 1M EEyE JEEy R 12k =
Laumch Dare 19002006 19012006 09/01/2006 11/01/2006 02/01/2006) .
Jupiter Encouneer 23022007 11032007 290312007 2803/2007 011042007 If implemented, this will
Pluto arrval 04102014 21022018 051212020 04/12/2020 02/12/2020
Pluto v, 15337 ks 50m's 50 m's 50 m's S0m's
Mass ar deparnure 600 kg 500 kg 500 kg 500 kg 00 kg 1 1
Mlzss ar armival 365.5kg 36864 kz 403 86kg 241 3kg 270 8kg requlre Only Slmple
Tofal thrust time 600 hoars 45958 hours 39122 honars 49336.7 hourz 33338 bowos
' ' ' ' " [FasTans adjustments to some
- = Thrust
= — -—- Brake
constants in the code.
10 \ll k
Jupiter \ A secondary
II Sakurm II Il
o I] goal of continued work
= ..7|u5 |
- \ / .
—anl Neptlne] entails the development
5
5
% Pt of an expanded
_3: - 1' -
\ .
) Graphical User Interface
= 'a________ .___-- J
. (€18)0) for easier
-20 —10 0 10 20 a0 0
(AL)
Figure 10.Earth-Jupiter-Fluto Option in 2006 with electric propulsion Operatlon Of the
Sample trajectory for a gravity assist mission [27]

program by those less
familiar with its development. Currently, the user must have a level of understanding of the
program achieved by reading the section of this report on the project’s development (Section V)
to easily implement and interpret the program. It is hoped that extended work will allow for

adaptation of this issue.

Pioneering Economical Space Propulsion 31

VIII. Acknowledgements

We would like to extend our sincere thanks to the faculty and staff of Sandia Preparatory
School for their support and intrigue that has enabled us to compete in the Adventures in
Supercomputing Challenge. In particular we would like to thank them for their financial support
in transportation as well as access to and use of computer equipment.

We would also like to extend our gratitude and appreciation to our sponsor and advisor
Neil McBeth who has helped us through our difficulties and supported us throughout the
duration of the project. His devotion and commitment to helping us participate despite any
personal problems has been greatly appreciated and without him our project would not have been
completed.

Additionally, we extend our deepest thanks to Louis Friedman and John Suding for their

advice that provided us with the essential information needed to complete our model.

IX.

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Pioneering Economical Space Propulsion 32

References

109™ Congress of the United States of America. National Aeronautics and Space

Administration Authorization Act of 2005. S.1281, January, 2005.

Borowski, Stanley K. “Comparison of Fusion/Antiproton Propulsion Systems for

Interplanetary Travel”, AIAA-87-1814, July, 1987.

Braeunig, Robert A. “Orbital Mechanics”, Rocket and Space Technology.

http://www.braeunig.us/space/orbmech.htm, December, 2005.

Chamberlain, Sally, et al. “Project Longshot: A Mission to Alpha Centauri”, NASW-

4435.

Diedrich, Benjamin, Charles Garner, and Manfred Leipold. “A Summary of Solar Sail

Technology Developments and Proposed Demonstration Missions”, JPC-99-2697, 1999.
Forward, Robert L. “Antiproton Annihilation Propulsion”, AFAL TR-87-070, 1997.
Frisbee, Robert H. “Solar Sails For Mars Cargo Mission”, AIAA-01-2076, 2001.

Frisbee, Robert H. “Advanced Propulsion for the XXIst Century”, AIAA-2003-2589,

July 2003.

Frisbee, Robert H. “Systems-Level Modeling of a Beam-Core Matter-Antimatter

Annihilation Propulsion System”, Jet Propulsion Laboratory.

Frisbee, Robert H. and Stephanie D. Leifer. “Evaluation of Propulsion Options for

Interstellar Missions”, AIAA-98-3403, July 15, 1998.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Pioneering Economical Space Propulsion 33

Halliday, David and Robert Resnick. Fundamentals of Physics. USA: John Wiley &

Sons, Inc., 1974.

Hollerman, William Andrew. “The Physics of Solar Sails”, For NASA Faculty

Fellowship Program, 2002.

Howe, Stephen D. and Gerald P. Jackson. “Antimatter Driven Sail for Deep Space

Exploration”, For Hbar Technologies, LLC, January 2004.

Kim, Mischa. “Continuous Low-Thrust Trajectory Optimization: Techniques and

Applications”, Dissertation to the Faculty of Virginia Polytechnic Institute, 2005.
Komerath, Narayanan. “AE6450 Lecture #13: Electric Propulsion”, For Lecture, 2004.

LaPointe, Michael R. “Antiproton Powered Propulsion with Magnetically Confined

Plasma Engines”, AIAA-89-2334, August 1989.

McMahon, Patrick B. “Antimatter Initiated Microfission/fusion (AIM) Space

Propulsion”, For NEEP 602 Nuclear Power in Space, May 2000.
Moche, Dinah L. Astronomy. USA: John Wiley & Sons, Inc., 2000.

Montgomery, Edward E., Gregory P. Garbe and Andrew Heaton. “Places Only Sails Can

Go”, NASA Marshall Space Flight Center, 2002.

Munem, M. A. and J. P. Yizze. Precalculus Functions and Graphs. New York: Worth

Publishers, 1990.

Redheffer, R. M. and 1. S. Sokolnikoff. Mathematics of Physics and Modern

Engineering. USA: McGraw-Hill, Inc, 1966.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Pioneering Economical Space Propulsion 34

Schmidt, G.P., H.P. Gerrish, J.J. Martin, G.A. Smith, and K.J. Meyer. ‘“Antimatter
Production for Near-term Propulsion Applications”, NASA Marshall Space Flight

Center, 1998.

Smith, Bryan K. “Definition, Expansion and Screening of Architecture for Planetary
Exploration Class Nuclear Electric Propulsion and Power Systems”, For Master of

Science in Engineering and Management, February, 2003.

Tajmar, Martin. “Advanced Space Propulsion Systems”, For Vienna University of

Technology, 2003.

Templeman, Julian and Andy Olsen. Microsoft Visual C++ .NET. Washington:

Microsoft Press, 2003.

Thomas, George B. and Ross L. Finney. Calculus and Analytic Geometry. USA:

Addison Wesley, 2003.

Vasile, Massimiliano, Robin Biesbroek, Leopold Summerer, Andres Galvex, and
Gerhard Kminek. “Options For a Mission to Pluto and Beyond”, AAS 03-210, February,

2003.

Whitmore, Stephen A. “MAE 6530—Propulsion Systems”, Utah State University

College of Engineering. http://www.engineering.usu.edu/classes/mae/6530/propulsion

systems/prop.html, January, 2006.

Williams, Craig H., Leonard A. Dudzinsky, Stanley K. Borowski and Albert J. Juhasz.
“Realizing ‘2001: A Space Odyssey’: Piloted Spherical Torus Nuclear Fusion

Propulsion”, AIAA-2001-3805, March 2005.

Pioneering Economical Space Propulsion 35

X. Appendix B: C++ Code

1. antimatter.cpp

L1111777777777/77777777/77777/77/7/7777/7//7/777/7///7777/7//7/77777/
//Filename:

//antimatter.cpp
L11717777777/7777777/7777777/7//77777///7/7777///77777/7/77777/

#include "'stdafx.h"
#include "antimatter.h"
#using <mscorlib.dll>
using namespace System;

//This fTile provides the background support for antimatter.h.
//As an early file, there remain numerous production notes and a few blotted
equations.

//antimatter cost from apfntpa
double antimatter::eta_anti (double t) //efficiency max=0.5

{

double eta_anti = (4/Math::Pow(10, 8)) + ((Math::Pow(3,
Tttt/ (t*10000000)))-1)/10) ;

//double eta_anti = Eout_anti / Ein_anti;

return eta_anti;

}

double antimatter::Ein_anti (double c, double eta_anti, double m_anti)
{

double Ein_anti = ¢ * m_anti / eta_anti;

return Ein_anti;

}

double antimatter::E_cost _anti (double cost grid, double m_anti, double c,
double eta_anti)
{

double E _cost _anti = cost _grid * m_anti * c*c / eta_anti;

return E_cost_anti;

}

//antimatter requirements
double antimatter::m_anti (double beta _anti, double gamma_anti, double
eta_exhaust _anti, double relative_m anti, double lamda_anti, double m_pay)

{

Pioneering Economical Space Propulsion 36

double m_anti = ((gamma_anti-1)*(relative_m_anti-1)*m pay) /
(2*(1+beta_anti)*(gamma_anti+eta _exhaust anti-1)*(1+lamda_anti-
relative_m_anti*lamda_anti));

//double m_anti = (1 /7 (2*(1+beta_anti))) * ((gamma_anti-1) /
(gamma_anti+(eta_exhaust anti-1))) * ((relative m_anti-1) / (1+lamda_anti-
relative_m_anti*lamda_anti)) * m_pay;

return m_anti;

}

double antimatter::relative _m_anti (double delta v, double c, double
v_exhaust)
{

C = 299792458;

double relative_m_anti = Math::Pow((1+(delta_v/c)) / (1-(delta_v/c)),
(c/(2*v_exhaust)));

return relative_m_anti;
}

double antimatter::lamda_anti (double m_struct, double m_prop)
{

double lamda_anti = m_struct / m_prop;

return lamda_anti;

}

double antimatter::gamma_anti (double v_exhaust, double c¢)
{

C = 299792458;

double gamma_anti = 1 / (Math::Sqrt((1-
((v_exhaust/c)*(v_exhaust/c)))));

return gamma_anti;
}

double antimatter::m_prop (double beta_anti, double gamma_anti, double
eta_exhaust_anti)
{

double m_prop =

(2*1.672621718*Math: :Pow(10,27)*(1+beta_anti)*(eta_exhaust anti+gamma_a
nti-1))/(gamma_anti-1);

return m_prop;
3

double antimatter::m_dry (double relative_m anti, double m_prop)

{
double m_dry = m_prop / (relative_m anti-1);
return m_dry;

}

double antimatter::m_struct (double m_dry)

double m_struct = 0.9 * m_dry;
return m_struct;

}

//antimatter physics for pulsed p-H rocket (system concept) from
appwmce

double antimatter::B_min (double n_dense anti, double T anti, double
n_dense H, double T _H)

Pioneering Economical Space Propulsion

{

double B _min = Math::Sqgrt(8*Math::PlI * (n_dense_anti*T_anti +
n_dense H*T_H));

return B_min;
}

double antimatter::Prob_remain (double R _mirror)

double Prob_remain = Math::Sqrt(((R_mirror-1) / R_mirror));
return Prob_remain;

}
double antimatter::R_mirror (double B _min, double B_max)
{
double R_mirror = B_max / B_min;
return R_mirror;
}

double antimatter::eta E (double E_ion, double E_electron, double n_dense H,
double n_dense_anti)
{
double eta E = (E_ion+E_electron)*n_dense H / (1877*n_dense_anti);
return eta E;

}

// double T_exhaust (double E_ion, double amu_anti);
double antimatter::flow _prop (double amu_H, double n_dense H, double
V_chamber, double t_pulse)

{
double flow _prop = amu H * n_dense H * V_chamber / t_pulse;
return flow_prop;
}
double antimatter::v_exhaust (double E_ion)
{
E ion = 938.27231; //\eV
double v_exhaust = 1.4*Math::Pow(10, 6) * Math::Sqrt(E_ion);
return v_exhaust;
}
double antimatter::Isp_anti (double v_exhaust)
{
double Isp_anti = v_exhaust / 980;
return Isp_anti;
}

double antimatter::Thrust (double flow prop, double v_exhaust)

{

double Thrust = flow_prop * v_exhaust;
return Thrust;

//End of file.

L11117777777777777777777777777/7777777/7/7/777/7//7/7//77/7///7/7/7/777/

Pioneering Economical Space Propulsion 38

2. AssemblyInfo.cpp

L1777 777777777777777/7/7/77777/7777/777/77//7/7/77/7/7/7/77/77/77/77777
//Filename:

//Assemblylnfo.cpp

L1177 777/777777777777777777/7/7/7/777777/7777/77/77/7//7//7/77/7/7/77/7777

#include "stdafx.h"
#using <mscorlib.dll>

using namespace System::Reflection;
using namespace System::Runtime::CompilerServices;

//

// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.

//

[assembly:AssemblyTitleAttribute("""")];
[assembly:AssemblyDescriptionAttribute("")];
[assembly:AssemblyConfigurationAttribute("'"")];
[assembly:AssemblyCompanyAttribute(*"")];
[assembly:AssemblyProductAttribute('"")];
[assembly:AssemblyCopyrightAttribute(""")];
[assembly:AssemblyTrademarkAttribute(""")];
[assembly:AssemblyCultureAttribute(*"")];

//
// Version information for an assembly consists of the following four values:
//

// Major Version
// Minor Version
// Build Number
// Revision

//

// You can specify all the value or you can default the Revision and Build
Numbers
// by using the "*" as shown below:

[assembly:AssemblyVersionAttribute(*'1.0.*"")];

//

// In order to sign your assembly you must specify a key to use. Refer to the
// Microsoft _NET Framework documentation for more information on assembly
signing.

//

// Use the attributes below to control which key is used for signing.

//

// Notes:

// (*) If no key is specified, the assembly is not signed.

// (*) KeyName refers to a key that has been installed in the Crypto
Service

Pioneering Economical Space Propulsion 39

// Provider (CSP) on your machine. KeyFile refers to a file which
contains

// a key.

// (*) If the KeyFile and the KeyName values are both specified, the

// following processing occurs:

// (1) If the KeyName can be found in the CSP, that key is used.

// (2) IT the KeyName does not exist and the KeyFile does exist, the
key

// in the KeyFile is installed into the CSP and used.

// (*) In order to create a KeyFile, you can use the sn.exe (Strong Name)
utility.

// When specifying the KeyFile, the location of the KeyFile should be
// relative to the project directory.

// (*) Delay Signing is an advanced option - see the Microsoft _NET
Framework

// documentation for more information on this.

//

[assembly:AssemblyDelaySignAttribute(false)];
[assembly:AssemblyKeyFileAttribute(*"")];
[assembly:AssemblyKeyNameAttribute('"")];

//End of file.

11/17777777777777777777777777777/77/7/7//7//7///////////////////7/777

Pioneering Economical Space Propulsion

3. chemical.cpp

L1177 7777777777/7777777/7777777/7/77777////7777/7/7//7777/7//77777
//Filename:

//chemical .cpp
L111717777777777777777/777777///77777/7//7777/7/7///777/7////77777/

#include "stdafx.h"
#include "chemical.h"
#using <mscorlib.dll>
using namespace System;

//This *_.cpp file provides the body of the chemical methods.

double chemical::delta T (double Ti, double TF)

{
double delta T = TF-Ti;

return delta T;

}

double chemical::velocity prop (double Cp, double delta T)

{
double velocity prop = Math::Sqrt(2*Cp*delta_T);
return velocity prop;

}

double chemical::eta_prop()

double eta prop = .8;
return eta_prop;

}

double chemical::F_chem(double P_exit, double velocity prop, double m _dot,
double A noz)

double F _chem = velocity prop * m _dot + P_exit * A noz;
return F_chem;

}

double chemical::delta v_chem(double g zero, double Isp_chem, double P_ref)
{

double delta_v_chem = g zero * Isp_chem * Math::Log((1+P_refT),
Math::E);

return delta_v_chem;
}

1117777777777 7777777777777777777777777777/7//7777/7//7/777/7/77777

double chemical::P_ref(double delta v _chem, double g zero, double Isp_chem)

{

double P_ref = Math::Pow(Math::E, (delta_v_chem/(g_zero*Isp_chem)))-1;

return P_ref;

40

Pioneering Economical Space Propulsion

double chemical::m_prop(double P_ref, double m_sys, double m_pay)

{
double m_prop = P_ref*(m_sys+m_pay);
return m_prop;

}
double chemical::cost_prop(double m_prop)
{
double cost _prop = .44*m _prop;
return cost_prop;
}

double chemical::cost_tot_chem(double cost _prop, double cost_sys, double
cost_mission)

{
double cost _tot _chem = cost prop + cost _sys + cost _mission;
return cost_tot chem;
}
double chemical::cost _mission(double time)
{
double cost _mission = 300000000+500000*time;
return cost _mission;
}

//End of file.

11/1/177777777777777777777777777777/7///7/7/7///////////////////7/777

41

Pioneering Economical Space Propulsion 42

4. cost.cpp

L1177 777777777777/7777777/7777/77/77/7/7777/77//77/7//7/77/7/77/777
//Filename:
//cost.cpp
L1177 77777777777777/7777/777/7777/77/7/77/77/7/77/7//77//77/77/7777

#include "stdafx.h"
#include "orbit.h"
#include "cost.h"
#using <mscorlib.dll>
using namespace System;

//This file gives definitions for the generic cost functions.

double cost::cost pre (double cost mech, double cost research, double
cost_materials, double cost place)

double cost pre = cost mech + cost _research + cost materials +
cost_place;
return cost_pre;

double cost::cost post (double cost engineer, double cost place)

{

double cost _post = cost_engineer + cost _place;
return cost_post;

}

double cost::cost _mech (double t, double n_mech, double price_mech)

{

double cost _mech = t * n_mech * price_mech;
return cost_mech;

}

double E_cost (double cost grid, double m_anti, double c, double eta anti)

{
}

double cost::cost_tot(double cost_prop, double cost_sys, double cost_mission)

{

return O;

double cost_tot = cost _prop + cost_sys + cost _mission;
return cost_tot;

}

double cost::cost_mission(double time, double cost_coef)

{
double cost _mission = 300000000*cost_coef+500000*time;

return cost _mission;

Pioneering Economical Space Propulsion

//End of file.

L11777777777777777777777777777777777777/7/77/777/7/7/7/7//777/7/77777

43

Pioneering Economical Space Propulsion 44

5. hohmann.cpp

L1111 1177777777777777777777 I/ /7777777777777
//Filename:

//hohmann.cpp
//177/7777777777777

#include "stdafx.h"
#include "hohmann.h"
#include "orbit.h"
#using <mscorlib.dll>
using namespace System;

//This file defines functions for the transfer orbits.

double hohmann::vi_transfer_hoh()
{

orbit * alpha;

alpha = new orbit;

double omega = alpha->sun_g(6.6726*Math: :Pow(10, -11),
1.9891*Math: :Pow(10, 30));

Console::Write(S"Number density = ");

Console: :WriteLine(omega);

double MG = omega;
double ri = 149597870691;
double at = (149597870691 * (1+39.53)) 7/ 2;

Console::Write(S"\nlnitial Radius = ");
Console::WriteLine(ri);
Console::Write(S'"\nSemi-major Axis = ");
Console::WriteLine(at);

double vith = Math::Sqrt (MG * ((2 7/ ri) - (1 / at)));
Console::Write(S"\nlnitial Velocity of Transfer Orbit = ");
Console::WriteLine(vith);

return vith;

}

double hohmann::vf_transfer_hoh(double MG, double rf, double at)

double vfth = Math::Sqrt (MG * ((2 7 rF) - (1 / at)));
return vfth;

}

double hohmann::delta_vi_h(double ri)

{

double vith = hohmann::vi_transfer_hoh();

orbit * beta;
beta = new orbit;

Pioneering Economical Space Propulsion 45

double MG = beta->sun_g(6.6726*Math: :Pow(10, -11), 1.9891*Math::Pow(10,
30)):

Console::Write(S"\nMG = ");

Console: :WriteLine(MG);

double psi = beta->vi_earth(MG, ri);
Console::Write(S"\nlnitial Velocity at Earth
Console::WriteLine(psi);

double vie = psi;

I
N\

double dvih = vith - vie;
Console::Write(S"\nlnitial Delta Velocity = ");
Console::WriteLine(dvih);

return dvih;

}
double hohmann::delta_vf _h(double vfth, double vfp)
{
double dvfh = vfp - vfth;
return dvfh;
}

//End of file.

L117777777777777777777777777777777777777//77/7777/7//7/7/777/7/77777

Pioneering Economical Space Propulsion 46

6. nuclear.cpp

L1177 7777777777/7777777/7777777/7/77777////7777/7/7//7777/7//77777
//Filename:

//nuclear.cpp
L111717777777777777777/777777///77777/7//7777/7/7///777/7////77777/

#include "stdafx.h"
#include "nuclear.h"
#using <mscorlib.dll>
using namespace System;

//This file gives the definitions for the functions of the nuclear class.
//The first three, along with others, provide constants.

//Several production notes remain; this is one of the earlier of the final
Tiles.

double E_|
double E_|
double E_

U _Fission = 186.5;
Rb_decay = 7.86;
Cs _decay = 1.89;

double nuclear::total_E_fission ()

{
double total E fission = 200;

return total E_fission;

}

// from opt low thrust...
double nuclear::mass_flow _func (double T _sp, double m, double g_zero,double

1_sp)
{

double mass_flow_func = T_sp*m / (g_zero*1_sp);
return mass_flow_func;

}
double nuclear::T_sp (double T, double m)
{
double T_sp = T/m;
return T_sp;
}

// from architecture
double nuclear::alpha_sys (double P_RD)

{
double alpha_sys = (81/19)*(1-.5*(P_RD));
return alpha_sys;

}

// from pg.89- architecture

double nuclear::m_init _total (double alpha sys, double m fuel, double m_pay)

double m_init_total = 100*alpha_sys+m_ fuel+m_pay;
return m_init_total;

Pioneering Economical Space Propulsion 47

}

double nuclear::m_fin_total (double m_init_total, double m_fuel)

double m_fin_total = m_init_total-m_fuel;
return m_fin_total;

}
// for cost
double nuclear::mu_dyn nuc (double P_RD) //RD = research
and development
{
double mu_dyn_nuc = .2 + _1*P_RD;
return mu_dyn_nuc;
}
double nuclear::P_RD (double RAN, double t)
{
double P_RD =Math::Pow(.99, (t+100)/t); //insert constant
K
return P_RD;
}

double nuclear::m_fuel (double delta_v, double g zero, double 1_sp)

{

double m_fuel = (1-Math::Pow(Math::E, (O-delta_v)/(g_zero*l_sp)))/(((0-
delta_v)/(g_zero*l_sp))*Math::Pow(Math::E, (delta_v)/(g_zero*l_sp))-
(delta_v)/(g_zero*l_sp)-1);

return m_fuel;
}

double nuclear::m_sys (double delta v, double g zero, double 1 _sp, double
m_pay)

double m_sys = Math::Pow(Math::E, (O-delta v)/(g_zero*1_sp))/(((0-
delta v)/(g_zero*l_sp))*Math::Pow(Math::E, ((delta v)/(g_zero*l_sp))-
(delta_v)/(g_zero*l_sp))-1);

return m_sys;

}

double nuclear::Isp_nuc (double t)

{
double Isp_nuc = 3100 + 700*Math::Pow(10, (t*t/(t*100)));
return Isp_nuc;

}

double nuclear::cost_fuel (double m fuel)

{
double cost_fuel = 75000*m_fuel;
return cost_fuel;

}

// use r2001laso
// http://www.tpub.com/content/doe/h1019v1/css/h1019v1 84 _htm
// n + U-235 ->Cs-140 + Rb-93 + 3n + 200MeV

Pioneering Economical Space Propulsion

//End of file.

L11777777777777777777777777777777777777/7/77/777/7/7/7/7//777/7/77777

48

Pioneering Economical Space Propulsion

7. orbit.cpp

L1777 777777777777777/7/7/77777/7777/777/77//7/7/77/7/7/7/77/77/77/77777
//Filename:
//orbit.cpp
L1177 777/777777777777777777/7/7/7/777777/7777/77/77/7//7//7/77/7/7/77/7777

#include "stdafx.h"
#include "orbit.h"
#using <mscorlib.dll>
using namespace System;

//This file defines the functions of the orbit class.
//Notes below were primitive equations that have been modified or replaced.

double orbit::sun_g(double G, double M)

double MG = G * M;

return MG;
}
double orbit::vi_earth(double MG, double ri)
{

//double Rpe 0.9833 * 149,597,870.691;

//double Rae = 1.0167 * 149,597,870.691;

double vie = Math::Sqrt(MG 7/ ri);

//double vie = (Rpe * Math::Sqgrt ((2 * MG * Rae) / (Rpe * (Rae +
Rpe)))) 7/ (ri * Math::Sin (zi));

Console::Write(S'"\nlnitial Velocity on Earth Orbit = ");

Console::WriteLine(vie);

return vie;

}

double orbit::vf_pluto(double Rpp, double MG, double Rap, double rf, double
zF)

{

double vfp = (Rpp * Math::Sgrt ((2 * MG * Rap) /7 (Rpp * (Rap + Rpp))))
/ (rf * Math::Sin (zF));

return vfp;
}

//End of file.

L117777777777777777777777777777777777777/7/7/7777/7//7//777/7/77777

49

Pioneering Economical Space Propulsion

8. physics.cpp

L1177 7777777777/7777777/7777777/7/77777////7777/7/7//7777/7//77777
//Filename:

//physics.cpp
L111717777777777777777/777777///77777/7//7777/7/7///777/7////77777/

#include "stdafx.h"
#include "orbit_h"
#include "physics.h"
#using <mscorlib.dll>
using namespace System;

//This file defines the fuctions of physics.h header file.
//The notes below refers to the sources.

// from sepfp
double physics::1_tot (double Thrust, double time)

{
double 1_tot = Thrust * time;

return 1_tot;

}

double physics::1_sp (double I_tot, double g, double m_init)

double 1 sp = I_tot /7 (m_init * g);
return 1_sp;

}
double physics::v_jet (double g, double I_sp)
{
double v_jet = 1_sp/g;
return v_jet;
}

// from r200laso...
double physics::P_spec (double P_out, double m_system)
{

double P_spec = P_out / m_system;

return P_spec;

}
double physics::nu_jet (double P_out, double P_jet) // ~0.8 for
nuclear estimates
{
double nu_jet = P_jet / P_out;
return nu_jet;
}

double physics::P_jet (double g, double c, double m_dot)

double P_jet = m_dot*c*c / (2*9);
return P_jet;

50

Pioneering Economical Space Propulsion

//End of file.

L11171777777777777777777777777777777777/7/7/777/7//7/7//77/7////7/7/7777/

51

Pioneering Economical Space Propulsion 52

9. piond.cpp

L1777 777777777777777/7/7/77777/7777/777/77//7/7/77/7/7/7/77/77/77/77777
//Filename:
//piond.cpp
L1177 777/777777777777777777/7/7/7/777777/7777/77/77/7//7//7/77/7/7/77/7777

//This is the primary file in the program and its namesake.
//Herein are defined the operative functions.

#include "stdafx.h"
#include "antimatter.h"
#include "hohmann.h"
#include "solarsailX.h"
#include "physics.h"
#include "chemical.h"
#include "nuclear.h"
#include "cost.h"

#using <mscorlib.dll>
using namespace System;
using namespace System::10;

//Each of the primary functions is defined immediately below.

double time(StreamWriter* sw);

double final_cost_anti (double t, StreamWriter* sw);

double final_cost _solar (double t, StreamWriter* sw);

double final_cost _chem (double hohmann_dvi, double t, StreamWriter* sw);
double final _cost nuclear (double time, double dvi, StreamWriter* sw);
double final _cost _anti_X (double t);

double final_cost_solar_X (double t);

double final_cost_chem X (double hohmann_dvi, double t);

double final_cost _nuclear_X (double time, double dvi);

int postAQ);

int postB(Q);

double hohmann_dvi(StreamWriter* sw);

double hohmann_dvi_X(Q);

_intle M O;

int Method One ();

int Method_Two ();

int Ask Q;

//Below is the operative function.
int _tmain()

Ask O
return O;

}

L1177777777777777777777777777777/777777/7/7/7777//7//7/77777/77
// GENERIC FUNCTIONS

Pioneering Economical Space Propulsion 53

/111777777777 777777777/777/777/777/777/777/77/7/777/777/7777
//These functions operate with each of the Methods described later in the
file.

//This function queries the user on the choice of two methods.
//The user must respond "'1" or '2'", or the function will be repeated.

int Ask O
__intl6 Method = M);

switch (Method)

{
case 1: Method _One (); break;
case 2: Method_Two Q); break;
default: Console::WriteLine(S'"\nlnvalid Value\nOptions: 1, 2 ");
Ask(Q); break;
}
return O;
}
_intie M O
{ - _ _
Console::WriteLine(S'"\nSpace Propulsion Methods Cost Estimator');
Console::WriteLine(S'"\nChoose A Method (1, 2) '");
String _ gc * input = Console::ReadLine();
__intlé M = input->Tolntl6(0);
Console: :Write(S'"\nMethod ");
Console::WriteLine(M);
return M;
}

int postAQ

Console::WriteLine(S"Press Enter to Continue'™);
String _ gc * input_a = Console::ReadLine();
return O;

}
int postB()

Console::WriteLine(S"Press Enter to Exit');
String _ gc * input_b = Console::ReadLine();

return O;
b
/1177777777777 77777777777777777/777777777/7/777/77/7/77/7/77/7/77777
// FOR METHOD TWO

L1171777777777777777777/77777/7/77777////7777/7///7/7777/777
//This method provides all of the data for one year.
//0utput is sent to Pion_Test_Method_Two.doc in the project folder.

double time(StreamWriter* sw)

{

}

Pioneering Economical Space Propulsion

54

//The user is permitted to define the year to be processed through this
function.

Console: :Write(S"How much pre-launch time? ');
sw->Write(S"Your pre-launch time = ');

String _ gc * input = Console::ReadLine();
double T = input->ToDouble(0);
sw->WriteLine(T);

return T;

//Each of the functions from this point to Method One has a compliment within
that method.

double hohmann_dvi(StreamWriter* sw)

{

}

hohmann * alpha;
alpha = new hohmann;

double c = 299792458;
double m_pay = 10;
double ri = 149597870691;

double gamma = alpha->delta_vi_h(ri);
Console::Write(S'"\nDelta Velocity = ");
Console::WriteLine(gamma);
sw->Write(S'"\nDelta Velocity = ");
sw->WriteLine(gamma) ;

return gamma;

//The fTollowing four functions defines total cost of a mission using each of
the propellants.

double final_cost_anti (double t, StreamWriter* sw)

{

Console::Write(S"-—---—-—————— -

Console: :Write(S'"\nAntimatter Results\n');

Console: :Write(S"--————-——————————————

Console::WriteLine(Q);

sw->Write(S"---—~—————— -)
sw->Write(S'"\nAntimatter Results\n);
sw—>Write(S"——-———————— ")
sw->WriteLine();

antimatter * alpha;
alpha = new antimatter;

hohmann * beta;
beta = new hohmann;

double v_exhaust = 598000;
double ¢ = 299792458;

Pioneering Economical Space Propulsion 55

double beta anti = 100000;
double m_pay = 10;

double eta exhaust = O.
double cost grid = 0.2;
double ri = 149597870691;

84;

//This is the only function that runs output to the console and outside

file simultaneously.

file.

//The others run data first to the console and later to the outside

double gamma = beta->delta vi_h(ri);
Console::Write(S'"\nDelta Velocity = ");
Console: :WriteLine(gamma);
sw->Write(S'"\nDelta Velocity = ");
sw->WriteLine(gamma) ;

double delta = alpha->gamma_anti(v_exhaust, c);

Console: :Write(S'"\nGamma Parameter = ');
Console::WriteLine(delta);
sw->Write(S'"\nGamma Parameter = '");

sw->WriteLine(delta);

double epsilon = alpha->relative_m_anti(gamma, c, v_exhaust);

Console: :Write(S'"\nRelative Mass = ");
Console::WriteLine(epsilon);
sw->Write(S'"\nRelative Mass = ");

sw->WriteLine(epsilon);

double zeta = alpha->m _prop(beta_anti, delta, eta_exhaust);
Console: :Write(S'"\nPropellant Mass = ");
Console::WriteLine(zeta);

sw->Write(S"\nPropellant Mass = ");

sw->WriteLine(zeta);

double theta = alpha->m_dry(epsilon, zeta);
Console: :Write(S'"\nSystem Dry Mass = ");
Console::WriteLine(theta);
sw->Write(S'"\nSystem Dry Mass = ");
sw->WriteLine(theta);

double mu = alpha->m_struct(theta)
Console: :Write(S"\nStructure Mass
Console::WriteLine(mu);
sw->Write(S'"\nStructure Mass = ");
sw->WriteLine(mu);

Il wr
N\

double eta = alpha->lamda_anti(mu, zeta);

Console: :Write(S'"\nLamda parameter = ');
Console::WriteLine(eta);
sw->Write(S'""\nLamda parameter = ");

sw->WriteLine(eta);

double iota = alpha->m_anti(beta _anti, delta, eta_exhaust, epsilon,

eta, m_pay);

Console: :Write(S'"\nMass Antimatter = ');
Console::WriteLine(iota);

Pioneering Economical Space Propulsion

sw->Write(S'"\nMass Antimatter = ");
sw->WriteLine(iota);

double kappa = alpha->eta_anti(t);
Console::Write(S'"\nAntimatter Production Efficiency = ");
Console: :WriteLine(kappa);

sw->Write(S"\nAntimatter Production Efficiency = ");
sw->WriteLine(kappa);

double lamda = alpha->E_cost_anti(cost_grid, iota, c, kappa);
Console::Write(S'"\nTotal Antimatter Cost = ");
Console::WriteLine(lamda);

sw->Write(S'"\nTotal Antimatter Cost = '");
sw->WriteLine(lamda);

cost * e;
e = new cost;

double f = e->cost_mission(t, 2);

Console: :Write(S'"\nMission Cost = ");
Console::WriteLine(F);
sw->Write(S"\nMission Cost = ");

sw->WriteLine(fF);

double h = e->cost_tot(lamda, 100000000, f);
Console::Write(S'"\nTotal Cost = ");
Console::WriteLine(h);

sw->Write(S'"\nTotal Cost = ");
sw->WriteLine(h);

Console::WriteLine(S"\n ___ ');

return O;

}

double final _cost_solar (double t, StreamWriter* sw)

{

Console: :Write(S"--———------——————————— ");
Console::Write(S'"\nSolar Sail Results\n");

Console: :Write(S"--————-—————————————— ;s
Console::WriteLine();
sw->Write(S"--——-------------—— ™);
sw->Write(S'"\nSolar Sail Results\n");
sw->Write(S"-—-—--—————— - ;s

sw->WriteLine();

solarsailX * z;
z = new solarsailX;

double y = z->A sail(t);
Console::Write(S'"\nSail Area = ");
Console::WriteLine(y);

double x = z->alpha_sail();

Pioneering Economical Space Propulsion 57

Console::Write(S'"\nSail Angle = ");
Console::WriteLine(x);

double w = z->g_const_solar();
Console::Write(S'"\nHeliocentric Gravitational Constant = ");
Console::WriteLine(w);

double v = z->m_sail(y, t);
Console::Write(S"\nSail Mass = ");
Console::WriteLine(v);

double u = z->m_tot(v, 10);
Console::Write(S"\nSystem Mass = '");
Console::WriteLine(u);

double s = z->R(1);
Console::Write(S'\nSail Reflectivity = ");
Console::WriteLine(s);

double r = z->t _day(Q);
Console: :Write(S'"\nSeconds per Timestep = ");
Console: :WriteLine(r);

double g = 1.49597870691*Math: :Pow(10, 11);
double p = O;

double n = 29800/q;

double m = z->r_AU(Q);

double 1 = z->P_solar(m, s);

double k = z->F sail(l, y);

double j = z->a _char(k, m, u);

double 1 = z->a_rad(gq, n, w, j, X);
double h = z->a_theta(n, q, p, Jj, X);
double ¥ = z->v_r_m_init(p);

double e = z->v_theta_init(n);

double d = z->r_m_init(q);

Console::WriteLine(S'\nAU Distance = ");
Console::Write(m);

Console: :Write(S'\nSolar Pressure = ");
Console: :WriteLine(l);

Console::Write(S"\nSolar Force = ");
Console::WriteLine(k);

Console: :Write(S'"\nCharacteristic Acceleration = ");
Console::WriteLine(J);

Console: :Write(S'"\nRadial Acceleration = ");
Console: :WriteLine(i);

Console::Write(S"\nAngular Acceleration = ");
Console: :WriteLine(h);

Console: :Write(S'"\nRadial Velocity = ");
Console: :WriteLine(p);

Pioneering Economical Space Propulsion

Console: :Write(S'\nAngular Velocity = ");
Console::WriteLine(n);

Console::Write(S'"\nRadius = ");
Console::WriteLine(q);

Console::Write(S"\nCalculating . . . \n");

sw->WriteLine(S'\nAU Distance = ");
sw->Write(m);

sw->Write(S'"\nSolar Pressure = ");
sw->WriteLine(l);

sw->Write(S'"\nSolar Force = ");
sw->WriteLine(k);

sw—>Write(S'\nCharacteristic Acceleration = ");
sw->WriteLine(j);

sw->Write(S'"\nRadial Acceleration = ");
sw->WriteLine(i);

sw->Write(S"\nAngular Acceleration = ');
sw->WriteLine(h);

sw->Write(S"\nRadial Velocity = ");
sw->WriteLine(p);

sw->Write(S'"\nAngular Velocity = ");
sw->WriteLine(n);

sw->Write(S'"\nRadius = "");
sw->WriteLine(q);

sw->Write(S'"\nCalculating . . . \n");

for (int day = 1; m <= 39.53; day++)
{

m = z->r_AU(Q);
I = z—>P_solar(m, s);
k = z->F _sail(l, y);
J = z->a char(k, m, u);
i =z->arad(q, n, w, j, X);
h = z->a_theta(n, q, p, J, X);
f=2z-> r m init(p);
p += 1*r;
g += T*r + .5%p*r;
n += h*r;
}
double year = day/12;
Console::Write(S'"\nYears = ");

Console::WriteLine(year);

Pioneering Economical Space Propulsion

Console: :Write(S'\nAU Distance = ");
Console::WriteLine(m);

Console: :Write(S'\nSolar Pressure = ");
Console::WriteLine(l);

Console: :Write(S'\nSolar Force = ");
Console::WriteLine(k);

Console: :Write(S'"\nCharacteristic Acceleration
Console::WriteLine(j);

Console: :Write(S'"\nRadial Acceleration = ");
Console::WriteLine(l);

Console: :Write(S'\nAngular Acceleration = ");
Console: :WriteLine(h);

Console: :Write(S'"\nRadial Velocity = ");
Console::WriteLine(p);

Console: :Write(S'\nAngular Velocity = ");
Console::WriteLine(n);

Console::Write(S'"\nRadius = ");
Console::WriteLine(q);

double aa = z->unit_cost(t);
Console::Write(S"\nUnit Cost = ");
Console::WriteLine(aa);

double bb = z->cost_sail(y, aa);
Console::Write(S"\nSail Cost = ");
Console::WriteLine(bb);

cost * cc;
CC = new cost;

double dd = cc->cost_mission(t, 1.8);

double cost_mission_sail = dd + 10000000*year;
Console: :Write(S'"\nMission Cost = ");
Console::WriteLine(dd);

double ee = z->cost_tot(bb, dd);
Console::Write(S'"\nTotal Cost = ");
Console::WriteLine(ee);
Console::WriteLine(S'"\n ");

sw->Write(S'"\nYears = ");
sw->WriteLine(year);

sw->Write(S""\nAU Distance = ');
sw->WriteLine(m);

sw->Write(S'\nSolar Pressure = ");
sw->WriteLine(l);

");

59

Pioneering Economical Space Propulsion

sw->Write(S'"\nSolar Force = ");
sw->WriteLine(k);

sw->Write(S'"\nCharacteristic Acceleration = ");
sw->WriteLine(j);

sw->Write(S'"\nRadial Acceleration = ");
sw->WriteLine(l);

sw->Write(S'"\nAngular Acceleration = ");
sw->WriteLine(h);

sw->Write(S'"\nRadial Velocity = ");
sw->WriteLine(p);

sw->Write(S'"\nAngular Velocity = ");
sw->WriteLine(n);

sw->Write(S'"\nRadius = ");
sw->WriteLine(q);

sw->Write(S"\nUnit Cost = ");
sw->WriteLine(aa);
sw->Write(S'"\nSail Cost = ");
sw->WriteLine(bb);
sw->Write(S"\nMission Cost = ");

sw->WriteLine(dd);

sw->Write(S'"\nTotal Cost = ");
sw->WriteLine(ee);

return O;

}

double final_cost_nuclear (double time, double dvi, StreamWriter* sw)

{

Console: :Write(S"--———-----————————————— ");
Console::Write(S'"\nNuclear-Electric Results\n');
Console: :Write(S"--——————————————————— ;s
Console::WriteLine();
sw->Write(S"--——-------------— ");
sw->Write(S'""\nNuclear-Electric Results\n');
sw->Write(S"-—-—-———————— - ;s

sw->WriteLine();

nuclear * a;
a = new nuclear;

double t = time;
double b = a->Isp_nuc(t);

Console::Write(S'™\nlsp = ");
Console::WriteLine(b);

Pioneering Economical Space Propulsion

double ¢ = a->m_fuel(dvi, 8.87*Math::Pow(10, -3), b);
Console::Write(S"\nFuel Mass = ");
Console::WriteLine(c);

double d = a->m_sys(dvi, 8.87*Math::Pow(10, -3), b, 10);
Console: :Write(S'"\nSystem Mass = ");
Console::WriteLine(d);

cost * e;
e = new cost;

double f = e->cost_mission(t, 1.2);
Console::Write(S"\nMission Cost = ");
Console::WriteLine(T);

double g = a->cost_fuel(c);
Console::Write(S"\nFuel Cost = ");
Console::WriteLine(Q);

double h = e->cost_tot(g, 100000000, f);
Console::Write(S'"\nTotal Cost = ");
Console::WriteLine(h);

Console::WriteLine(S'\n ");

sw->Write(S"\nlsp = ");
sw->WriteLine(b);

sw->Write(S'"\nFuel Mass = ");
sw->WriteLine(c);

sw->Write(S'"\nSystem Mass = '");
sw->WriteLine(d);

sw->Write(S'"\nMission Cost = ");
sw->WriteLine(f);

sw->Write(S"\nFuel Cost = ");
sw->WriteLine(Q);

sw->Write(S'"\nTotal Cost = ");
sw->WriteLine(h);

return h;

}

double final_cost_chem (double hohmann_dvi, double t, StreamWriter* sw)

{

Console: :Write(S"-—---——-—————— - ");
Console: :Write(S'"\nChemical Results\n');
Console: :Write(S"--—————-——————— - ;s

Console::WriteLine(Q);

sw—>Write(S"'-—-——-——— - ");
sw->Write(S'""\nChemical Results\n');
sw->Write(S"-—-—--—————— - ;s

Pioneering Economical Space Propulsion

sw->WriteLine();

chemical * alpha;
alpha = new chemical;

double delta = alpha->P_ref(hohmann_dvi, 9.8, 292.1);
Console::Write(S'"\nPropellant Mass Ratio = ");
Console::WriteLine(delta);

double epsilon = alpha->m_prop(delta, 150, 10);
Console: :Write(S'"\nPropellant Mass = ");
Console::WriteLine(epsilon);

double eta = alpha->cost_prop(epsilon);
Console: :Write(S'"\nPropellant Cost = ");
Console::WriteLine(eta);

double zeta = alpha->cost_mission(t);
Console::Write(S"\nMission Cost = ");
Console::WriteLine(zeta);

double theta = alpha->cost tot chem(eta, 90000000, zeta);
Console::Write(S"\nTotal Cost = ");
Console::WriteLine(theta);

Console::WriteLine(S'"\n ");

sw->Write(S"\nPropellant Mass Ratio = ");
sw->WriteLine(delta);

sw->Write(S'"\nPropellant Mass = ");
sw->WriteLine(epsilon);
sw->Write(S"\nPropellant Cost = ");

sw->WriteLine(eta);

sw->Write(S'"\nMission Cost = ");
sw->WriteLine(zeta);

sw->Write(S'"\nTotal Cost = ");
sw->WriteLine(theta);

return theta;

}

//This function is potentially called by the Ask function.

int Method_Two()

{
try

{

//The following statement forms the output to a *.doc file.

FileStream* fs = new FileStream(S"Pion_Test Method Two.doc",
FileMode: :Create);
StreamWriter* sw = new StreamWriter(fs);

62

Pioneering Economical Space Propulsion 63

Console::WriteLine(S"Test");
sw->WriteLine(S"Test");
sw->WriteLine(S"---———— - ");
sw->WriteLine();

double t = time(sw);
Console::WriteLine(S'"\n ");
Console::WriteLine();

double dvi = hohmann_dvi(sw);
Console::WriteLine(S'"\n ");
Console::WriteLine(S'\n");
sw->WriteLine();

postAQ);

final_cost _chem (dvi, t, sw);
postAQ);

final_cost_solar (t, sw);
postAQ);

final _cost nuclear (t, dvi, sw);
postAQ);

final_cost_anti (t, sw);
PostAQ);

sw->Flush(Q);
sw->Close();

}
catch(System: :Exception* pe)

{
Console::WriteLine(pe->ToString());

}

postB();

return O;
}
L11777777777777777777777/77777/7/77777/7/7/7/777////7/777/7/7/7/777
// FOR METHOD ONE

L1177 7177777777777777777777/777777//777777////77/7/7////777/7/777

//This method provides the final estimated cost for each propulsion mechanism
for the following 100 years.

//0utput is sent to Pion_Test Method One.xls in the project folder.

//These functions correspond to the final six functions of the Method Two
section.

double hohmann_dvi_XQO
{

hohmann * alpha;
alpha = new hohmann;

double c = 299792458;
double m_pay = 10;

Pioneering Economical Space Propulsion

double ri = 149597870691;
double gamma = alpha->delta_vi_h(ri);

return gamma;

}

double final_cost_anti_X (double t)
{

antimatter * alpha;

alpha = new antimatter;

hohmann * beta;
beta = new hohmann;

double v_exhaust = 598000;
double ¢ = 299792458;
double beta _anti = 100000;
double m_pay = 10;

double eta_exhaust = 0.84;
double cost grid = 0.2;
double ri = 149597870691;

double gamma = beta->delta_vi_h(ri);

double delta = alpha->gamma_anti(v_exhaust, c);

double epsilon = alpha->relative_m_anti(gamma, c, v_exhaust);

double zeta = alpha->m prop(beta _anti, delta, eta_exhaust);

double theta = alpha->m_dry(epsilon, zeta);

double mu = alpha->m_struct(theta);

double eta = alpha->lamda_anti(mu, zeta);

double iota = alpha->m_anti(beta anti, delta, eta exhaust, epsilon,
eta, m_pay);

double kappa

double lamda

alpha->eta_anti(t);
alpha->E_cost_anti(cost_grid, iota, c, kappa);

cost * e;
e = new cost;

double T = e->cost_mission(t, 2);
double h = e->cost_tot(lamda, 100000000, f);
return h;

}

double final _cost solar_X (double t)

{

solarsailX * z;
z = new solarsailX;

double y = z->A sail(t);
double x = z->alpha_sail();
double w = z->g _const_solar();
double v = z->m_sail(y, t);
double u = z->m_tot(v, 10);
double s = z->R(1t);

Pioneering Economical Space Propulsion

double r = z->t_day(Q);
double g = 1.49597870691*Math: :Pow(10, 11);
double p = O;
double n = 29800/q;
double m = z->r_AU(Q);
double 1 = z->P_solar(m, s);
double k = z->F _sail(l, y);
double j = z->a _char(k, m, u);
double i = z->a_rad(gq, n, w, j, X);
double h = z->a_theta(n, q, p, Jj, X);
double ¥ = z->v_r_m_init(p);
double e = z->v_theta_init(n);
double d = z->r_m_init(q);
for (int day = 1; m <= 39.53; day++)
{
m = z->r_AU(Q);
I = z—>P_solar(m, s);
k = z->F sail(l, y);
J = z->a char(k, m, u);
i =z->arad(g, n, w, j, X);
h = z->a_theta(n, q, p, §, X);
T =z->v r_m_init(p);
p += i*r;
q += *r + .5*p*r;
n += h*r;
}

double year = day/12;
double aa = z->unit_cost(t);
double bb z->cost_sail(y, aa);

cost * cc;
CC = new cost;

double dd = cc->cost_mission(t, 1.8);
double cost_mission_sail = dd + 10000000*year;
double ee = z->cost_tot(bb, dd);

return ee;

}

double final_cost_nuclear_X (double time, double dvi)

{

nuclear * a;
a = new nuclear;

double t = time;

double b = a->Isp_nuc(t);

double ¢ = a->m_fuel(dvi, 8.87*Math::Pow(10, -3), b);
double d = a->m_sys(dvi, 8.87*Math::Pow(10, -3), b, 10);
cost * e;

e = new cost;

Pioneering Economical Space Propulsion

double f = e->cost _mission(t, 1.2);
double g = a->cost_fuel(c);

double h = e->cost_tot(g, 100000000, f);
return h;

}

double final_cost_chem X (double hohmann_dvi, double t)
{
chemical * alpha;
alpha = new chemical;

double delta = alpha->P_ref(hohmann_dvi, 9.8, 292.1);
double epsilon = alpha->m_prop(delta, 150, 10);

double eta = alpha->cost _prop(epsilon);

double zeta = alpha->cost mission(t);

double theta = alpha->cost_tot_chem(eta, 90000000, zeta);

return theta;

}

//This function is potentially called by the Ask function.

int Method One
{
try
{

//The following statement forms the output to a *.xls file.

FileStream* fs = new FileStream(S"Pion_Test Method One.xls",
FileMode::Create);
StreamWriter* sw = new StreamWriter(fs);

sw->WriteLine(S'""");

sw->WriteLine(S" Test"™);

sw->WriteLine(S"Years Chemical Nuclear Solar
Antimatter™);

Console::WriteLine(S'"\n");

Console::WriteLine(S" Test: Method One'™);

Console::WriteLine(S" Years Chemical Nuclear Solar
Antimatter™);

double dvi = hohmann_dvi_XQ;

double t = O;

for (int ToLaunch = 1; ToLaunch <= 100; TolLaunch++)
{

t++;

double one = final_cost_chem X (dvi, t);
double two = final_cost_nuclear_X (t, dvi);
double three = final_cost_solar_X (t);
double four = Ffinal _cost _anti_X (t);

66

Pioneering Economical Space Propulsion 67

Console::WriteLine(S"\n ");
Console::WriteLine(ToLaunch);
Console::WriteLine(S"\n ");
Console::WriteLine(one);
Console::WriteLine(S'"\n ");
Console::WriteLine(two);
Console::WriteLine(S'"\n ");
Console::WriteLine(three);
Console::WriteLine(S"\n ");
Console: :WriteLine(four);

sw->WriteLine(S" ');
sw->Write(ToLaunch);
sw->Write(S"” ");
sw->Write(one);
sw->Write(S" "Y;
sw->Write(two);
sw->Write(S"” ");
sw->Write(three);
sw—>Write(S” ™);
sw->Write(four);

}

sw->WriteLine(S'""");
sw->WriteLine(S" End™);

sw->Flush(Q);
sw->Close();

catch(System: :Exception* pe)

Console::WriteLine(pe->ToString());
}

postB();

return O;

//End of file.

L11777777777777777777777777777777777777///77/777/7/7/7/77777/7/7/777

Pioneering Economical Space Propulsion 68

10. solarsail.cpp

L1177 777777777777/7777777/7777/77/77/7/7777/77//77/7//7/77/7/77/777
//Filename:

//solarsail.cpp

L1177 77777777777777/7777/777/7777/77/7/77/77/7/77/7//77//77/77/7777

//This _cpp file corresponds to the abandoned solarsail.h Ffile.

#include "stdafx.h"
#include "solarsail.h"

#using <mscorlib.dll>
using namespace System;
double solarsail::P_solar (double R _sail, double r_au)

double P_solar = 4.563*Math: :Pow(10, -6) * (1+R_sail) / r_au*r_au;
return P_solar;

}
double solarsail::A sail (double r_sail)
{
double A sail = r_sail * Math::PI;
return A sail;
}
double solarsail::f solar (double P_solar, double A sail)
{
double f solar = P_solar * A _sail;
return f _solar;
}
double solarsail::cost sail (double u_cost, double A sail)
{
double cost _sail = u _cost * A sail;
return cost_sail;
}

// end redefinition sequence
/740

double solarsail::kappa (double beta)

{
double kappa = Math::Pl1/2-beta;

Pioneering Economical Space Propulsion

return kappa;

}
double solarsail::delta (double theta)
{
double delta = Math::P1/2-theta;
return delta;
3

double solarsail::theta (double rad, double r, double beta)

{
double theta = Math::Asin(r*Math::Sin(beta)/rad);
return theta;

}

double solarsail::beta (double s x, double s y)

{
double beta = Math::P1/2-Math::Atan(s_y/s_X);
return beta;

}

// above here redefine for next iteration

double solarsail::vf_y (double vi_y, double delta_t, double a_y)

{
double vf y = vi_y + a y*delta_t;
return vf_ y;

}

double solarsail::vf _x (double vi_x, double delta_t, double a x)

{
double vf x = vi_Xx + a x*delta_t;
return vf_x;

}

double solarsail::rad (double s net, double r_zero, double beta)

{

double rad = Math::Sqgrt(s_net*s_net + r_zero*r_zero -
2*s _net*r_zero*Math: :Cos(beta));

return rad;

}

double solarsail::s net (double s_x, double s y)

{
double s net = Math::Sgrt(s_x*s X + s y*s y);
return s_net;

}

double solarsail::s_x (double vi_x, double delta_t, double a_x)

{
double s x = vi_x*delta_t + (a_x*delta_t*delta t)/(2);
return s_x;

}

double solarsail::s y (double vi_y, double delta_t, double a y)

{
double s y = vi_y*delta_t + (a_y*delta_t*delta t)/(2);

//80

69

Pioneering Economical Space Propulsion 70

return s_y;

double solarsail::a x (double r, double R, double alpha, double m_unit)

{

double a x = ((4.56/Math: :Pow(10, 6)*(1+R)*(Math::Pow(Math: :Cos(alpha),
2)))/(m_unit*r*r));

return a_x;
}

double solarsail::a y (double r, double R, double alpha, double m_unit,
double g_sol, double ri)

{
double a y =
(4.56*(1+R)*Math: :Sin(alpha)*Math: :Sin(alpha)/(Math: :Pow(10, 6)*m unit*r*r)-
g_sol/(r*r*ri*ri));
return a_y;
}

double solarsail::vi_x (double kappa, double delta, double beta, double vf vy,
double vf x)
double vi_x = Math::Abs(Math::Cos(kappa+delta))*vf x + Math::Cos(beta-

delta)*vf y;
return vi_x;
}

double solarsail::vi_y (double kappa, double delta, double beta, double vf vy,
double vf_x)
{

double vi_y = Math::Abs(Math::Sin(kappa+delta))*vf x + Math::Sin(beta-

delta)*vf_ y;
return vi_y;
}

//End of file.

L117777777777777777777777777777777777777//77777/7/7/7/7/7/777/7/77777

Pioneering Economical Space Propulsion 71

11. solarsailX.cpp

L1177 777777777777/7777777/7777/77/77/7/7777/77//77/7//7/77/7/77/777
//Filename:

//solarsailX.cpp

L1177 77777777777777/7777/777/7777/77/7/77/77/7/77/7//77//77/77/7777

#include "Stdafx.h"
#include "solarsailX.h"
#using <mscorlib.dll>
using namespace System;

//This file provides the basis of the solarsail functions used.
//As a replacement and one of the last files, it has the most developed
structure.

double solarsailX::P_solar (double r_AU, double R)

{
double P_solar = ((4.56/Math::Pow(10, 6))*(1 + R))/(r_AU*r_AU);
return P_solar;

}

double solarsailX::A_sail (double time)

double A sail = 10000*(1 + .1*Math::Pow(10, (time*time/(time*100))));
return A sail;

}
double solarsailX::F_sail (double P_solar, double A sail)
{
double F _sail = P_solar*A_sail;
return F_sail;
}

double solarsailX::a char (double F_sail, double r_ AU, double m_tot)

{
double a char = 2*F sail*r_AU/m_tot;
return a_char;

}
double solarsailX::m_tot (double m_sail, double m_pay)
{

double m_tot = m_sail + m_pay;

return m_tot;
}
double solarsailX::m_sail (double A _sail, double time)
{

double m_sail = A _sail * .024 - .00225*(Math::Pow(10,
(time*time*time/ (time*10000))));

return m_sail;
}

Pioneering Economical Space Propulsion 72

double solarsailX::a _rad (double r_m, double v_theta, double g const solar,
double a char, double alpha_sail)

{

double a_rad = r_m*v_theta*v_theta - (g_const _solar/(r_m*r_m)) +
((a_char*Math: :Pow((Math: :Cos(alpha_sail)), 3))/(r_m*r_m));

return a_rad;
}

double solarsailX::a_theta (double v_theta, double r_m, double v_r_m, double
a_char, double alpha_sail)

{
double a theta = ((-2*v_r_m*v_theta)/r_m) +
((a_char*Math: :Pow((Math: :Cos(alpha_sail)),
2)*Math::Sin(alpha_sail))/(Math::Pow(r_m, 3)));
return a_theta;
}

double solarsailX::g_const_solar ()

double g_const _solar = 1.32713430118*Math::Pow(10, 20);
return g_const_solar;

}

double solarsailX::alpha_sail

{
double alpha_sail = Math::PI1/6;
return alpha_sail;

}

double solarsailX::r_AU (double r_m)

{
double r_AU = r_m/(1.49597870691*Math: :Pow(10, 11));
return r_AU;

}

double solarsailX::r_m (double r_m_init, double v_r_m, double t_day)

{
double r m = r_m_init + .5*v_r_m*t_day;
return r_m;

}

double solarsailX::v_r_m (double v_r_m _init, double a rad, double t_day)

{
double v.r m = v_r_m_init + a_rad*t_day;
return v_r_m;

}

double solarsailX::v_theta (double v_theta init, double a_theta, double
t_day)
{

double v_theta = v_theta init + a_theta*t_day;
return v_theta;

}

double solarsailX::t_day O

{
double t day = 2629728;

Pioneering Economical Space Propulsion

return t_day;

}
double solarsailX::v_theta_init (double v_theta)
{
double v_theta init = v_theta;
return v_theta_init;
}
double solarsailX::v_r_m_init (double v_r_m)
double v_r m init = v_r_m;
return v_r_m init;
}
double solarsailX::r_m_init (double r_m)
{
double r_m init = r_m;
return r_m _init;
}

double solarsailX::R (double time)

double R = .9 + _01*Math::Pow(10, (time*time/(time*1000)));
return R;

}

double solarsailX::cost_sail (double A _sail, double unit_cost)

{
double cost_sail = A _sail*unit_cost + 75000000;

return cost_sail;

}

double solarsailX::unit_cost (double time)

{
double unit_cost = 10 - .5*Math::Pow(10, (time*time/(time*100)));
return unit_cost;

}

double solarsailX::cost_tot (double cost sail, double cost _mission)

double cost _tot = cost sail + cost mission;
return cost_tot;

//End of file.

L1177777777777777777777777777777777777777/7/777/7/7///7777/7/7/777

Pioneering Economical Space Propulsion 74

12. stdafx.cpp

L1177 777777777777/7777777/7777/77/77/7/7777/77//77/7//7/77/7/77/777
//Filename:

//stdafx.cpp

L1177 77777777777777/7777/777/7777/77/7/77/77/7/77/7//77//77/77/7777

// stdafx.cpp : source File that includes just the standard includes
// pion3.pch will be the pre-compiled header
// stdafx.obj will contain the pre-compiled type information

#include "'stdafx.h"

//End of file.

11177777777777777777777777777777/7/7//7/7///7///////////////////7/777

Pioneering Economical Space Propulsion 75

13. antimatter.h

L1777 777777777777777/7/7/77777/7777/777/77//7/7/77/7/7/7/77/77/77/77777
//Filename:

//antimatter.h

L1177 777/777777777777777777/7/7/7/777777/7777/77/77/7//7//7/77/7/7/77/7777

#pragma once
#include "'stdafx.h"

__gc class antimatter //This class gives the functions related to
Antimatter Propulsion.

{
public:

//The notes at the top of each section denote the source as they were
drawn from several papers.

//antimatter cost from apfntpa

double eta_anti (double t); //efficiency max=0.5

double Ein_anti (double c, double eta anti, double m_anti);

double E_cost_anti (double cost _grid, double m_anti, double c, double
eta_anti);

//antimatter requirements

double m_anti (double beta anti, double gamma anti, double
eta_exhaust_anti, double relative_m_anti, double lamda_anti, double m_pay);

double relative_m_anti (double delta_v, double c, double v_exhaust);

double lamda_anti (double m struct, double m_prop);

double gamma_anti (double v_exhaust, double c);

double m_prop (double beta anti, double gamma anti, double
eta_exhaust_anti);

double m_dry (double relative m_anti, double m_prop);

double m_struct (double m_dry);

//antimatter physics from appwmce

double B_min (double n_dense_anti, double T _spec, double n_dense H,
double T_H);

double Prob_remain (double R_mirror);

double R _mirror (double B_min, double B_max);

double eta_E (double E_ion, double E_electron, double n_dense H, double
n_dense_anti);

double flow_prop (double amu_H, double n_dense H, double V_chamber,
double t _pulse);

double v_exhaust (double E_ion); //E_ion use E=mc2

double Isp_anti (double v_exhaust);

double Thrust (double flow_prop, double v_exhaust);

¥

//End of file.

Pioneering Economical Space Propulsion

1/1/177777777777777777777777777/7777/7/7/7///7////////////7//7//7//7/777

76

Pioneering Economical Space Propulsion 77

14. chemical.h

L1777 777777777777777/7/7/77777/7777/777/77//7/7/77/7/7/7/77/77/77/77777
//Filename:

//chemical .h

L1177 777/777777777777777777/7/7/7/777777/7777/77/77/7//7//7/77/7/7/77/7777

#include "stdafx.h"
#include "physics.h"

__gc class chemical //This class gives definitions for Chemical
Propulsion.

{
public:
//The final section was heavily used.

double delta T (double Ti, double TF);
double velocity prop (double Cp, double delta T);

double eta prop();

double F_chem(double P_exit, double velocity prop, double m_dot, double
A_noz);

double delta_v_chem(double g zero, double Isp_chem, double P_ref);

double P_ref(double delta_v_chem, double g _zero, double Isp_chem);
double m_prop(double P_ref, double m_sys, double m_pay);
double cost_prop(double m_prop);
double cost_tot_chem(double cost prop, double cost sys, double
cost_mission);
double cost mission(double time);
}:

//End of file.

L1117 777/7/7/7/7/7/77777

Pioneering Economical Space Propulsion 78

15. cost.h

L1777 777777777777777/7/7/77777/7777/777/77//7/7/77/7/7/7/77/77/77/77777
//Filename:

//cost.h

L1177 777/777777777777777777/7/7/7/777777/7777/77/77/7//7//7/77/7/7/77/7777

#pragma once
#include "'stdafx.h"

class cost //This class gives functions related to generic mission
costs.

{
public:
//The final two equations were favored.

double cost _pre (double cost_mech, double cost _research, double
cost_materials, double cost place);

double cost post (double cost engineer, double cost place);

double cost mech (double t, double n_mech, double price mech);

double E_cost (double cost _grid, double m_anti, double c, double
eta_anti);

double cost::cost tot(double cost prop, double cost sys, double
cost_mission);
double cost::cost_mission(double time, double cost _coef);
}:

//End of file.

1/1/1777777777777777777777777777/77/77////7////////////////////7/77

Pioneering Economical Space Propulsion

16. hohmann.h

L1777 777777777777777/7/7/77777/7777/777/77//7/7/77/7/7/7/77/77/77/77777
//Filename:
//hohmann.h
L1177 777/777777777777777777/7/7/7/777777/7777/77/77/7//7//7/77/7/7/77/7777

#include ''stdafx.h"
#include "orbit.h"

__gc class hohmann : public orbit //This hierarchical
the parameters used for most of the transfer orbits.

{
public:
double vi_transfer_hoh(Q);
double vf_transfer_hoh(double MG, double rf, double at);
double delta_vi_h(double ri);
double delta_vf _h(double vfth, double vfp);

¥
//End of file.

1111177777777 777777777777777777/7777777/7/7/7777//7/7//777////7/7/777/

class defines

79

Pioneering Economical Space Propulsion 80

17. nuclear.h

L1777 777777777777777/7/7/77777/7777/777/77//7/7/77/7/7/7/77/77/77/77777
//Filename:
//nuclear.h
L1177 777/777777777777777777/7/7/7/777777/7777/77/77/7//7//7/77/7/7/77/7777

#include "stdafx.h"
#include "physics.h"

__gc class nuclear //This class gives the functions for Nuclear-
Electric Propulsion.

{
public:

//Most of the first section was not used as the lower four functions
were found as more efficient replacements.

double total E Ffission ();

double mass_flow_func (double T _sp, double m, double g zero, double
1_sp);

double T_sp (double T, double m);

double alpha_sys (double P_RD);

double m_init_total (double m_sys, double m fuel, double m _pay);

double m_fin_total (double m_sys, double m _pay);

double mu_dyn _nuc (double P_RD);

double P_RD (double RAN, double t);

double m_fuel (double delta v, double g zero, double I _sp);

double m_sys (double delta v, double g zero, double I sp, double
m_pay) ;

double Isp_nuc (double time);

double cost_fuel (double m_fuel);

¥
//End of file.

L111717777777777777777777777777777777777/7/7/7777//7/7//77/7///7/7/7/7777/

Pioneering Economical Space Propulsion 81

18. orbit.h

L1777 777777777777777/7/7/77777/7777/777/77//7/7/77/7/7/7/77/77/77/77777
//Filename:

//orbit.h

L1177 777/777777777777777777/7/7/7/777777/7777/77/77/7//7//7/77/7/7/77/7777

#pragma once
#include "stdafx.h"
#include "physics.h"

__gc class orbit //This class defines rudimentary orbital parameters.

{
public:
double sun_g(double G, double M);
double vi_earth(double MG, double ri);
double vf pluto(double Rpp, double MG, double Rap, double rf, double
zf);
}:

//End of file.

L111717777777777777777777777777/7777777/77/7777//7/7//77///7//7/777/

Pioneering Economical Space Propulsion

19. physics.h

L1777 777777777777777/7/7/77777/7777/777/77//7/7/77/7/7/7/77/77/77/77777
//Filename:
//physics.h
L1177 777/777777777777777777/7/7/7/777777/7777/77/77/7//7//7/77/7/7/77/7777

#pragma once
#include "'stdafx.h"

class physics //This class gives some simple generic equations
pertaining to the physics of the project.

{

public:
double 1_tot (double Thrust, double time);
double 1_sp (double 1 _tot, double g, double m_init);
double v_jet (double g, double 1_sp);
double P_spec (double P_out, double m_system);
double nu_jet (double P_out, double P_jet);
double P_jet (double g, double c, double m dot);

3
//End of file.

L117777777777777777777777777777777777777//77/7777/7//7/777/7/77777

82

Pioneering Economical Space Propulsion

20. resource.h

L1777 777777777777777/7/7/77777/7777/777/77//7/7/77/7/7/7/77/77/77/77777
//Filename:

//resource.h

L1177 777/777777777777777777/7/7/7/777777/7777/77/77/7//7//7/77/7/7/77/7777

//7{{NO_DEPENDENCIES}}
// Microsoft Visual C++ generated include file.
// Used by app.rc

//End of file.

//1/1/7777777777777777777777777/77/77/7/7/7//7//////7//////7//7//7/7777

83

Pioneering Economical Space Propulsion

21. solarsail.h

L1777 777777777777777/7/7/77777/7777/777/77//7/7/77/7/7/7/77/77/77/77777
//Filename:

//solarsail.h

L1177 777/777777777777777777/7/7/7/777777/7777/77/77/7//7//7/77/7/7/77/7777

//0riginal Solarsail Class

#include "stdafx.h"
//#include "'physics.h™

__gc class solarsail //: public physics

{

public:
double P_solar (double R _sail, double r_au);
double A sail (double r_sail);
double T solar (double P_solar, double A sail);
double cost _sail (double u_cost, double A sail);

double vi_x (double kappa, double delta, double beta, double vf vy,
double vf x);

double vi_y (double kappa, double delta, double beta, double vf vy,
double vf x);

double kappa (double beta);

double delta (double theta);

double theta (double rad, double r, double beta);

double beta (double s _x, double s y);

// above here redefine for next iteration

double vf_y (double vi_y, double delta_t, double a y);

double vf_x (double vi_x, double delta_t, double a_x);

double rad (double s _net, double r_zero, double beta);

double s net (double s x, double s y);

double s _x (double vi_x, double delta t, double a x);

double s y (double vi_y, double delta_t, double a_y);

double a_x (double r, double R, double alpha, double m_unit);

double a y (double r, double R, double alpha, double m _unit, double

g_sol, double ri);

//add beamer parameters

3

//End of file.

L117777777777777777777777777777777777777//777777/7//7/7/777/7/77777

84

Pioneering Economical Space Propulsion 85

22. solarsailX.h

L1777 777777777777777/7/7/77777/7777/777/77//7/7/77/7/7/7/77/77/77/77777
//Filename:

//solarsailX.h

L1177 777/777777777777777777/7/7/7/777777/7777/77/77/7//7//7/77/7/7/77/7777

#pragma once

#include "stdafx.h"
#using <mscorlib.dll>
using namespace System;

__gc class solarsailX //The "X" marks a replacement class.
//The original class failed to give
the desired results and was dropped.

{
public:

//This System of equations solves for the trajectory of the solarsail.
//Concerns primarily with the time of travel to the destination.

double P_solar (double r_AU, double R);

double A _sail (double time);

double F_sail (double P_solar, double A sail);

double a char (double F_sail, double r_AU, double m_tot);

double m_tot (double m _sail, double m pay);

double m_sail (double A _sail, double time);

double a rad (double r_m, double v_theta, double g const solar, double
a_char, double alpha_sail);

double a theta (double v_theta, double r_m, double v_r_m, double
a _char, double alpha_sail);

double g_const_solar ();

double alpha_sail ();

double r_AU (double r_m);

double r_m (double r_m init, double v_r_m, double t_day);

double v_r_m (double v_r m_init, double a_rad, double t day);

double v_theta (double v_theta_init, double a_theta, double t_day);

double t _day Q;

double v_theta init (double v_theta);

double v_r _m_init (double v_r _m);

double r_m_init (double r_m);

double R (double time);

//The final three functions pertain solely to the cost of the system.
double cost_sail (double A sail, double unit_cost);
double unit_cost (double time);

double cost_tot (double cost_sail, double cost_mission);

¥

//End of file.

Pioneering Economical Space Propulsion

L1111777777777777777777777777777777777/7/77777//7/7//77/7////7/7/7777/

86

Pioneering Economical Space Propulsion

23. stdafx.h

L1777 777777777777777/7/7/77777/7777/777/77//7/7/77/7/7/7/77/77/77/77777
//Filename:
//stdafx.h
L1177 777/777777777777777777/7/7/7/777777/7777/77/77/7//7//7/77/7/7/77/7777

// stdafx.h : include file for standard system include files,

// or project specific include files that are used frequently, but
// are changed infrequently

//

#include <iostream>
#include <tchar.h>

// TODO: reference additional headers your program requires here

//End of file.

/1/1/1777777777777777777777777/777/7/77/77//7///7//////7/////7/7//7//7//7777

87

Pioneering Economical Space Propulsion 88
XL Appendix C: Charts
1.
Chart 1 Sample Result of Method One
Time Chemical Nuclear Solar Antimatter
Years US$ US$ US$ US$
1 390504295.4 460500000 615604592.9 8.33E+12
2 391004295.4 461000000 616104687.4 1.97E+12
3 391504295.4 461500000 616604783.5 4 57E+11
4 392004295.4 462000000 617104881.3 1.50E+11
5 392504295.4 462500000 617604980.6 62199320529
6 393004295.4 463000000 618105081.6 30448134605
7 393504295.4 463500000 618605184.3 16778934720
8 394004295.4 464000000 619105288.6 10132154798
9 394504295.4 464500000 619605394.6 6591617973
10 395004295.4 465000000 620105502.2 4567545136
11 395504295.4 465500000 620605611.5 3343302004
12 396004295.4 466000000 621105722.4 2567976687
13 396504295.4 466500000 621605835 2057825416
14 397004295.4 467000000 622105949.2 1711153640
15 397504295.4 467500000 622606065.1 1468992628
16 398004295.4 468000000 623106182.6 1295762425
17 398504295.4 468500000 623606301.7 1169246052
18 399004295.4 469000000 624106422.4 1075149497
19 399504295.4 469500000 624606544.7 1004031028
20 400004295.4 470000000 625106668.5 949506783.9
21 400504295.4 470500000 625606793.9 907169550.2
22 401004295.4 471000000 626106920.8 873919234.7
23 401504295.4 471500000 626607049.2 847538001.5
24 402004295.4 472000000 627107179 826414641.1
25 402504295.4 472500000 627607310.3 809362140.6
26 403004295.4 473000000 628107442.8 795494717
27 403504295.4 473500000 628607576.8 784143537.9
28 404004295.4 474000000 629107711.9 774798066
29 404504295.4 474500000 629607848.3 767064656
30 405004295.4 475000000 630107985.8 760636946.3
31 405504295.4 475500000 630608124.3 755274426.2
32 406004295.4 476000000 631108263.9 750786746.8
33 406504295.4 476500000 631608404.4 747022114.9
34 407004295.4 477000000 632108545.7 743858621.6
35 407504295.4 477500000 632608687.7 741197705.6
36 408004295.4 478000000 633108830.3 738959180.9
37 408504295.4 478500000 633608973.4 737077425.5
38 409004295.4 479000000 634109117 735498436.9
39 409504295.4 479500000 634609260.7 734177539.6

Pioneering Economical Space Propulsion

89

40 410004295.4 480000000 635109404.6 733077590.8
41 410504295.4 480500000 635609548.5 732167563.6
42 411004295.4 481000000 636109692.2 731421424.2
43 411504295.4 481500000 636609835.5 730817235.2
44 412004295.4 482000000 637109978.3 730336436.1
45 412504295.4 482500000 637610120.3 729963262.6
46 413004295.4 483000000 638110261.3 729684276.2
47 413504295.4 483500000 638610401.2 729487980.9
48 414004295.4 484000000 639110539.7 729364508.6
49 414504295.4 484500000 639610676.5 729305361.5
50 415004295.4 485000000 640110811.4 729303198.8
51 415504295.4 485500000 640610944 729351659.8
52 416004295.4 486000000 641111074.2 729445216.9
53 416504295.4 486500000 641611201.4 729579052.4
54 417004295.4 487000000 642111325.5 729748955.8
55 417504295.4 487500000 642611446 729951236
56 418004295.4 488000000 643111562.6 730182648.8
57 418504295.4 488500000 643611674.8 730440333.8
58 419004295.4 489000000 644111782.3 730721762.2
59 419504295.4 489500000 644611884.5 731024690.7
60 420004295.4 490000000 645111980.9 731347123.5
61 420504295.4 490500000 645612071.1 731687278.6
62 421004295.4 491000000 646112154.5 732043559.3
63 421504295.4 491500000 646612230.5 732414529.6
64 422004295.4 492000000 647112298.5 732798893
65 422504295.4 492500000 647612357.9 733195474
66 423004295.4 493000000 648112407.9 733603202.6
67 423504295.4 493500000 648612447.9 734021100.4
68 424004295.4 494000000 649112477.2 734448269.1
69 424504295.4 494500000 649612494.8 734883881.1
70 425004295.4 495000000 650112499.9 735327170.6
71 425504295.4 495500000 650612491.7 735777426.9
72 426004295.4 496000000 651112469.2 736233989.2
73 426504295.4 496500000 651612431.4 736696241.3
74 427004295.4 497000000 652112377.3 737163608.7
75 427504295.4 497500000 652612305.7 737635555.6
76 428004295.4 498000000 653112215.4 738111582.6
77 428504295.4 498500000 653612105.3 738591225.8
78 429004295.4 499000000 654111974.1 739074055
79 429504295.4 499500000 654611820.3 739559673.7
80 430004295.4 500000000 655111642.5 740047717.5
81 430504295.4 500500000 655611439.2 740537854.5
82 431004295.4 501000000 656111208.9 741029783.8
83 431504295.4 501500000 656610949.7 741523235.2
84 432004295.4 502000000 657110660 742017967.9
85 432504295.4 502500000 657610337.9 742513769.5
86 433004295.4 503000000 658109981.4 743010454.2
87 433504295.4 503500000 658609588.5 743507861.4

Pioneering Economical Space Propulsion

90

88 434004295.4 504000000 659109156.9 744005853.8
89 434504295.4 504500000 659608684.4 744504315.1
90 435004295.4 505000000 660108168.5 745003148.1
91 435504295.4 505500000 660607606.9 745502272.4
92 436004295.4 506000000 661106996.6 746001622.6
93 436504295.4 506500000 661606335.1 746501145.8
94 437004295.4 507000000 662105619.3 747000800
95 437504295.4 507500000 662604846.1 747500552.1
96 438004295.4 508000000 663104012.4 748000376.5
97 438504295.4 508500000 663603114.5 748500253.6
98 439004295.4 509000000 664102149.1 749000168.8
99 439504295.4 509500000 664601112.2 749500110.9
100 440004295.4 510000000 665100000 750000071.9

Pioneering Economical Space Propulsion

2.
Chart 2 Sample Result of Method Two

Your pre-launch time = 10

Delta Velocity = 11814.8842429824

Chemical Results

Propellant Mass Ratio = 61.0136875884275

Propellant Mass = 9762.1900141484

Propellant Cost = 4295.3636062253
Mission Cost = 305000000

Total Cost = 395004295.363606

AU Distance = 1

Solar Pressure = 8.710662160448E-06

Solar Force = 0.0980726955518219
Characteristic Acceleration = 0.000699989493208687
Radial Acceleration = 6.05298740944706E-06
Angular Acceleration = 7.84055043871015E-38
Radial Velocity = 0

Angular Velocity = 1.99200696255584E-07
Radius = 149597870691

Calculating . . .

Years = 9

AU Distance = 39.5841645543753

Solar Pressure = 5.55914757901101E-09

Solar Force = 6.2590027945241E-05

91

Pioneering Economical Space Propulsion

Characteristic Acceleration = 1.76835737494759E-05
Radial Acceleration = 3.7805163473838E-06

Angular Acceleration = -6.3119362444022E-18

Radial Velocity = 16544 _5865517251

Angular Velocity = 1.11367765470042E-09

Radius = 5986942230127.01

Unit Cost = 9.37053729410292

Sail Cost = 75105502.1804627
Mission Cost = 545000000

Total Cost = 620105502.180463

Isp = 3981.24778825592

Fuel Mass = 1.49185583941122E-148
System Mass = 1.4874100991766E-148
Mission Cost = 365000000

Fuel Cost = 1.11889187955841E-143

Total Cost = 465000000

Delta Velocity = 11814.8842429824
Gamma Parameter = 1.00000198944649

Relative Mass = 1.01995379935489

Propellant Mass 1.41247289417973E+38

7.07871653442095E+39

System Dry Mass
Structure Mass = 6.37084488097885E+39
Lambda parameter = 45.1041921387003

Mass Antimatter = 2.36288839914226E-11

92

Pioneering Economical Space Propulsion

Antimatter Production Efficiency = 0.000109961598420404
Total Antimatter Cost = 3862545135.77933
Mission Cost = 605000000

Total Cost = 4567545135.77933

93

Pioneering Economical Space Propulsion

THIS PAGE INTENTIONALLY LEFT BLANK

94

