
Introduction to the Java Language

Basic Syntax

Comments

Java has two kinds of comments: traditional comments (also allowed in C, C++, SQL, and some other

languages), which begin with /*, end with */, and may span multiple lines; and "trailing" or

end-of-line comments (also allowed in C++; many other languages have their own styles of

end-of-line comments), which begin with //, and continue until the end of the physical line.

Example: Code Comments

/*
 This is a traditional comment. It may include any amount of text, over any
 number of lines; the compiler will ignore everything up until the closing
 characters.
 */

/*
 * This is a traditional comment, in the Sun-recommended format for multi-line
 * comments. The leading asterisks are not required (in fact, they are ignored
 * by the Java compiler, like all text in the comment), but they help the
 * reader to see comment blocks more easily.
 */

/* This is a traditional single-line comment. */

// This is a trailing/single-line comment; it ends when the physical line ends.

x = 5; // This is a trailing comment, following a statement (recommended form).

y = 1; /* This is a traditional comment, following a statement. */

Case Sensitivity

The Java syntax is largely derived from the C and C++ languages, and shares with those languages

many basic characteristics. For example, Java is case-sensitive: keywords (such as if, for, class,

return, etc.) are always typed in lowercase, and if uppercase versions are used in Java code, the Java

compiler will not recognize them as keywords; similarly, the case used in a variable, class, interface,

or package reference must match the case used in the corresponding declaration, or the Java compiler

will not recognize the reference.

Example: Case sensitivity

int sum = 0;
int upperLimit = 100;
int lowerLimit = -100;

If (sum > upperLimit) { // Compiler error - The keyword is "if", not "If".
 return;
}

if (Sum < lowerLimit) { // Compiler error - the variable is "sum", not "Sum".
 return;
}

By long-established convention (codified in Sun's recommendations), class names usually begin with

an uppercase letter, while variable and method names begin with a lowercase letter. Class, variable,

and method names consisting of multiple words cannot have embedded spaces; to make such names

easier to read, it is conventional to start each word after the first with an uppercase character (e.g. we

might have a variable named upperLimit, or a class named TicTacToe).

Simple Statements

There are many kinds of statements in Java: assignment statements; method calls; declarations of

variables, classes, and interfaces; flow control statements; exception management statements; etc.

Some of these (certain declaration and flow control statements) will be addressed later in this session,

and in the more in-depth Java session. For the moment, we will focus on simple statements, consisting

of assignments, method calls, and/or expression evaluation.

In an assignment, the value of an expression is assigned to a variable, or to an element of an array. A

single equals sign (=) is used as the assignment operator.

An expression consists of one or more operands (variables, literals, or method invocations which

return values) and one or more operators (+, -, /, -, %, etc.). Note that the operator consisting of two

equals signs (==) is used to compare two operands for equality, while a single equals sign is used for

an assignment; be careful not to confuse these two operators.

A call to a method which returns a value may be an operand in an expression; a call to a method

which does not return a value cannot.

If the statement does not include an assignment, it may consist of a call to a method which does not

return a value.

Example: Simple statements

x = 10; // Assignment statement; expression has one operand.
y = x + 5; // Assignment; expression has multiple operands.
z = x * Math.sqrt(y); // Assignment; expression includes call to a method.
a = (x == y); // boolean assignment, based on equality of operands.
System.out.println(z); // No assignment; call to a method.

Introduction to the Java Language 2 of 14

Statement Termination

Every simple Java statement must end with a semicolon. Note that this does not mean that each

physical line must end with a semicolon: a simple Java statement may span multiple lines (in fact, if

such a statement is very long, it may be a very good idea to split it into multiple physical lines, for

legibility).

Example: Statement termination

int x = 0; // OK - the statement is properly terminated.
int y = x + 1 // Compiler error - the statement isn't properly terminated.
int z =
 y + 10; // OK - the statement is properly terminated.

Statement Blocks

A statement block is a group of statements, enclosed within a pair of curly braces. In most cases, a

statement block may be used in place of a simple statement; this usage is very common (and

recommended) within for, if, if-else, while, and do-while statements. There are also some cases

— namely, the definition of a class, interface, method, or static initializer — where a statement block

is required.

Note that a semicolon is not needed (nor is it recommended) after the closing right curly brace of a

statement block.

Example: Statement blocks

public int getBalance() { // A method definition; must use a block.
 int sum = 0;
 int upperLimit = 1000;

 while (sum < upperLimit) { // The left curly brace begins a block.
 sum += getNextDeposit();
 sum -= getNextWithdrawal();
 } // This brace closes the while loop block.
 return sum;
} // This brace closes the method block.

White Space

There are certain cases where white space (one or more spaces, tabs, line feeds, carriage returns, or

form feeds) is required. In particular, white space is required between identifiers (keywords, variable

names, primitive type names, class names, interface names) and other identifiers — but not between

identifiers and operators (+, -, /, -, %, etc.). On the other hand, white space is not allowed within

identifiers; thus, class names and variable names (for example) cannot have spaces embedded in them.

Also, there are a few operators that consist of more than one character (<=, >=, &&, +=, instanceof,

etc.); white space is not permitted between the characters of such operators.

When white space is allowed, any amount of white space can be used; anything beyond the minimum

required white space is ignored by the Java compiler. Thus, the primary purpose of white space in

such cases is to improve readability.

Introduction to the Java Language 3 of 14

One case which might not be immediately apparent, where certain kinds of white space — namely,

line feeds, carriage returns, and form feeds — are forbidden, is within string literals. If we want a

string literal to include a line break, we would do that by including the new line character (\n) in the

quoted string literal. On the other hand, if we want to break a quoted string literal across multiple lines

to improve readability of our code, we would do that by breaking the string literal into multiple parts

(on multiple lines), and concatenating them with the + operator.

Example: White space

int x = 0 // This line is fine ...
int y=1; // ... and so is this one (but harder to read) ...
intz = 2; // ... but not this one: "int" and "z" need a space between.

String s = "A"; // This line is fine ...
String t = "B\nC"; // ... and so is this one (it includes a line break)...
String u = "D
 E"; // ... but not these two: they break in a string literal.

x++; // Good: "++" is a special operator.
y+ +; // Bad: we have a space in the operator.

Variables

In Java, variables may be declared within a method or constructor (in which case, the variables and

their values are not visible outside the method or constructor), or outside of methods and constructors,

but within a class (in which case, the variables and their values are visible to the methods of the class,

and may also — depending on the accessibility declared for the variables — be visible outside the

class).

A variable is minimally declared by specifying the type and the name of the variable. For class-level

variables, the type may be preceded by accessibility and scope modifiers.

A variable declaration can include assignment of an initial value to the variable in the same line.

Multiple variables of the same type can be declared in a single declaration; this should be done

sparingly, and should never be done in combination with assignment of an initial value.

Example: Variable declaration and use

class Bacterivore {
 public static int populationSize = 0; // Integer, visible outside class.
 private int energy = 100; // Floating-point private variable.
 private float x, y; // Multiple variables declared.

 private void move() {
 float dist = Math.random(); // Visible only within the method.
 float dir = 2 * Math.PI * Math.random();
 x += dist * Math.cos(dir); // Modifying a class variable.
 y += dist * Math.sin(dir); // Modifying a class variable.
 }
}

Introduction to the Java Language 4 of 14

Flow-control Statements

This section is intended to be a quick introduction to flow-control techniques in Java. While some

examples are given, they are not exhaustive, and most people learning Java will probably want to

review additional reference or tutorial material. Sun Microsystems publishes several such books, in

hardcopy and online form, including The Java Tutorial and The Java Language Specification, Third

Edition.

if-else

The Java conditional statement is the if statement, which includes a condition (a boolean expression)

which is evaluated, and a statement (or block of statements) which is executed if the condition is true.

If the if-else form is used, a second statement or statement block is executed if the condition is

false.

The general syntax of the if and if-else statements is as follows:

Syntax: if and if-else statements

if (condition) {
 statements
}

if (condition) {
 statements
} else {
 statements
}

If only one statement is to be executed conditionally, the enclosing curly braces can be omitted;

however, this usage tends to be very error-prone, and is strongly discouraged.

if and if-else statements can be nested.

Example: if and if-else statements

if (age > 18) {
 vote();
}

if (distanceTo(prey) <= maximumKillDistance) {
 if (Math.random () < (distanceToPrey / maximumKillDistance)) {
 killPrey(prey);
 energy += 100;
 } else {
 energy -= 20;
 }
} else {
 energy -= 10;
}

Introduction to the Java Language 5 of 14

http://java.sun.com/docs/books/tutorial/
http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html

switch

The Java switch statement is used to execute one of a set of alternative statement groups, based on

the value of a selector expression. The result of the selector expression must be of type int, or a type

which can be promoted to int.

This statement can be confusing at first, to those without previous experience in C/C++ or similar

languages. While it might appear to be simply a more flexible conditional statement (similar to the

Select Case statement in Visual Basic, or the CASE function in SQL), this is not exactly the case. In

particular, evaluation of the switch expression does not result in selection of a unique statement block

to execute; instead, there is one statement block for all of the alternatives, and the code corresponding

to each alternative is marked by a case label; after evaluation of the selector expression, execution

jumps to the statement immediately following the case label corresponding to the value of the

selector expression. While this may seem no different than having separate statement blocks, there is

one big difference: without the use of a break statement to exit the statement block, execution that

starts with the case label corresponding to one alternative will proceed through and past any

subsequent case labels, executing statements associated with those labels (and thus, with different

alternatives than the one identified by the selector expression).

Here is the general form:

Syntax: switch statement

switch (expresson) {
case value1:
 statements
case value2:
 statements
…

case valueN:
 statements
default:
 statements
}

Any number (including zero) of case labels can be included, and the default label (to which

execution jumps if expresson is not equal to any of the case values) is optional.

In the example below, assume that DOG, CAT, and COYOTE are named constants (i.e. variables declared

static final — by convention, that type of variable is named with all uppercase letters, and with

underscores between multiple words) of type int.

Introduction to the Java Language 6 of 14

Example: switch statement

switch (breed) {
case DOG:
 eat();
 wander(5);
 break;
case CAT:
 eat();
 sleep(20);
 hunt(10);
 break;
case COYOTE:
 sleep(50);
 hunt(20);
 break;
default:
 eat();
 break;
}

At runtime, the value of breed will be compared with the values in DOG, CAT, and COYOTE. If a match

is found, execution will jump to the first statement below the corresponding case label; if no match is

found, execution will jump to the first statement below the default label. Note the break statements;

these prevent execution from continuing past the group of statements associated with one alternative,

into the group of statements associated with the next. When a break statement is encountered, the

current statement block is terminated, and execution proceeds with the statement immediately

following the block.

(Note that the statements following the default label also include a break statement. This is not

strictly necessary, but it is strongly recommended, in case any additional case labels are later added to

the code after the default label.)

for

The for statement is generally used to iterate across an array, or a set of regularly-spaced values. (It is

not limited to these uses, but many of the more "creative" applications are generally better handled

with a while statement.) The general form is as follows:

Syntax: for statement

for (initializer; condition; incrementor) {
 statements
}

At runtime, execution of the for statement follows this sequence:

The initializer statement is executed.1.

The condition is tested; if it is true:

The statements are executed.a.

The incrementor statement is executed.b.

Execution returns to step #2c.

2.

As is the case for the if-else statement, if statements contains a single statement, the curly braces

can be omitted; however, that form is discouraged.

Introduction to the Java Language 7 of 14

In practice, it is quite common for the initializer statement to be a variable declaration and assignment

combination. A variable declared in that fashion will only be in scope in the for statement; any

attempt to access it after the for statement completes will result in a compiler error.

The following example will print all of the elements of the args array (typically used to pass

command line parameters to a Java application), along with explanatory text, to the standard output

device.

Example: for statement

for (int index = 0; index < args.length; index++) {
 System.out.printf("Command line param #%d=%s\n", index + 1, args[index]);
}

while

The while statement is a more general-purpose looping statement than for: it simply repeats a

statement block (or a single statement) as long as a condition (a boolean expression) is true. This

condition is checked before the first time through the loop, and before each successive repetition.

The general syntax is as follows:

Syntax: while statement

while (condition) {
 statements
}

As before, if statements consists of a single statement, it is permissible (but not recommended) to

leave out the curly braces.

Interestingly enough, because of the general nature of the while statement, any for statement can be

converted into a while statement. We can take the general syntax of the for statement, and rewrite it

with the while syntax, as follows:

Syntax: while statement equivalent to for statement

initializer

while (condition) {
 statements
 incrementor
}

Here is a simple example of the while statement:

Example: while statement

while (board.getResult() == Board.Result.GAME_CONTINUES) {
 player.move(board);
}

Introduction to the Java Language 8 of 14

do-while

The do-while statement is identical to the while statement, except for one thing: the loop statement

block is executed the first time, without testing the condition; thereafter, the condition is tested before

each execution of the loop statement block. This is reflected in the syntax, which shows the condition

at the bottom of the loop:

Syntax: do-while statement

do {
 statements
} while (condition)

Introduction to the Java Language 9 of 14

High-level Code Structures and Organization

This section is intended to be a very quick introduction to certain higher-level concepts in Java —

namely, classes, methods, constructors, etc. It is not a reference or a tutorial on these topics, and only

a few examples are included. For more information, see The Java Tutorial, or The Java Language

Specification, Third Edition.

Compilation Units

Java source code is organized into "compilation units" — i.e. source code files. Each source code file

may contain a package declaration (optional), one or more import statements (optional), and one or

more type declarations (classes, interfaces, and enumerations) — but only one non-nested class per

file may be declared public. When a Java file is compiled, the compiler uses the import statements

to resolve references to external classes and interfaces. After compilation, the classes and interfaces

defined in the file are placed in the package given in the package declaration; other compilation units

may then use this package name, along with the names of the classes and interfaces we have compiled

into the package, in their own import statements.

Example: Basic source file

/*
 * Dice.java
 */
package org.challenge.nm.examples;

import java.util.Random; // Import the Random class from the java.util package.
import java.io.*; // Import all the classes of the java.io package.

public class Dice {
 /*
 * Right now, this class does nothing - except compile cleanly, into the
 * org.challenge.nm.examples package.
 */
}

Note that every Java source file includes an implicit import java.lang.*; statement; it is not

necessary (nor is it considered good programming practice) to import that package's classes explicitly.

Classes

In Java (and many other programming languages, such as C++ and Visual Basic), a class is a construct

in which the data and behavior of customized objects are defined; essentially, such classes become

new data types, and we can create variables (objects, or class instances) of these types, just as we

create variables of the built-in "primitive" types. A simple example of such a class is the String class,

which is part of the java.lang package, in the standard Java library: this class encapsulates the data

required for managing strings of characters, and the typical operations which can be performed on

those strings.

We might also create classes as a means to group together related operations, even if they aren't

necessarily associated with a single type of object. An example of this kind of class is the

java.lang.Math class, which includes methods which implement the standard set of basic

mathematical functions (trigonometry, logarithms, etc.).

Introduction to the Java Language 10 of 14

http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://java.sun.com/docs/books/tutorial/

Finally, we also use special classes to define the entry points for Java programs, applets, etc. We can

think of these classes as "stage managers": they set the stage, and start the show — but generally, in all

but the simplest cases, the objects created from other classes are the primary performers.

A class can extend an existing class, using the extends keyword. the new class is referred to as a

"subclass" of the class being extended (the "superclass"); it can add functionality (i.e. new methods),

or modify existing functionality by overriding the methods of the superclass. Using this technique,

class hierarchies can be built, starting with very generic classes at the root, and moving to more

specialized subclasses.

A class may be declared abstract, in which case it cannot be directly instantiated; a common use of

this is to declare (but not implement) functionality in a superclass, and leave the implementation to

subclasses.

(Superclasses, subclasses, abstract classes, and related concepts will be addressed in another

document.)

Within a class, we generally have the following elements:

variable declarations (also called fields);

static initializers (code which runs at the class level, the first time the class is referenced);

constructors (special methods — having the same name as the class — which initialize objects of

the class type; this operation is often called "instantiation");

method definitions.

We can also define classes within classes (nested classes). Note that this is not the same as a subclass:

a nested class is used for defining a type of object which is only used in the context of another type of

object (the enclosing class); a subclass is used to extend or specialize the attributes and/or behavior of

another class.

A class may be declared public, in which case it can be accessed by other classes (in practical terms,

this usually means that other classes can create objects of the given class' type). If a class is not

declared public, it can only be used by other classes in the same package.

The class members (variables, constructors, methods, and nested classes — but not static initializers)

may be declared public, protected, or private, with the following implications:

public members can be accessed from any other class.

protected members can be accessed only by classes in the same package, or (in some cases) by

subclasses of the given class.

private members can only be accessed by the given class.

Class members may also be declared with static or default scope:

static members are at the level of the entire class; they represent data or operations which are

shared by all members of the class.

Members with default scope are at the level of individual objects.

Class member variables can also be declared final, which means that initial values can be assigned,

but never changed; thus, these are really constants, not variables. Generally, such constants are also

Introduction to the Java Language 11 of 14

declared as static, since there is little value in having each object instance maintain its own copy of a

constant. (Also, by convention, static final variables are usually given all-uppercase names.)

Example: Simple class

/*
 * Dice.java
 */
package org.challenge.nm.examples;

import java.util.Random;

/**
 * Class which encapsulates a set of one or more six-sided dice, and which
 * can be used to return the sum of the spots showing on the dice in a throw.
 *
 * @author Supercomputing Challenge
 * @version 1.0, 2005-07-14
 */
public class Dice {
 /** Public constant value for the number of sides on a standard die. */
 public static final int NUMBER_OF_SIDES = 6;
 /** Private variable holding the number of dice to be thrown. */
 private int numberOfDice = 2;
 /** Each set of dice has its own private random number generator. */
 private Random rng;

 /**
 * Public constructor, which creates a set of dice, with the quantity
 * taken from the default value of numberOfDice.
 */
 public Dice() {
 rng = new Random();
 }

 /**
 * Public constructor, which creates a set of dice, with the quantity
 * specified in the numberOfDiceToThrow parameter.
 *
 * @param numberOfDiceToThrow int value specifying the number of dice
 * in the set.
 */
 public Dice(int numberOfDiceToThrow) {
 this();
 numberOfDice = numberOfDiceToThrow;
 }

 /**
 * Returns the sum of random die values for the set.
 *
 * @return int sum of the dice throw.
 */
 public int throw() {
 int sum = 0;
 for (int index = 0; index < numberOfDice) {
 sum += (rng.nextInt(NUMBER_OF_SIDES) + 1);
 }
 return sum;
 }
}

Note that the above example includes comments which are formatted for use by the Javadoc tool; such

comments are standard Java comments, with additional embedded information allowing for the

automatic generation of technical documentation.

Introduction to the Java Language 12 of 14

Interfaces

An interface is essentially an abstract class which includes only constants and abstract methods. In

other words, an interface declares functionality, but leaves the implementation to classes which

implement the interface. We can think of interfaces as contracts: a class which implements an

interface must provide the functionality exactly as it is declared in the interface.

Enumerations

An enum is a special kind of class, which includes in its definition the definition of a static set of class

instances. It is used to implement type-safe sets of enumerated constant values. Further discussion of

the enum is beyond the scope of this document.

Packages

In general, a package is as a collection of compiled classes and interfaces, organized within a

namespace. However, this organization may not necessarily be physical: collections can consist of

multiple compiled .class files and/or multiple .jar archives, and the contents of a .jar archive can

include multiple packages — in their entirety, or in part.

In practice, the namespace of a package usually maps to the hierarchical directory structure of a

filesystem (which may be within a .jar archive). For example, if the Java compiler (or Java

executive) encounters the statement import org.nm.challenge.examples.Dice; , it will look for the

Dice class in the org/nm/challenge/examples subdirectory (if it exists) of the current directory. (If it

does not find the class using the current directory as a base directory, the compiler will iterate through

the directories in the current Java classpath, using each one as a base directory in searching for the

org/nm/challenge/examples subdirectory and the Dice class.)

Methods

A method is a named statement block, defined within a class (it may be declared, but not

implemented, in an interface or an abstract class; it may also be declared abstract — and thus not

implemented — even in a class which isn't abstract). In general, methods make up the behavior of a

class: a method may return information about an instance of the class (or the class as a whole); it may

modify the data of a class instance (or static data associated with the entire class); it may use the

instance or class data to invoke methods in other classes; etc.

Like a class variable, a method may be declared public, private, or protected, controlling the

accessibility of the method from outside the class. Also like a class variable, a method may be

declared static, in which case it is associated with the entire class, and does not automatically

operate on a single instance of the class. (There are other modifiers which may be used in the

declaration of methods, but they are outside the scope of this document.)

A method is declared with a list (which may be empty) of parameters; code invoking a method passes

values (in the method call) which match these parameters in type (or which can be promoted to the

declared parameter types), and the code of the method refers to these passed values by the names of

the declared parameters.

Each method is declared with a return type; in the body of the method, a return statement is used to

return a value (of the declared type) to the caller. Alternatively, a method may be declared with a

Introduction to the Java Language 13 of 14

return type of void, in which case no value is returned to the caller, and the return statement is not

allowed in the method code.

An example of a method can be found in the class example, above.

Constructors

Constructors are special statement blocks which are used to instantiate objects of a class; they are

generally used to initialize variables, and create/allocate resources (including arrays and other objects)

which will be used over the lifetime of the object. Constructors appear similar to methods, but they

have the following unique characteristics:

The name of a constructor is the same (including case) as the class name.

A constructor does not return a value, and no return type (not even void) is specified.

A constructor cannot be invoked on an already-instantiated object.

A class may have multiple constructors, distinguished by different numbers and/or types of

parameters.

An example of class constructors can be found in the class example, above.

Introduction to the Java Language 14 of 14

	Basic Syntax
	Comments
	Case Sensitivity
	Simple Statements
	Statement Termination
	Statement Blocks
	White Space
	Variables

	Flow-control Statements
	if-else
	switch
	for
	while
	do-while

	High-level Code Structures and Organization
	Compilation Units
	Classes
	Interfaces
	Enumerations
	Packages
	Methods
	Constructors

