

Artificial Eye

New Mexico Supercomputing Challenge

Final Report

April 4, 2007

Team # 010

Albuquerque Academy

Team Members:

Nick Longenbaugh

Wesley Smalls

Sponsoring Teacher/Project Mentor:

Jim Mims

 2

Table of Contents

Cover Page………………………………………………………………………………………...Page 1

Table of Contents……………………………………………………………………………….Page 2

Executive Summary………….………….………….………….………….………….………Page 3

Problem Statement………….………….………….………….………….………….………Page 4

Description of Major Methods………….………….………….………….………….…..Page 5

Description of Major Routines………….………….………….………….………….…..Page 9

Results………….………….………….………….………….………….………….………….…..Page 12

Conclusions………….………….………….………….………….………….………….……….Page 15

Original Achievements………….………….………….………….………….………….…..Page 16

Acknowledgements………….………….………….………….………….………….……….Page 17

Citations and References………….………….………….………….………….………….Page 18

Appendices………….………….………….………….………….………….………….………..Page 19

 A) Simplified Flow Chart………….………….………….………….……………Page 20

 B) CConnection Code………….………….………….………….………….…….Page 21

 C) CSGridCell Code………….………….………….………….………….………..Page 23

 D) Beginning Code………….………….………….………….………….…………Page 28

 E) Background Code ………….………….………….………….………….……..Page 30

 F) Filtering Code………….………….………….………….………….……………Page 31

 G) Smoothing Code………….………….………….………….………….……….Page 32

H Scanning Code………….………….………….………….………….………….Page 36

 I) Analysis Code………….………….………….………….………….……………Page 40

J) Form1 Code………….………….………….………….………….………….……Page 42

 K) Settings Code………….………….………….………….………….………….…Page 46

 3

Executive Summary

 Our team‟s goal for the 2006/2007 Supercomputing Challenge was to

create a program that could successfully model the human eye. To do this, the

program would need the ability to break down images given to it and identify

objects within the images. After researching various methods used in the past, our

team decided to focus on the two most important aspects that we found:

boundaries and color.

 Using embossing and engraving with respect to the left (arbitrary), the

program finds differences between neighboring pixels. By paying attention to only

the largest changes, it is able to determine the boundary between two color fields

and filter out background noise. Using this technique, the program then uses one of

two options to simplify the data into virtual lines: It either uses a swarm class to

“trace” the boundaries, or it uses an original technique called “shrink wrapping” in

order to find the outlines of objects in the picture.

 The next step is to connect the lines and form polygons. Using these

polygons as references, it then generates color field data. Using the lines, polygons

and color fields, the program is then able to utilize “Template Matching” in order to

identify objects within the picture.

 Unfortunately, the final step that our team achieved in the development

process was the generation of the boundary lines to be used in polygon generation.

We simply could not make the jump from simple line data to a coherent list of

relevant polygons, which was the next step in deciphering the picture. Our

difficulties most likely arose from our approach to the problem, which was

significantly different from previous attempts. Had more similarities between the

techniques we used and the ones used in the past been present, we likely would

have made the jump and created a successfully executing program.

 4

Problem Statement

The goal of our project was to create a program capable of mimicking the

human eye. In order to do this, the program needed to collect data from an image

that pertained to specific objects within the image. It needed to locate and address

items including boundaries, shapes, color fields, and possibly textures. Also, for a

fully developed understanding of the image to be obtained, the program would be

required to take into account the image‟s context. This implied the use of a video

stream and/or the usage of 3-Dimensional vision techniques.

 5

Description of Major Methods

In order for the program to accurately mimic the human eye, it follows

several simple steps: 1) break the image down into its basic elements, 2) filter out

any “background noise”, 3) determine boundaries between color fields, 4) generate

polygons and color fields from the boundaries, 5) use template matching to come

up with the closest match in order to determine what objects are within the image.

In order to break an image down into its basic elements, a basic knowledge

of computer images was required. A basic computer image, known as a bitmap,

consists of a two dimensional array of pixels. In turn, each of the pixels in the array

can be thought of as a stack of three dots. Each of these dots contains data about

one of three colors: Red, Green, and Blue. The data is made up of a number which

describes the amount of color in the dot. This number ranges from 0 (no color), to

255 (full color). In another sense, a bitmap can be thought of as three distinct

planes of pixels, each plane corresponding to Red, Green or Blue.

The first step in deciphering an image is to break it up into its three color

planes. This technique is called “Picture Parsing”. In order to do this, a pixel by pixel

operation is performed that extracts amounts of Red, Green and Blue in a pixel and

saves the data in three identical arrays that represent the three color planes of the

 6

original image. This operation is given below. For convenience, the pixel value will

be “Pixel”.

Red = Pixel And &HFF

Green = ((Pixel And &HFF00) / &H100) Mod &H100

Blue = ((Pixel And &HFF0000) / &H10000) Mod &H100

After the three color planes have been defined, a grayscale plane is generated by

averaging each pixel in the other three planes.

 The second and third steps in deciphering an image involve “smoothing” the

image, or filtering out the “background noise”. Background Noise is any

unimportant undulation or change in the coloring of an image. To do this, two very

simple techniques called Embossing and Engraving are used. The only difference

between the two is how the result appears. When viewed, embossing appears to

cause the image to “pop out” of the picture, where as engraving appears to cause

the image to “sink into” the picture. The process of both embossing and engraving

involves nothing more than comparing a pixel to its neighbor and then assigning the

pixel the value of their difference. By using a threshold, such as 50%, any

insignificant changes, or background noise, can be filtered out, while saving the

larger changes to be thought of as boundaries.

 7

 The second part of the third step is defining the definite boundaries between

color fields in the image. To do this, one of two techniques is utilized. The first is to

simply trace the boundaries using a swarm class, and using the data to generate

virtual lines. The swarm class starts as “Seeds” which are placed on the boundaries

of the image in a grid pattern. The seeds quickly develop into “worms” that continue

to trace their boundary until they run into a grid line or hit a dead end. In the case of

running into a grid line, the worm will terminate and create a new seed at its

terminal point. Unfortunately, though this technique is very accurate, it is inefficient

and consumes huge amounts of memory and processor power.

 The second technique in the third step is an original technique designed

specifically for use in this project: “Shrink-wrapping”. It is a rather complicated

technique that splits the image into virtual “fields” and in each field “wraps” any

borders and/or objects in their entirety. In doing so, each boundary in a field is

quickly estimated and fused with those nearest it. This technique, while

considerably faster to execute and far less resource intensive than the Seeding

method, is also far less accurate.

 The fourth step in deciphering an image is to take the boundary data

collected so far and generate simple polygons from it. Using these polygons, color

fields can be extrapolated by averaging the color values of the pixels within the

polygons.

The final step in the process of deciphering an image is to compile all of the

data collected thus far and use it in a database search. This process, known as

 8

“Template Matching”, uses the information in the database, which pertains to

known objects, and compares it to the data gathered from the image. When

matches (or near-matches) to the collected data are found, the object has been

successfully identified. When all, or close to all, of the data in the image has been

accounted for, the picture is deemed deciphered. However, in the case that no

template matches or is acceptably close to the collected data, the program asks for

a name to associate with the data and saves the data as a new template for future

use.

Unfortunately, everything aforementioned beyond the third step is simply

speculation. Our team never managed to move beyond the third step in the

development stage of our project. We believe our problem stemmed from the fact

that there were so many differences between our chosen methods and those that

have worked successfully in the past. When we finally faced a problem that we

couldn‟t answer, we had no where to turn so to that would provide us with an

answer.

 9

Description of Major Routines

The CConnection Class

 Almost all of the Routines in the CConnection class are trivial, and so will not

be mentioned here. However, The FindNextPoint routine is very important. In fact it

is the driving force behind the Seeding method of boundary recognition in our

project.

 The FindNextPoint routine acts as the “eyes” for the seeds/worms of the

CConnection class. It decides where, if anywhere, the seed/worm will move next. To

do this, it decides what points directly surrounding it 1) are parts of a boundary, and

2) have not been scanned by another seed/worm. The first clean (both of the

aforementioned Booleans are true) point that the routine finds is automatically

considered the seed/worm‟s next target, and the placement variables (its X and Y

coordinates) are set to those of the new point.

If none of the seed/worm‟s surrounding points are clean, it terminates. That

is to say that it records its current (X,Y) coordinate pair as the ending point for a line

segment, and sets its starting (X,Y) coordinate pair as the starting point for the

same line segment. It then saves this line segment in a collection that stores it until

the next step (polygon generation).

 In the event that the seed/worm moves onto one of the lines of the seeding

grid, it immediately terminates and creates a new seed to take over for it. In this

way, the class creates boundaries that match the image‟s boundaries much more

exactly.

The CSGridCell Class.

The name CSGridCell stands for Shrink-Grid Cell. Appropriately, members of

this class are nothing but virtual cells of the grid created by the SetupSqueezeGrid

routine in the Scanning module. Each cell is comprised of a 5x5 grid (arbitrary units),

with each side of the grid containing 5 equally spaced points. These points slowly

move toward the center until they find a boundary mark. If a point makes it all the

 10

way to the center, it is disregarded. Once all of the points have ceased moving, the

cell creates members of the CConnection class that connect the points sequentially,

forming an outline of whatever is within the cell‟s grid.

The Squeeze routine is called to incrementally move the points toward the

center of the cell‟s grid. It moves all twenty points, one pixel at a time. When a point

hits a boundary mark, it sets a Boolean tied to it to equal false, and it is no longer

moved. Finally, Squeeze checks to see if any of the points have reached the center

of the cell‟s grid, if they have, it sets the Boolean tied to it to equal false.

The second and final noteworthy routine in the CSGridCell class is the

CreateOutline routine. This routine sets up an array and moves sequentially through

the points, finding the ones whose Boolean tie indicates they are still active. If they

are, it adds them to the array. From this array, CreateOutline then creates a series

of pre-terminated Worms (members of the CConnection class) that connect the

active points, thereby creating the “Shrink-Wrapped” outline of the contents of the

cell.

The Filtering .bas Module

 The filtering .bas module‟s single noteworthy routine is nonetheless at the

basis of the entire program‟s operation. The FilterPicture routine uses a pixel by

pixel operation that splits the image into 5 separate color planes: Red, Green, Blue,

Grayscale, and Black and White. All of the color planes are then loaded into

identical arrays, and from then on are treated as separate pictures.

The Smoothing .bas Module

 There are five major routines in the Smoothing module: Smooth,

SmoothUpLeft, SmoothUpRight, SmoothDownLeft, SmoothDownRight.

Smooth, the main routine in this module, acts mainly as a crossroads,

deciding which of the other four large routines to call. However, after it has called a

combination of the other four routines, it applies error compensation in the form of

correcting the solid lines around the edges of the image formed as a side effect of

the four smoothing routines.

 11

 SmoothUpLeft is an embossing routine. Contained within it are two nested

For Loops that work their way through the pixel data of the image from bottom right

to upper left. For each pixel, the routine compares it with the neighboring pixel on its

upper left side. It then plots the difference between the two pixels as a grayscale

value in another array. It does this for all five of the color planes.

Each of the other three routines is either an embossing routine or an

engraving routine. The names of the routines tell in which direction they are justified.

The Scanning .bas Module

 The Scanning module contains quite a few major routines: LaySeeds,

SetupSqueezeGrid, ScanningLoop, and several routines for creating the members of

the CConnection, CSGridCell, and other classes.

 The LaySeeds routine is the starting routine for the seeding method of

finding boundaries. It is a fairly simple routine, yet is immensely important. It simply

calculates where grid lines should be placed on the image. The number of lines on

both the horizontal and vertical dimensions is defined by the user. Then, LaySeeds

scans each pixel underneath the grid lines (in all of the color planes), and if it is a

boundary mar, it lays a seed at that location. The grid method was chosen from trial

and error after attempting to use many more approaches. It is very efficient in that

it misses few, if any, of the image‟s details when set to a decently high level of

detail.

 The SetupSqueezeGrid routine is the starting routine for the Shrink Wrap

method of finding the boundaries. SetupSqueezeGrid, much like LaySeeds, simply

defines the lines for a grid. Or, more accurately, it creates the individual cells of the

grid. The number of cells on each side of the image (the number of cells to be

squared) is set by the user, and the cells are then created sequentially.

 ScanningLoop is arguably the most important routine in the program. It is

comprised of a single loop that terminates when no further growing (Seeds/Worms)

or shrinking (Shrink Wrap) can occur.

 12

Results

 Our results were fairly clear. Because we benchmarked our code, we were

able to obtain results from all of the stages we completed throughout the entire

program.

Step 1: Filtering

A picture of an image (top left), the three main color planes

that make it up, the Grayscale color plane, and the Black and

White color plane.

 13

Step 2: Smoothing

A picture of the same image, but with the background noise

filtered out and the borders between color fields accentuated.

 14

Step3: Scanning

A time-lapse picture of the smoothed version of the image with

the original seeding grid, and the Worms that developed from

it.

 15

Conclusions

Based on the data collected during the development and testing phase, I can

draw the conclusion that although the project was not able to be completed, there is

no reason that methods chosen are to blame; the project could very well have

succeeded given more time. Upon closer inspection, I also came to the conclusion

that the Shrink Wrapping method, under certain conditions, becomes unstable and

unreliable. Also, after further testing of the Seeding method, we found that it is far

more effective when used in a smaller, localized setting, with a limit placed on the

seeds‟ propagation. In this way, we can confidently conclude that a blending of the

principles behind the two scanning methods we used would be by far the most

effective.

 16

Original Achievements

 By far, the most rewarding achievements of our team during the Challenge

were the two scanning methods that we developed. Because they are both different

from methods seen in the past, the fact that they worked (at least satisfactorily)

shows that they could definitely be used in future routines and methods for

modeling the human eye.

 17

Acknowledgements

We would like to thank Jim Mims, our teacher and project mentor, for all of

his time and effort. Although we chose a topic to study and work in that was

leagues ahead of us, he never once tried to stop us, but rather simply encouraged

us to do the best that we could. In the end, although we didn‟t manage to complete

our project, he has taught us many new ways to approach problems and challenges

that will undoubtedly help us to conquer future wall even taller than those we face

now.

 Finally, we would like to thank all of our many friends here at Albuquerque

Academy and elsewhere that supported and encouraged us throughout the entire

process. We would never have made it this far without them.

 18

Citations and References

Books and Written Sources:

ARTIFICIAL INTELLIGENCE

a revision of COMPUTERS THAT THINK?

Margaret O. Hyde

Artificial Intelligence

UNDERSTANDING COMPUTERS

The Editors of TIME-LIFE BOOKS

BRAIN MAKERS

David H. Freedman

MIND MATTERS

James P. Hogan

THE LOGIC OF INDUCTION

Halina Mortimer

Microsoft Visual Basic 5

The Comprehensive Guide

Richard Mansfield

Microsoft Visual Basic 6.0

Programmer‟s Guide

Microsoft Corporation

Websites:

 19

Appendices

 20

Appendix A
Simplified Flow Chart

Begin

Parse Picture into

BW, GR, R, B, and

G Color Arrays

Filter Out

Background Noise

Smooth

Boundaries

Connections

Swarm over Image

Connections

Finalize

Themselves

Generate

Polygons from

Connections

Scan for Color

Fields

Generate Color

Polygons from

Color Field Data

Search for

Textures

Check Template

Database for

Matches

On Positive Hit,

Register Virtual

Template as

Object

Create New

Polygon

Associations if Any

Display Found

Object in

Picture Box

End

Import Picture

File

Paint

Picture

into

Picture

Box

Read Picture

Data Into Array

Seed

Smoothed

Picture with

Connections

Compile

List of likely

Template

Matches

 21

Appendix B
CConnection Code

„Code written in Microsoft Visual Basic 6.0, line comment character is „

„Property and Global variable Dimensioning

Public SX As Integer, SY As Integer 'Start X and Y

Public CX As Integer, CY As Integer 'Current X and Y

Public PX As Integer, PY As Integer 'Previous X and Y

Public EX As Integer, EY As Integer 'End X and Y

Public Following As Boolean

Public Color As String

Public ColorCode As Long

Public Remove As Boolean

Public Complete As Boolean

Public Sub Follow()

Call FindNextPoint

If (CX = SX And CY = SY) Or (EX = SX And EY = SY) Then

 Complete = True

 Remove = True

Else:

 If CX / Scanning.Detail = Round(CX / Scanning.Detail) Or CY / Scanning.Detail = Round(CY / Scanning.Detail) Then

 Complete = True

 Call EndConnection

 Call Scanning.CreateNewCorner(CX, CY, Color, ColorCode)

 Call Scanning.CreateNewConnection(CX, CY, Color, ColorCode)

 End If

End If

End Sub

Public Sub FindNextPoint()

Dim i As Integer, e As Integer, X As Integer, Y As Integer

Dim Good As Boolean

Good = False

i = CX - 1

For i = CX - 1 To CX + 1

 If i <= 0 Then i = 1

 If i > Background.PWidth Then Exit For

 e = CY - 1

 For e = CY - 1 To CY + 1

 If e <= 0 Then e = 1

 If e > Background.PHeight Then Exit For

 If i <> CX Or e <> CY Then

 Good2 = False

 Select Case Color

 Case "Full"

 If Background.Picture(i, e, 3) = 1 And Background.Picture(i, e, 4) = 0 Then

 Background.Picture(i, e, 4) = 1

 Good = True

 End If

 Case "Black"

 If Background.PictureBW(i, e, 2) And Background.PictureBW(i, e, 3) = False Then

 Background.PictureBW(i, e, 3) = True

 Good = True

 End If

 Case "Grey"

 If Background.PictureGR(i, e, 3) = 1 And Background.PictureGR(i, e, 4) = 0 Then

 Background.PictureGR(i, e, 4) = 1

 Good = True

 End If

 Case "Red"

 If Background.PictureR(i, e, 3) = 1 And Background.PictureR(i, e, 4) = 0 Then

 Background.PictureR(i, e, 4) = 1

 Good = True

 End If

 22

 Case "Green"

 If Background.PictureG(i, e, 3) = 1 And Background.PictureG(i, e, 4) = 0 Then

 Background.PictureG(i, e, 4) = 1

 Good = True

 End If

 Case "Blue"

 If Background.PictureB(i, e, 3) = 1 And Background.PictureB(i, e, 4) = 0 Then

 Background.PictureB(i, e, 4) = 1

 Good = True

 End If

 Case "Simple"

 If Background.PictureS(i, e, 1) = 1 And Background.PictureS(i, e, 2) = 0 Then

 Background.PictureS(i, e, 2) = 1

 Good = True

 End If

 End Select

 End If

 If Good Then Exit For

 Next e

 If Good Then Exit For

Next i

If Good Then

 CX = i

 CY = e

Else:

 Call EndConnection

 Complete = True

 Remove = True

End If

End Sub

Public Sub EndConnection()

EX = CX

EY = CY

Following = False

End Sub

Public Sub DrawCurrent()

DoEvents

Form1.P1.PSet (CX, CY), ColorCode

End Sub

Public Sub EraseCurrent()

Form1.P1.Line (SX, SY)-(CX, CY), vbWhite

Form1.P1.PSet (CX, CY), ColorCode

End Sub

Public Sub DrawTotal()

Form1.P1.Line (SX, SY)-(CX, CY), ColorCode

End Sub

 23

Appendix C
CSGridCell Code

„Property and Global variable Dimensioning

Public X As Integer, Y As Integer

Public Height As Integer, Width As Integer

Public Number As Integer

Public L1 As Integer, L2 As Integer, L3 As Integer, L4 As Integer, L5 As Integer

Public R1 As Integer, R2 As Integer, R3 As Integer, R4 As Integer, R5 As Integer

Public T1 As Integer, T2 As Integer, T3 As Integer, T4 As Integer, T5 As Integer

Public B1 As Integer, B2 As Integer, B3 As Integer, B4 As Integer, B5 As Integer

Public L1A As Boolean, L2A As Boolean, L3A As Boolean, L4A As Boolean, L5A As Boolean

Public R1A As Boolean, R2A As Boolean, R3A As Boolean, R4A As Boolean, R5A As Boolean

Public T1A As Boolean, T2A As Boolean, T3A As Boolean, T4A As Boolean, T5A As Boolean

Public B1A As Boolean, B2A As Boolean, B3A As Boolean, B4A As Boolean, B5A As Boolean

Public IW As Single, IH As Single

Public Squeezed As Boolean

Public Sub Squeeze()

Squeezed = True

If L1 < Int(X + (2 * IW)) And Background.PictureS(L1, Y, 1) = 0 Then

 L1 = L1 + 1

 Squeezed = False

End If

If L2 < Int(X + (2 * IW)) And Background.PictureS(L2, Int(Y + IW), 1) = 0 Then

 L2 = L2 + 1

 Squeezed = False

End If

If L3 < Int(X + (2 * IW)) And Background.PictureS(L3, Int(Y + (IW * 2)), 1) = 0 Then

 L3 = L3 + 1

 Squeezed = False

End If

If L4 < Int(X + (2 * IW)) And Background.PictureS(L4, Int(Y + (IW * 3)), 1) = 0 Then

 L4 = L4 + 1

 Squeezed = False

End If

If L5 < Int(X + (2 * IW)) And Background.PictureS(L5, Int(Y + (IW * 4)), 1) = 0 Then

 L5 = L5 + 1

 Squeezed = False

End If

If (X + (IW * 4)) + R1 > Int(X + (2 * IW)) And Background.PictureS((X + (IW * 4)) + R1, Y, 1) = 0 Then

 R1 = R1 - 1

 Squeezed = False

End If

If (X + (IW * 4)) + R2 > Int(X + (2 * IW)) And Background.PictureS((X + (IW * 4)) + R2, Int(Y + IW), 1) = 0 Then

 R2 = R2 - 1

 Squeezed = False

End If

If (X + (IW * 4)) + R3 > Int(X + (2 * IW)) And Background.PictureS((X + (IW * 4)) + R3, Int(Y + (IW * 2)), 1) = 0 Then

 R3 = R3 - 1

 Squeezed = False

End If

If (X + (IW * 4)) + R4 > Int(X + (2 * IW)) And Background.PictureS((X + (IW * 4)) + R4, Int(Y + (IW * 3)), 1) = 0 Then

 R4 = R4 - 1

 Squeezed = False

End If

If (X + (IW * 4)) + R5 > Int(X + (2 * IW)) And Background.PictureS((X + (IW * 4)) + R5, Int(Y + (IW * 4)), 1) = 0 Then

 R5 = R5 - 1

 Squeezed = False

End If

If T1 < Int(Y + (2 * IH)) And Background.PictureS(X, T1, 1) = 0 Then

 T1 = T1 + 1

 Squeezed = False

End If

 24

If T2 < Int(Y + (2 * IH)) And Background.PictureS(Int(X + IH), T2, 1) = 0 Then

 T2 = T2 + 1

 Squeezed = False

End If

If T3 < Int(Y + (2 * IH)) And Background.PictureS(Int(X + (IH * 2)), T3, 1) = 0 Then

 T3 = T3 + 1

 Squeezed = False

End If

If T4 < Int(Y + (2 * IH)) And Background.PictureS(Int(X + (IH * 3)), T4, 1) = 0 Then

 T4 = T4 + 1

 Squeezed = False

End If

If T5 < Int(Y + (2 * IH)) And Background.PictureS(Int(X + (IH * 4)), T5, 1) = 0 Then

 T5 = T5 + 1

 Squeezed = False

End If

If (Y + (IH * 4)) + B1 > Int(Y + (2 * IH)) And Background.PictureS(X, (Y + (IH * 4)) + B1, 1) = 0 Then

 B1 = B1 - 1

 Squeezed = False

End If

If (Y + (IH * 4)) + B2 > Int(Y + (2 * IH)) And Background.PictureS(Int(X + IH), (Y + (IH * 4)) + B2, 1) = 0 Then

 B2 = B2 - 1

 Squeezed = False

End If

If (Y + (IH * 4)) + B3 > Int(Y + (2 * IH)) And Background.PictureS(Int(X + (IH * 2)), (Y + (IH * 4)) + B3, 1) = 0 Then

 B3 = B3 - 1

 Squeezed = False

End If

If (Y + (IH * 4)) + B4 > Int(Y + (2 * IH)) And Background.PictureS(Int(X + (IH * 3)), (Y + (IH * 4)) + B4, 1) = 0 Then

 B4 = B4 - 1

 Squeezed = False

End If

If (Y + (IH * 4)) + B5 > Int(Y + (2 * IH)) And Background.PictureS(Int(X + (IH * 4)), (Y + (IH * 4)) + B5, 1) = 0 Then

 B5 = B5 - 1

 Squeezed = False

End If

If L1 >= Int(X + (2 * IW)) And Background.PictureS(L1, Y, 1) = 1 Then L1A = False

If L2 >= Int(X + (2 * IW)) And Background.PictureS(L2, Int(Y + IH), 1) = 1 Then L2A = False

If L3 >= Int(X + (2 * IW)) And Background.PictureS(L3, Int(Y + (IH * 2)), 1) = 1 Then L3A = False

If L4 >= Int(X + (2 * IW)) And Background.PictureS(L4, Int(Y + (IH * 3)), 1) = 1 Then L4A = False

If L5 >= Int(X + (2 * IW)) And Background.PictureS(L5, Int(Y + (IH * 4)), 1) = 1 Then L5A = False

If (X + (IW * 4)) + R1 <= Int(X + (2 * IW)) And Background.PictureS((X + (IH * 4)) + R1, Y, 1) = 1 Then R1A = False

If (X + (IW * 4)) + R2 <= Int(X + (2 * IW)) And Background.PictureS((X + (IH * 4)) + R2, Int(Y + IH), 1) = 1 Then R2A = False

If (X + (IW * 4)) + R3 <= Int(X + (2 * IW)) And Background.PictureS((X + (IH * 4)) + R3, Int(Y + (IH * 2)), 1) = 1 Then R3A =

False

If (X + (IW * 4)) + R4 <= Int(X + (2 * IW)) And Background.PictureS((X + (IH * 4)) + R4, Int(Y + (IH * 3)), 1) = 1 Then R4A =

False

If (X + (IW * 4)) + R5 <= Int(X + (2 * IW)) And Background.PictureS((X + (IH * 4)) + R5, Int(Y + (IH * 4)), 1) = 1 Then R5A =

False

If T1 >= Int(Y + (2 * IH)) And Background.PictureS(X, T1, 1) = 1 Then T1A = False

If T2 >= Int(Y + (2 * IH)) And Background.PictureS(Int(X + IW), T2, 1) = 1 Then T2A = False

If T3 >= Int(Y + (2 * IH)) And Background.PictureS(Int(X + (IW * 2)), T3, 1) = 1 Then T3A = False

If T4 >= Int(Y + (2 * IH)) And Background.PictureS(Int(X + (IW * 3)), T4, 1) = 1 Then T4A = False

If T5 >= Int(Y + (2 * IH)) And Background.PictureS(Int(X + (IW * 4)), T5, 1) = 1 Then T5A = False

If (Y + (IH * 4)) + B1 <= Int(Y + (2 * IH)) And Background.PictureS(X, (Y + (IW * 4)) + B1, 1) = 1 Then B1A = False

If (Y + (IH * 4)) + B2 <= Int(Y + (2 * IH)) And Background.PictureS(Int(X + IW), (Y + (IH * 4)) + B2, 1) = 1 Then B2A = False

If (Y + (IH * 4)) + B3 <= Int(Y + (2 * IH)) And Background.PictureS(Int(X + (IW * 2)), (Y + (IH * 4)) + B3, 1) = 1 Then B3A = False

If (Y + (IH * 4)) + B4 <= Int(Y + (2 * IH)) And Background.PictureS(Int(X + (IW * 3)), (Y + (IH * 4)) + B4, 1) = 1 Then B4A = False

If (Y + (IH * 4)) + B5 <= Int(Y + (2 * IH)) And Background.PictureS(Int(X + (IW * 4)), (Y + (IH * 4)) + B5, 1) = 1 Then B5A = False

If Squeezed Then Call CreateOutlines

End Sub

Public Sub CreateOutlines()

Dim Order() As Integer

Dim X1 As Integer, Y1 As Integer, X2 As Integer, Y2 As Integer

Dim n As Integer, n2 As Integer, i As Integer

If L1A Then n = n + 1

If L2A Then n = n + 1

If L3A Then n = n + 1

If L4A Then n = n + 1

If L5A Then n = n + 1

 25

If R1A Then n = n + 1

If R2A Then n = n + 1

If R3A Then n = n + 1

If R4A Then n = n + 1

If R5A Then n = n + 1

If T1A Then n = n + 1

If T2A Then n = n + 1

If T3A Then n = n + 1

If T4A Then n = n + 1

If T5A Then n = n + 1

If B1A Then n = n + 1

If B2A Then n = n + 1

If B3A Then n = n + 1

If B4A Then n = n + 1

If B5A Then n = n + 1

ReDim Order(n, 2) As Integer

If T1A Then

 n2 = n2 + 1

 Order(n2, 1) = X

 Order(n2, 2) = Y + T1

End If

If T2A Then

 n2 = n2 + 1

 Order(n2, 1) = X + IW

 Order(n2, 2) = Y + T2

End If

If T3A Then

 n2 = n2 + 1

 Order(n2, 1) = X + (IW * 2)

 Order(n2, 2) = Y + T3

End If

If T4A Then

 n2 = n2 + 1

 Order(n2, 1) = X + (IW * 3)

 Order(n2, 2) = Y + T4

End If

If T5A Then

 n2 = n2 + 1

 Order(n2, 1) = X + (IW * 4)

 Order(n2, 2) = Y + T5

End If

If R1A Then

 n2 = n2 + 1

 Order(n2, 1) = X + Width + R1

 Order(n2, 2) = Y

End If

If R2A Then

 n2 = n2 + 1

 Order(n2, 1) = X + Width + R2

 Order(n2, 2) = Y + IH

End If

If R3A Then

 n2 = n2 + 1

 Order(n2, 1) = X + Width + R3

 Order(n2, 2) = Y + (IH * 2)

End If

If R4A Then

 n2 = n2 + 1

 Order(n2, 1) = X + Width + R4

 Order(n2, 2) = Y + (IH * 3)

End If

If R5A Then

 n2 = n2 + 1

 Order(n2, 1) = X + Width + R5

 Order(n2, 2) = Y + (IH * 4)

End If

If B5A Then

 26

 n2 = n2 + 1

 Order(n2, 1) = X + (IW * 4)

 Order(n2, 2) = Y + Height + B5

End If

If B4A Then

 n2 = n2 + 1

 Order(n2, 1) = X + (IW * 3)

 Order(n2, 2) = Y + Height + B4

End If

If B3A Then

 n2 = n2 + 1

 Order(n2, 1) = X + (IW * 2)

 Order(n2, 2) = Y + Height + B3

End If

If B2A Then

 n2 = n2 + 1

 Order(n2, 1) = X + IW

 Order(n2, 2) = Y + Height + B2

End If

If B1A Then

 n2 = n2 + 1

 Order(n2, 1) = X

 Order(n2, 2) = Y + Height + B1

End If

If L5A Then

 n2 = n2 + 1

 Order(n2, 1) = X + L5

 Order(n2, 2) = Y + (IH * 4)

End If

If L4A Then

 n2 = n2 + 1

 Order(n2, 1) = X + L4

 Order(n2, 2) = Y + (IH * 3)

End If

If L3A Then

 n2 = n2 + 1

 Order(n2, 1) = X + L3

 Order(n2, 2) = Y + (IH * 2)

End If

If L2A Then

 n2 = n2 + 1

 Order(n2, 1) = X + L2

 Order(n2, 2) = Y + IH

End If

If L1A Then

 n2 = n2 + 1

 Order(n2, 1) = X + L1

 Order(n2, 2) = Y

End If

X1 = Order(1, 1)

Y1 = Order(1, 2)

For i = 1 To n

 X2 = X1

 Y2 = Y1

 X1 = Order(i, 1)

 Y1 = Order(i, 2)

 Call ConnectionCreation(X1, Y1, X2, Y2)

Next i

X2 = X1

Y2 = Y1

X1 = Order(1, 1)

Y1 = Order(1, 2)

Call ConnectionCreation(X1, Y1, X2, Y2)

End Sub

Public Sub CreatePolygons()

 27

End Sub

Public Sub ConnectionCreation(SX As Integer, SY As Integer, CX As Integer, CY As Integer)

Dim C1 As New CConnection

C1.SX = SX

C1.SY = SY

C1.CX = CX

C1.CY = CY

C1.ColorCode = RGB(128, 128, 128)

C1.Complete = True

CompleteConnections.Add C1

End Sub

 28

Appendix D

Beginning Code

„Property and Global variable Dimensioning

Public Sub ClearPictureBuffers()

DoEvents

ReDim Background.Picture(PWidth, PHeight, 4) As Long

ReDim Background.PictureBW(PWidth, PHeight, 3) As Boolean

ReDim Background.PictureGR(PWidth, PHeight, 4) As Integer

ReDim Background.PictureR(PWidth, PHeight, 4) As Integer

ReDim Background.PictureG(PWidth, PHeight, 4) As Integer

ReDim Background.PictureB(PWidth, PHeight, 4) As Integer

ReDim Background.PictureS(PWidth, PHeight, 4) As Integer

Call ClearMainPictureBuffers

Call ClearSmoothedBuffers

Call ClearSimplifiedBuffers

Call ClearScanningPictureBuffers

End Sub

Public Sub ClearMainPictureBuffers()

Dim i As Integer, e As Integer

For i = 1 To PWidth

 e = 1

 For e = 1 To PHeight

 Background.Picture(i, e, 1) = 0

 Background.PictureBW(i, e, 1) = False

 Background.PictureGR(i, e, 1) = 0

 Background.PictureR(i, e, 1) = 0

 Background.PictureG(i, e, 1) = 0

 Background.PictureB(i, e, 1) = 0

 Next e

Next i

End Sub

Public Sub ClearSmoothedBuffers()

Dim i As Integer, e As Integer

For i = 1 To PWidth

 e = 1

 For e = 1 To PHeight

 Background.Picture(i, e, 2) = 0

 Background.PictureBW(i, e, 2) = False

 Background.PictureGR(i, e, 2) = 0

 Background.PictureR(i, e, 2) = 0

 Background.PictureG(i, e, 2) = 0

 Background.PictureB(i, e, 2) = 0

 Next e

Next i

End Sub

Public Sub ClearSimplifiedBuffers()

Dim i As Integer, e As Integer

For i = 1 To PWidth

 e = 1

 For e = 1 To PHeight

 Background.Picture(i, e, 3) = 0

 Background.PictureGR(i, e, 3) = 0

 Background.PictureR(i, e, 3) = 0

 Background.PictureG(i, e, 3) = 0

 Background.PictureB(i, e, 3) = 0

 Background.PictureS(i, e, 1) = 0

 Next e

Next i

End Sub

 29

Public Sub ClearScanningPictureBuffers()

Dim i As Integer, e As Integer

For i = 1 To PWidth

 e = 1

 For e = 1 To PHeight

 Background.Picture(i, e, 4) = 0

 Background.PictureBW(i, e, 3) = False

 Background.PictureGR(i, e, 4) = 0

 Background.PictureR(i, e, 4) = 0

 Background.PictureG(i, e, 4) = 0

 Background.PictureB(i, e, 4) = 0

 Next e

Next i

End Sub

Public Sub LoadNewPicture()

Dim i As Integer, e As Integer

DoEvents

For i = 1 To PWidth

 e = 1

 For e = 1 To PHeight

 Background.Picture(i, e, 1) = Form1.P1.Point(i, e)

 Next e

Next i

End Sub

 30

Appendix E

Background Code

„Property and Global variable Dimensioning

Public Picture() As Long

Public PictureBW() As Boolean

Public PictureGR() As Integer

Public PictureR() As Integer

Public PictureG() As Integer

Public PictureB() As Integer

Public PictureS() As Integer

Public PHeight As Integer, PWidth As Integer

Public Sub Start()

Dim i As Integer

Form1.LP.Enabled = False

'Form1.FR(0).Enabled = False

'Form1.FT.Enabled = False

'Form1.FO.Enabled = False

'Form1.IO.Enabled = False

Form1.Check1.Value = 0

Form1.Check1.Enabled = False

For i = 0 To 5

 Form1.MoveOn(i).Enabled = False

Next i

Form1.P1.Picture = Nothing

Form1.P1.Cls

End Sub

 31

Appendix F

Filtering Code

„Property and Global variable Dimensioning

Public BWThreshold As Integer

Public Sub FilterPicture()

Dim i As Integer, e As Integer

Dim Red As Integer, Green As Integer, Blue As Integer, Grey As Integer

Dim BW As Boolean

DoEvents

For i = 1 To PWidth

 e = 1

 For e = 1 To PHeight

 Red = Picture(i, e, 1) And &HFF

 Green = ((Picture(i, e, 1) And &HFF00) / &H100) Mod &H100

 Blue = ((Picture(i, e, 1) And &HFF0000) / &H10000) Mod &H100

 Grey = (Red + Green + Blue) / 3

 BW = False

 If Grey <= BWThreshold Then BW = True

 If Grey < 0 Then Grey = 0

 If Red < 0 Then Red = 0

 If Green < 0 Then Green = 0

 If Blue < 0 Then Blue = 0

 PictureBW(i, e, 1) = BW

 PictureGR(i, e, 1) = Grey

 PictureR(i, e, 1) = Red

 PictureG(i, e, 1) = Green

 PictureB(i, e, 1) = Blue

 Next e

Next i

End Sub

Public Sub LoadFullPictureF()

Dim i As Integer, e As Integer

DoEvents

For i = 1 To PWidth

 e = 1

 For e = 1 To PHeight

 Form1.P1.PSet (i, e), Picture(i, e, 1)

 Next e

Next i

End Sub

 32

Appendix G

Smoothing Code

„Property and Global variable Dimensioning

Public SMThreshold As Integer

Public Sub Smooth()

Dim i As Integer, e As Integer

Call ClearSimplifiedBuffers

If Form1.Option10.Value Then

 Call SmoothUpLeft

 Call SmoothUpRight

 Call SmoothDownLeft

 Call SmoothDownRight

ElseIf Form1.Option9.Value Then

 Call SmoothUpLeft

 Call SmoothUpRight

 Call SmoothDownLeft

ElseIf Form1.Option8.Value Then

 Call SmoothUpLeft

 Call SmoothDownLeft

Else:

 Call SmoothUpLeft

End If

For i = 1 To PWidth

 e = 1

 For e = 1 To PHeight

 If Picture(i, e, 2) < SMThreshold Then

 Picture(i, e, 3) = 1

 PictureS(i, e, 1) = 1

 End If

 If PictureGR(i, e, 2) < SMThreshold Then

 PictureGR(i, e, 3) = 1

 PictureS(i, e, 1) = 1

 End If

 If PictureR(i, e, 2) < SMThreshold Then

 PictureR(i, e, 3) = 1

 PictureS(i, e, 1) = 1

 End If

 If PictureG(i, e, 2) < SMThreshold Then

 PictureG(i, e, 3) = 1

 PictureS(i, e, 1) = 1

 End If

 If PictureB(i, e, 2) < SMThreshold Then

 PictureB(i, e, 3) = 1

 PictureS(i, e, 1) = 1

 End If

 Next e

Next i

i = 0

e = 0

For i = 1 To PWidth

 Picture(i, 1, 2) = Picture(i, 2, 2)

 PictureBW(i, 1, 2) = PictureBW(i, 2, 2)

 PictureGR(i, 1, 2) = PictureGR(i, 2, 2)

 PictureR(i, 1, 2) = PictureR(i, 2, 2)

 PictureG(i, 1, 2) = PictureG(i, 2, 2)

 PictureB(i, 1, 2) = PictureB(i, 2, 2)

 Picture(i, 1, 3) = Picture(i, 2, 3)

 PictureGR(i, 1, 3) = PictureGR(i, 2, 3)

 PictureR(i, 1, 3) = PictureR(i, 2, 3)

 33

 PictureG(i, 1, 3) = PictureG(i, 2, 3)

 PictureB(i, 1, 3) = PictureB(i, 2, 3)

Next i

For e = 1 To PHeight

 Picture(1, e, 2) = Picture(2, e, 2)

 PictureBW(1, e, 2) = PictureBW(2, e, 2)

 PictureGR(1, e, 2) = PictureGR(2, e, 2)

 PictureR(1, e, 2) = PictureR(2, e, 2)

 PictureG(1, e, 2) = PictureG(2, e, 2)

 PictureB(1, e, 2) = PictureB(2, e, 2)

 Picture(1, e, 3) = Picture(2, e, 3)

 PictureGR(1, e, 3) = PictureGR(2, e, 3)

 PictureR(1, e, 3) = PictureR(2, e, 3)

 PictureG(1, e, 3) = PictureG(2, e, 3)

 PictureB(1, e, 3) = PictureB(2, e, 3)

Next e

End Sub

Public Sub SmoothUpLeft()

Dim i As Integer, e As Integer

i = PWidth

DoEvents

For i = PWidth To 2 Step -1

 e = PHeight

 For e = PHeight To 2 Step -1

 Picture(i, e, 2) = 255 - Abs(((PictureR(i - 1, e - 1, 1) + PictureG(i - 1, e - 1, 1) + PictureB(i - 1, e - 1, 1)) / 3) - ((PictureR(i, e, 1)

+ PictureG(i, e, 1) + PictureB(i, e, 1)) / 3))

 If (PictureBW(i - 1, e - 1, 1) And Not PictureBW(i, e, 1)) Or (Not PictureBW(i - 1, e - 1, 1) And PictureBW(i, e, 1)) Then

PictureBW(i, e, 2) = True

 PictureGR(i, e, 2) = 255 - Abs(PictureGR(i - 1, e - 1, 1) - PictureGR(i, e, 1))

 PictureR(i, e, 2) = 255 - Abs(PictureR(i - 1, e - 1, 1) - PictureR(i, e, 1))

 PictureG(i, e, 2) = 255 - Abs(PictureG(i - 1, e - 1, 1) - PictureG(i, e, 1))

 PictureB(i, e, 2) = 255 - Abs(PictureB(i - 1, e - 1, 1) - PictureB(i, e, 1))

 Next e

Next i

End Sub

Public Sub SmoothUpRight()

Dim i As Integer, e As Integer

DoEvents

For i = 1 To PWidth - 1

 e = PHeight

 For e = PHeight To 2 Step -1

 t = Picture(i, e, 2)

 Picture(i, e, 2) = 255 - Abs(((PictureR(i + 1, e - 1, 1) + PictureG(i + 1, e - 1, 1) + PictureB(i + 1, e - 1, 1)) / 3) - ((PictureR(i, e,

1) + PictureG(i, e, 1) + PictureB(i, e, 1)) / 3))

 If t < Picture(i, e, 2) Then Picture(i, e, 2) = t

 t = PictureGR(i, e, 2)

 PictureGR(i, e, 2) = 255 - Abs(PictureGR(i + 1, e - 1, 1) - PictureGR(i, e, 1))

 If t < PictureGR(i, e, 2) Then PictureGR(i, e, 2) = t

 t = PictureR(i, e, 2)

 PictureR(i, e, 2) = 255 - Abs(PictureR(i + 1, e - 1, 1) - PictureR(i, e, 1))

 If t < PictureR(i, e, 2) Then PictureR(i, e, 2) = t

 t = PictureG(i, e, 2)

 PictureG(i, e, 2) = 255 - Abs(PictureG(i + 1, e - 1, 1) - PictureG(i, e, 1))

 If t < PictureG(i, e, 2) Then PictureG(i + 1, e - 1, 2) = t

 t = PictureB(i, e, 2)

 PictureB(i, e, 2) = 255 - Abs(PictureB(i + 1, e - 1, 1) - PictureB(i, e, 1))

 If t < PictureB(i, e, 2) Then PictureB(i, e, 2) = t

 If (PictureBW(i + 1, e - 1, 2) And Not PictureBW(i, e, 1)) Or (Not PictureBW(i + 1, e - 1, 1) And PictureBW(i, e, 1)) Then

PictureBW(i, e, 2) = True

 Next e

Next i

End Sub

Public Sub SmoothDownLeft()

Dim i As Integer, e As Integer, t As Integer

i = PWidth

DoEvents

For i = PWidth To 2 Step -1

 e = 1

 34

 For e = 1 To PHeight - 1

 t = Picture(i, e, 2)

 Picture(i, e, 2) = 255 - Abs(((PictureR(i - 1, e + 1, 1) + PictureG(i - 1, e + 1, 1) + PictureB(i - 1, e + 1, 1)) / 3) - ((PictureR(i, e,

1) + PictureG(i, e, 1) + PictureB(i, e, 1)) / 3))

 If t < Picture(i, e, 2) Then Picture(i, e, 2) = t

 t = PictureGR(i, e, 2)

 PictureGR(i, e, 2) = 255 - Abs(PictureGR(i - 1, e + 1, 1) - PictureGR(i, e, 1))

 If t < PictureGR(i, e, 2) Then PictureGR(i, e, 2) = t

 t = PictureR(i, e, 2)

 PictureR(i, e, 2) = 255 - Abs(PictureR(i - 1, e + 1, 1) - PictureR(i, e, 1))

 If t < PictureR(i, e, 2) Then PictureR(i, e, 2) = t

 t = PictureG(i, e, 2)

 PictureG(i, e, 2) = 255 - Abs(PictureG(i - 1, e + 1, 1) - PictureG(i, e, 1))

 If t < PictureG(i, e, 2) Then PictureG(i, e, 2) = t

 t = PictureB(i, e, 2)

 PictureB(i, e, 2) = 255 - Abs(PictureB(i - 1, e + 1, 1) - PictureB(i, e, 1))

 If t < PictureB(i, e, 2) Then PictureB(i, e, 2) = t

 If (PictureBW(i - 1, e + 1, 1) And Not PictureBW(i, e, 1)) Or (Not PictureBW(i - 1, e + 1, 1) And PictureBW(i, e, 1)) Then

PictureBW(i, e, 2) = True

 Next e

Next i

End Sub

Public Sub SmoothDownRight()

Dim i As Integer, e As Integer

i = PWidth

DoEvents

For i = 1 To PWidth - 1

 e = 1

 For e = 1 To PHeight - 1

 t = Picture(i, e, 2)

 Picture(i, e, 2) = 255 - Abs(((PictureR(i + 1, e + 1, 1) + PictureG(i + 1, e + 1, 1) + PictureB(i + 1, e + 1, 1)) / 3) - ((PictureR(i,

e, 1) + PictureG(i, e, 1) + PictureB(i, e, 1)) / 3))

 If t < Picture(i, e, 2) Then Picture(i, e, 2) = t

 t = PictureGR(i, e, 2)

 PictureGR(i, e, 2) = 255 - Abs(PictureGR(i + 1, e + 1, 1) - PictureGR(i, e, 1))

 If t < PictureGR(i, e, 2) Then PictureGR(i, e, 2) = t

 t = PictureR(i, e, 2)

 PictureR(i, e, 2) = 255 - Abs(PictureR(i + 1, e + 1, 1) - PictureR(i, e, 1))

 If t < PictureR(i, e, 2) Then PictureR(i, e, 2) = t

 t = PictureG(i, e, 2)

 PictureG(i, e, 2) = 255 - Abs(PictureG(i + 1, e + 1, 1) - PictureG(i, e, 1))

 If t < PictureG(i, e, 2) Then PictureG(i, e, 2) = t

 t = PictureB(i, e, 2)

 PictureB(i, e, 2) = 255 - Abs(PictureB(i + 1, e + 1, 1) - PictureB(i, e, 1))

 If t < PictureB(i, e, 2) Then PictureB(i, e, 2) = t

 If (PictureBW(i + 1, e + 1, 1) And Not PictureBW(i, e, 1)) Or (Not PictureBW(i + 1, e + 1, 1) And PictureBW(i, e, 1)) Then

PictureBW(i, e, 2) = True

 Next e

Next i

End Sub

Public Sub LoadFullPictureS(Optional All As Boolean)

Dim i As Integer, e As Integer

DoEvents

If Form1.Check1.Value = 0 Then

 For i = 1 To PWidth

 e = 1

 For e = 1 To PHeight

 Form1.P1.PSet (i, e), RGB(Picture(i, e, 2), Picture(i, e, 2), Picture(i, e, 2))

 Next e

 Next i

Else:

 For i = 1 To PWidth

 e = 1

 For e = 1 To PHeight

 If Picture(i, e, 3) = 0 Then

 Form1.P1.PSet (i, e), vbWhite

 Else:

 Form1.P1.PSet (i, e), 0

 End If

 35

 If All Then

 If PictureS(i, e, 1) <> 0 Then Form1.P1.PSet (i, e), 0

 End If

 Next e

 Next i

End If

End Sub

 36

Appendix H

Scanning Code

„Property and Global variable Dimensioning

Public Corners As New Collection

Public ActiveConnections As New Collection

Public CompleteConnections As New Collection

Public SqueezeGrid As New Collection

Public Detail As Integer

Public ScanSpeed As String

Public ScanMode As Integer

Public Sub ThinLines()

End Sub

Public Sub LaySeeds()

Dim i As Integer, e As Integer, s As Integer

For i = 1 To PWidth

 e = 1

 If i / Detail = Round(i / Detail) Then

 s = 1

 Else:

 s = Detail

 End If

 For e = 1 To PHeight Step s

 If Picture(i, e, 3) = 1 Then

 Call CreateNewCorner(i, e, "Full", Picture(i, e, 1))

 Call CreateNewConnection(i, e, "Full", Picture(i, e, 1))

 End If

 If PictureBW(i, e, 2) Then

 Call CreateNewCorner(i, e, "Black", 0)

 Call CreateNewConnection(i, e, "Black", 0)

 End If

 If PictureGR(i, e, 3) = 1 Then

 Call CreateNewCorner(i, e, "Grey", RGB(128, 128, 128))

 Call CreateNewConnection(i, e, "Grey", RGB(128, 128, 128))

 End If

 If PictureR(i, e, 3) = 1 Then

 Call CreateNewCorner(i, e, "Red", RGB(255, 0, 0))

 Call CreateNewConnection(i, e, "Red", RGB(255, 0, 0))

 End If

 If PictureG(i, e, 3) = 1 Then

 Call CreateNewCorner(i, e, "Green", RGB(0, 255, 0))

 Call CreateNewConnection(i, e, "Green", RGB(0, 255, 0))

 End If

 If PictureB(i, e, 3) = 1 Then

 Call CreateNewCorner(i, e, "Blue", RGB(0, 0, 255))

 Call CreateNewConnection(i, e, "Blue", RGB(0, 0, 255))

 End If

 If PictureS(i, e, 1) = 1 Then

 Call CreateNewCorner(i, e, "Simple", RGB(128, 128, 128))

 Call CreateNewConnection(i, e, "Simple", RGB(128, 128, 128))

 End If

 Next e

Next i

End Sub

Public Sub SetupSqueezeGrid()

Dim i As Integer, e As Integer, n As Integer, CX As Integer, CY As Integer

 37

Dim IntervalW As Single, IntervalH As Single

IntervalW = PWidth / Detail

IntervalH = PHeight / Detail

CX = 1 - IntervalW

CY = 1 - IntervalH

For i = 0 To Detail - 1

 e = 0

 CX = 1 - IntervalW

 CY = CY + IntervalH

 For e = 0 To Detail - 1

 n = n + 1

 CX = CX + IntervalW

 Call CreateSGField(CX, CY, n, IntervalW, IntervalH)

 Next e

Next i

End Sub

Public Sub CreateSGField(X As Integer, Y As Integer, Number As Integer, IW As Single, IH As Single)

Dim F1 As New CSGridCell

F1.Width = IW

F1.Height = IH

F1.IW = Int(IW / 4)

F1.IH = Int(IH / 4)

F1.Number = Number

F1.X = X

F1.Y = Y

F1.L1A = True

F1.L2A = True

F1.L3A = True

F1.L4A = True

F1.L5A = True

F1.R1A = True

F1.R2A = True

F1.R3A = True

F1.R4A = True

F1.R5A = True

F1.T1A = True

F1.T2A = True

F1.T3A = True

F1.T4A = True

F1.T5A = True

F1.B1A = True

F1.B2A = True

F1.B3A = True

F1.B4A = True

F1.B5A = True

SqueezeGrid.Add F1

End Sub

Public Sub ScanSub3()

End Sub

Public Sub ScanSub4()

End Sub

Public Sub ScanningLoop()

Dim i As Long

Dim Done As Boolean

DoEvents

Do While Done = False

 Select Case ScanMode

 Case 1

 If ActiveConnections.Count > 0 Then

 Done = True

 For i = 1 To ActiveConnections.Count

 If i > ActiveConnections.Count Then Exit For

 If ActiveConnections(i).Following Then

 'Call ActiveConnections(i).DrawCurrent

 Call ActiveConnections(i).Follow

 38

 If ActiveConnections(i).Remove Then Call RemoveConnection(i)

 Done = False

 End If

 Next i

 End If

 If Done Then

 Form1.ScanningTimer.Enabled = False

 Form1.Frame1(3).Enabled = True

 End If

 Case 2

 Done = True

 For i = 1 To SqueezeGrid.Count

 If SqueezeGrid(i).Squeezed = False Then

 Call SqueezeGrid(i).Squeeze

 Done = False

 End If

 Next i

 If Done Then

 Form1.ScanningTimer.Enabled = False

 Form1.Frame1(3).Enabled = True

 End If

 Case 3

 Case 4

 End Select

Loop

End Sub

Public Sub RemoveConnection(i As Long)

Dim C1 As New CConnection

C1.SX = ActiveConnections(i).SX

C1.SY = ActiveConnections(i).SY

C1.PX = ActiveConnections(i).PX

C1.PY = ActiveConnections(i).PY

C1.CX = ActiveConnections(i).CX

C1.CY = ActiveConnections(i).CY

C1.EX = ActiveConnections(i).EX

C1.EY = ActiveConnections(i).EY

C1.Following = ActiveConnections(i).Following

C1.Color = ActiveConnections(i).Color

C1.ColorCode = ActiveConnections(i).ColorCode

C1.Remove = ActiveConnections(i).Remove

C1.Complete = ActiveConnections(i).Complete

If C1.Complete Then CompleteConnections.Add C1

ActiveConnections.Remove (i)

End Sub

Public Sub DrawConnections(Color As String)

Dim i As Integer

Form1.P1.Cls

If CompleteConnections.Count > 0 Then

 For i = 1 To CompleteConnections.Count

 If CompleteConnections(i).Color = Color Or Color = "Full" Then Call CompleteConnections(i).DrawTotal

 Next i

End If

End Sub

Public Sub CreateNewCorner(X As Integer, Y As Integer, c As String, CC As Long)

Dim C1 As New CCorner

C1.X = X

C1.Y = Y

C1.Color = c

C1.ColorCode = CC

Corners.Add C1

End Sub

Public Sub CreateNewConnection(X As Integer, Y As Integer, c As String, CC As Long)

Dim C1 As New CConnection

C1.Following = True

C1.Color = c

 39

C1.ColorCode = CC

C1.SX = X

C1.SY = Y

C1.CX = X

C1.CY = Y

ActiveConnections.Add C1

End Sub

 40

Appendix I
Analyses Code

„ Attention, the code within this module has not been used by the program as of yet.

„Property and Global variable Dimensioning

Public FieldBW() As Integer

Public FieldGR() As Integer

Public FieldR() As Integer

Public FieldG() As Integer

Public FieldB() As Integer

Public PixelationFactor As Integer

Public EComp As Integer

Public Sub GeneratePolygons()

End Sub

Public Sub Pixelate()

Dim i As Integer, e As Integer, c As Integer, f As Integer, g As Integer

Dim Sum(6) As Long

ReDim FieldBW((PWidth / PixelationFactor) + 1, (PHeight / PixelationFactor) + 1, 2) As Integer

ReDim FieldGR((PWidth / PixelationFactor) + 1, (PHeight / PixelationFactor) + 1, 2) As Integer

ReDim FieldR((PWidth / PixelationFactor) + 1, (PHeight / PixelationFactor) + 1, 2) As Integer

ReDim FieldG((PWidth / PixelationFactor) + 1, (PHeight / PixelationFactor) + 1, 2) As Integer

ReDim FieldB((PWidth / PixelationFactor) + 1, (PHeight / PixelationFactor) + 1, 2) As Integer

For i = 1 To PWidth Step PixelationFactor

 e = 1

 For e = 1 To PHeight Step PixelationFactor

 f = i

 c = 0

 Sum(1) = 0

 Sum(2) = 0

 Sum(3) = 0

 Sum(4) = 0

 Sum(5) = 0

 For f = i To i + PixelationFactor

 g = e

 For g = e To e + PixelationFactor

 If PictureBW(f, g, 1) Then Sum(1) = Sum(1) + 1

 Sum(2) = Sum(2) + PictureGR(f, g, 1)

 Sum(3) = Sum(3) + PictureR(f, g, 1)

 Sum(4) = Sum(4) + PictureG(f, g, 1)

 Sum(1) = Sum(1) + PictureB(f, g, 1)

 c = c + 1

 If g = PHeight Then Exit For

 Next g

 If f = PWidth Then Exit For

 Next f

 If i > 1 Then

 If e > 1 Then

 FieldBW(i / PixelationFactor, e / PixelationFactor, 1) = Sum(1) / c

 FieldGR(i / PixelationFactor, e / PixelationFactor, 1) = Sum(2) / c

 FieldR(i / PixelationFactor, e / PixelationFactor, 1) = Sum(3) / c

 FieldG(i / PixelationFactor, e / PixelationFactor, 1) = Sum(4) / c

 FieldB(i / PixelationFactor, e / PixelationFactor, 1) = Sum(5) / c

 Else:

 FieldBW(i / PixelationFactor, 1, 1) = Sum(1) / c

 FieldGR(i / PixelationFactor, 1, 1) = Sum(2) / c

 FieldR(i / PixelationFactor, 1, 1) = Sum(3) / c

 FieldG(i / PixelationFactor, 1, 1) = Sum(4) / c

 41

 FieldB(i / PixelationFactor, 1, 1) = Sum(5) / c

 End If

 Else:

 If e > 1 Then

 FieldBW(1, e / PixelationFactor, 1) = Sum(1) / c

 FieldGR(1, e / PixelationFactor, 1) = Sum(2) / c

 FieldR(1, e / PixelationFactor, 1) = Sum(3) / c

 FieldG(1, e / PixelationFactor, 1) = Sum(4) / c

 FieldB(1, e / PixelationFactor, 1) = Sum(5) / c

 Else:

 FieldBW(1, 1, 1) = Sum(1) / c

 FieldGR(1, 1, 1) = Sum(2) / c

 FieldR(1, 1, 1) = Sum(3) / c

 FieldG(1, 1, 1) = Sum(4) / c

 FieldB(1, 1, 1) = Sum(5) / c

 End If

 End If

 Next e

Next i

End Sub

Public Sub FindFieldCorners()

End Sub

 42

Appendix J

Form1 Code

„Property and Global variable Dimensioning

Private Sub FFP_Click()

FSP.Enabled = True

FSP.SetFocus

End Sub

Private Sub FSP_Click()

MoveOn(3).Enabled = True

MoveOn(3).SetFocus

End Sub

Private Sub MAdvanced_Click()

Settings.Show

End Sub

Private Sub AO_Click()

IO.Enabled = True

IO.SetFocus

End Sub

Private Sub Check1_Click()

P1.Cls

If Check1.Value = 1 Then

 Call LoadFullPictureS(True)

Else:

 Call LoadFullPictureS

End If

End Sub

Private Sub FC_Click()

Do While ActiveConnections.Count > 0

 ActiveConnections.Remove (1)

Loop

Do While CompleteConnections.Count > 0

 CompleteConnections.Remove (1)

Loop

Call ClearScanningPictureBuffers

Frame1(3).Enabled = False

P1.Cls

Select Case ScanMode

 Case 1

 If Option1.Value Then Detail = 40

 If Option2.Value Then Detail = 25

 If Option3.Value Then Detail = 18

 If Option4.Value Then Detail = 10

 If Option5.Value Then Detail = 5

 If Option6.Value Then Detail = 2

 Call LaySeeds

 Case 2

 If Option1.Value Then Detail = 3

 If Option2.Value Then Detail = 5

 If Option3.Value Then Detail = 7

 If Option4.Value Then Detail = 10

 If Option5.Value Then Detail = 14

 If Option6.Value Then Detail = 20

 Call SetupSqueezeGrid

 Case 3

 Call ScanSub3

 43

 Case 4

 Call ScanSub4

End Select

Select Case ScanSpeed

 Case "I"

 Call Scanning.ScanningLoop

 Case "VF"

 Call Scanning.ScanningLoop

 Case "F"

 ScanningTimer.Interval = 1

 ScanningTimer.Enabled = True

 Case "S"

 ScanningTimer.Interval = 10

 ScanningTimer.Enabled = True

 Case "VS"

 ScanningTimer.Interval = 20

 ScanningTimer.Enabled = True

End Select

NOL.Caption = "Number of Lines: " & CompleteConnections.Count

Call DrawConnections("Full")

FFP.Enabled = True

FFP.SetFocus

End Sub

Private Sub FL_Click()

FR(0).Enabled = True

End Sub

Private Sub FO_Click()

MoveOn(4).Enabled = True

MoveOn(4).SetFocus

End Sub

Private Sub Form_Load()

'If Dir("C:\Program Files\Artificial Eye\InSat") = "" Then

' MsgBox "Please Install Artificial Eye", , "ERROR [>_<]"

' End

'End If

P1.BackColor = vbWhite

BWThreshold = 127

SMThreshold = 215

ScanSpeed = "VF"

ScanMode = 2

Detail = 15

Settings.W = 204

Settings.H = 204

Call Start

End Sub

Private Sub Form_Terminate()

End

End Sub

Private Sub FP_Click()

Call FilterPicture

P1.Picture = Nothing

Call LoadFullPictureF

MoveOn(1).Enabled = True

MoveOn(1).SetFocus

End Sub

Private Sub FR_Click(Index As Integer)

PixelationFactor = Detail / 2

Call Pixelate

FT.Enabled = True

FT.SetFocus

End Sub

Private Sub FT_Click()

 44

FO.Enabled = True

FO.SetFocus

End Sub

Private Sub GP_Click()

EComp = Slider1.Value

Call GeneratePolygons

MoveOn(3).Enabled = True

MoveOn(3).SetFocus

End Sub

Private Sub IO_Click()

MoveOn(5).Enabled = True

MoveOn(5).SetFocus

End Sub

Private Sub IP_Click()

CD1.ShowOpen

If CD1.FileName = "" Then Exit Sub

P1.Picture = LoadPicture(CD1.FileName)

P1.PaintPicture P1.Picture, 0, 0, P1.ScaleWidth, P1.ScaleHeight

PHeight = P1.ScaleHeight

PWidth = P1.ScaleWidth

Call ClearPictureBuffers

LP.Enabled = True

LP.SetFocus

End Sub

Private Sub LP_Click()

Call LoadNewPicture

MoveOn(0).Enabled = True

MoveOn(0).SetFocus

End Sub

Private Sub MExit_Click()

End

End Sub

Private Sub MoveOn_Click(Index As Integer)

If Index < 5 Then

 Frame1(Index).Visible = False

 Frame1(Index + 1).Visible = True

Else:

 Frame1(5).Visible = False

 Frame1(0).Visible = True

 Call Start

End If

Select Case Index

 Case 0

 FP.SetFocus

 Case 1

 SP.SetFocus

 Case 2

 FC.Enabled = True

 FC.SetFocus

 Case 3

 'FR(0).Enabled = True

 'FR(0).SetFocus

 Case 4

 AO.SetFocus

 Case 5

 IP.SetFocus

End Select

End Sub

Private Sub ScanningTimer_Timer()

Dim i As Long

Dim Done As Boolean

If ActiveConnections.Count > 0 Then

 45

 Done = True

 For i = 1 To ActiveConnections.Count

 If i > ActiveConnections.Count Then Exit For

 If ActiveConnections(i).Following Then

 Call ActiveConnections(i).DrawCurrent

 Call ActiveConnections(i).Follow

 If ActiveConnections(i).Remove Then ActiveConnections.Remove (i)

 Done = False

 End If

 Next i

End If

If Done Then

 If Done Then

 ScanningTimer.Enabled = False

 Call DrawConnections("Black")

 Call DrawConnections("Grey")

 Call DrawConnections("Red")

 Call DrawConnections("Green")

 Call DrawConnections("Blue")

 Frame1(3).Enabled = True

 End If

End If

End Sub

Private Sub SP_Click()

Call Smooth

Call LoadFullPictureS

Check1.Enabled = True

MoveOn(2).Enabled = True

MoveOn(2).SetFocus

End Sub

Private Sub TL_Click()

Call ThinLines

End Sub

 46

Appendix K

Settings Code

„Property and Global variable Dimensioning

Public W As Integer, H As Integer

Private Sub Apply_Click()

Form1.ScaleWidth = W + 200

Form1.P1.Width = W

Form1.P1.Height = H

If Option9.Value Then

 If Val(Text1.Text) < 75 Or Val(Text1.Text) > 7125 Then

 MsgBox "Please enter a reasonable width. (75-7125)", , "Invalid value"

 Text1.SetFocus

 Exit Sub

 End If

 If Val(Text2.Text) < 75 Or Val(Text2.Text) > 12790 Then

 MsgBox "Please enter a reasonable width. (75-12790)", , "Invalid value"

 Text2.SetFocus

 Exit Sub

 End If

 W = Val(Text2.Text)

 H = Val(Text1.Text)

 Form1.ScaleWidth = W + 200

End If

Form1.P1.Width = W

Form1.P1.Height = H

If Option10.Value Then ScanMode = 1

If Option11.Value Then ScanMode = 2

If Option12.Value Then ScanMode = 3

If Option13.Value Then ScanMode = 4

BWThreshold = Slider1.Value

SMThreshold = Slider2.Value

If Option1.Value Then ScanSpeed = "I"

If Option2.Value Then ScanSpeed = "VF"

If Option3.Value Then ScanSpeed = "F"

If Option4.Value Then ScanSpeed = "S"

If Option5.Value Then ScanSpeed = "VS"

Hide

End Sub

Private Sub Form_Load()

Slider1.Value = BWThreshold

Slider2.Value = SMThreshold

Select Case ScanSpeed

 Case "I"

 Option1.Value = True

 Case "VF"

 Option2.Value = True

 Case "F"

 Option3.Value = True

 Case "S"

 Option4.Value = True

 Case "VS"

 Option5.Value = True

End Select

Select Case ScanMode

 Case 1

 Option10.Value = True

 Case 2

 Option11.Value = True

 47

 Case 3

 Option12.Value = True

 Case 4

 Option13.Value = True

End Select

End Sub

Private Sub Option6_Click()

Label3.Enabled = False

Label4.Enabled = False

Text1.Enabled = False

Text2.Enabled = False

W = 104

H = 104

Text1.Text = "100"

Text2.Text = "100"

End Sub

Private Sub Option7_Click()

Label3.Enabled = False

Label4.Enabled = False

Text1.Enabled = False

Text2.Enabled = False

W = 154

H = 154

Text1.Text = "150"

Text2.Text = "150"

End Sub

Private Sub Option8_Click()

Label3.Enabled = False

Label4.Enabled = False

Text1.Enabled = False

Text2.Enabled = False

W = 204

H = 204

Text1.Text = "200"

Text2.Text = "200"

End Sub

Private Sub Option9_Click()

Label3.Enabled = True

Label4.Enabled = True

Text1.Enabled = True

Text2.Enabled = True

End Sub

