
Emergency Egress

New Mexico

Supercomputing Challenge

Final Report

March 29, 2007

Team 15

Artesia High School

Team Members

Jeff Mayberry

Casey Haldeman

Destry Kinnibrugh

Shane Wilson

Teachers

Mr. Gaylor

Unofficial Mentor

Nick Bennett

Executive Summary

 Any environment is suitable for only a limited amount of occupants due to

the limits of particular resources and shelter. In a building environment such as

the AHS Auditorium resources and shelter are limited. Thus when buildings are

viewed as an environment, these same principles can apply. A building can

only suit a certain capacity without endangering the entire population. When

buildings are overcrowded, the evacuation of the people in the building is

hindered because of the congestion of doorway. People adopt a “survival of

the fittest” attitude to save their own skins. When large masses of people rush an

exit, the disorder that ensues causes an extreme slowing of the exit rate which is

dangerous for those inside.

 Building capacities have been set in place for this very reason. A building

is given a maximum capacity based on its architectural design, number of exits,

and other similar factors.

 The auditorium at Artesia High School is a very old building. We were

curious if the maximum capacity was still in accordance with current standards.

To test this, we built an agent-based model of peoples' behavior in a panic

situation inside our high school's auditorium.

Problem Description

 We choose to model the evacuation of people in an emergency event.

We meandered from setting off explosives inside tightly packed football

stadiums (a wild idea from back before we understood the technical problems

with coding such an event), to the more practical approach of simulating a fire

evacuation inside our high school's auditorium.

 Until recently, the team has been undecided, and for the most part

unconcerned, about the actual problem our model was based off of. When it

became evident that a solvable problem was crucial, we realized that our

model was very suited to testing the maximum capacity of the auditorium.

 To do so, our model has focused primarily on the behavioral aspects of

human instincts during a crisis situation. This includes the basic instinct to stay

with a crowd for safety, the occasional occurrence of bad decisions due to

panic, the tendency of people to trample others in an attempt to escape, also,

we have a source of danger for them to avoid and escape from. Due to the

pyrotechnic outlook we have retained throughout the challenge, this is labeled

as fire. Although it is referred to as a fire, it is not limited to being a source of

flame. It represents any danger that would force people to evacuate the

building.

 In any iteration of our simulation, it is assumed to be a panic situation

whether a threat to their health is actually present or imagined. This is not a

model that simulates normal exiting procedures under normal circumstances. In

any run of this model, the agents are subjected to a crisis situation with which

they must react.

Methods

I: Intro
 We would like to specify that in the model the “fire” is not necessarily fire.

Do not be alarmed when I don’t explain the movement of the fire. It is the basic

diffusion of heat. The “fire” could be anything that would cause panic in a

crowd i.e. gas, smoke etc. We will however use this section to explain the

behavior of the people trying to escape the building. We used Netlogo to

model our evacuation. In this section I will cover the code and explain how it

models each particular behavior.

II: Basic Movement Through the Model’s World

 We wrote a “step” command (line 328 in the code appendix) to allow the

turtles to walk through the world while evading fire and walls.

 “if (any? ((patches in-cone 3 60) with [on-fire?]))”

It first asks the agent to check its cone of sight for burning patches.

“let danger-patches ((patches in-radius 5) with [on-fire?]) face max-one-of neighbors [min

values-from danger-patches [distance myself]] forward 1”

 If it finds itself less than three patches away from fire, it checks the surrounding

five patches in any direction for other burning patches and chooses the safest

near patch to step onto. It then walks onto that patch and repeats this process.

“if is-wall?-of patch-ahead 1 [let x dx + xcor let y dy + ycor face min-one-of neighbors with [not

is-wall?] [distancexy x y]] fd 1”

If it is one patch away from running into a wall it looks around to the nearest

patch that reports false to the “is-wall?” variable and steps onto it. Writing this

particular piece of code was one of our most important breakthroughs. Before

we had it we made the turtles do a 180 and jump the other way. It often sent

them straight through a nearby wall if they were in a hallway. This new piece of

code allowed for much more organized, orderly movement through the

building.

 Movement through a crowded auditorium filled with panicked people

would have to be chaotic. We included this code to induce some confusion

(code appendix line 342).

 let min-scent min values-from neighbors with [not is-wall?] [scent] - 4

 let selected-neighbor max-one-of neighbors with [not is-wall?] [(scent - min-scent) * random-

float 1]

 face selected-neighbor (step)

 The agents decide their path by following the scent coming from the

doors. Here we multiply the scent by a random floating point number that is less

than one. It could easily cause the turtle to head directly toward the door but

could also send it off in a totally random direction, but the more common case

involves the turtles heading in the correct direction. We will go more into detail

on the nest scent in Section IV: Turtle Behavior.

III: The Dangers of the World

 Obviously people can (and often are) killed in emergency evacuations of

burning buildings. In order to model this reality the turtles have a variable called

“energy”. This variable allows us to modify the health of the turtles as they move

through the building. There are various dangers in the virtual world of the model

where turtles can be hurt or killed, be it by means of trampling, burning or

otherwise.

“if not nest? [let victim one-of (other-turtles-here with [energy <= energy-of myself]) if victim !=

nobody [ask victim [get-trampled]]] to get-trampled set trampled? true set energy energy - 2

if energy <= 0 [die] end” (line 362 in appendix)

 In this piece of code the turtle asks the patch it is standing on if there are

other agents on the same patch so that it can trample them. It first declares

any other turtles on the patch as a “victim”. It then checks to see if the energy

of that turtles is not greater than its own, and if it is not, it asks the turtle to set its

“trampled?” variable to true. When a turtles sets its “trampled?” variable to true

it simply subtracts two energy points and reports its remaining energy. If its

energy is reported to be less than or equal to zero, it tells the agent to die. The

code reports the value of the “nest?” variable before it executes anything else.

This is in place to ensure that turtles don't trample each other in the safe zone.

IV: Turtle Behavior

 Turtles follow a flocking behavior in the model which causes them to run in

groups. This can have catastrophic effects because if one turtles gets confused

and runs of towards the fire the rest of the flock tends to follow suite and take off

after him. Of course their path can easily be redirected by a turtle that turns the

right way as the flock will follow him just as easily as they were steered off course

by the rouge.

 We inserted Uri Wilensky’s flocking code into our model and adapted it to

work for our purposes.

set flockmates (turtles in-radius vision) with [self != myself] end to find-nearest-neighbor

 set nearest-neighbor min-one-of flockmates [distance myself] end to separate

 turn-away (heading-of nearest-neighbor) max-separate-turn end to align

 turn-towards average-flock?mate-heading max-align-turn

end to-report average-flock?mate-heading report atan sum values-from flockmates [sin heading]

 sum values-from flockmates [cos heading] end to cohere

 turn-towards average-heading-towards-flockmates max-cohere-turn

end to-report average-heading-towards-flockmates

 report atan mean values-from flockmates [sin (towards myself + 180)]

 mean values-from flockmates [cos (towards myself + 180)]

end to turn-towards [new-heading max-turn]

 turn-at-most (subtract-headings new-heading heading) max-turn

end to turn-away [new-heading max-turn]

 turn-at-most (subtract-headings heading new-heading) max-turn

end to turn-at-most [turn max-turn]

 ifelse abs turn > max-turn [ifelse turn > 0 [rt max-turn] [lt max-turn]] [rt turn] end

“The birds follow three rules: ‘alignment’, ‘separation’, and ‘cohesion’. ‘Alignment’ means that

a bird tends to turn so that it is moving in the same direction that nearby birds are moving.

‘Separation’ means that a bird will turn to avoid another bird which gets too close. ‘Cohesion’

means that a bird will move towards other nearby birds (unless another bird is too close). When

two birds are too close, the ‘separation’ rule overrides the other two, which are deactivated until

the minimum separation is achieved.”—Uri Wilensky

 The agents get their sense of direction from the diffusion of scent across

the model. The “chemical” cannot pass through walls and it is stopped dead in

its tracks by fire. Path-finding was one of our original problems. It was a

common problem with such models. People came up with various ideas for a

solution such as using elevation and the turtles always moving downhill or turtles

following a color gradient to find their way around. We were looking at an ant

model that used pheromones to help the ants get back to the nest. We took

that code and spent several weeks modifying it and adjusting the variable

values to suite our needs. We decided to use that particular code because we

already had a color gradient illustrating the spread of the “fire”. (see section II

or check the code appendix at line 342)

Results

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

0

100

200

300

400

500

600

700

800

900

1000

Max Alive

Min Alive

Mean of All Values

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

0

10

20

30

40

50

60

70

80

90

100

Start to Ending Percents
Min. Percent

Max. Percent

 By using Netlogo's Behavior Space program, we were able to run our

agent based model hundreds of times and collect results from the data which

was collected. Since trying to calculate the building's ideal capacity we were

able to set fire expansion rate, and fire start positions at fixed rates while varying

amounts of people. The results extracted from the hundreds of runs can be

summed up with one phrase- The Law Of Diminishing Returns.

 The Law of Diminishing Returns states that in a system with fixed and

variable inputs , beyond some point, each additional unit of variable input yields

less and less additional output. While mainly used in referring to economics, this

law can encompass everything from studying to car buying. In terms of our

project this means that with building size and fire/smoke diffusion as fixed inputs

and number of people in the building as a variable input, as more and more

people are put in the building output levels (People remaining alive) will

increase to maximum amount and then will start to decline. The charts above

help explain this. With a fire set at a set spot we see that over 90% of people

survived in the nine-hundred person run of the simulation. The sudden decrease

at nine-hundred is caused by variables such as- trampling, over crowding, etc.

 While not completely realistic, our project can still be inferred in real life. In

February of 2003, a fire consumed a concert in Rhode Island, leaving 97 dead

and 184 wounded. The results of our project reflect those in that fire. With a

proper building limit in place and state of the arc fire safety equipment, we

hope to prevent such occurrences from happening again.

Conclusions

 According to the data we have compiled, our High school auditorium isn't

exactly the safest building in Artesia. Using our Netlogo model we have run our

program, which has gone through many debugging stages, many times over

and come to the conclusion that the safest capacity of people the auditorium

can hold is approximately nine hundred as opposed to the two thousand thirty-

seven recommended by current standards. Our research has shown a bell

curve type of statistics. Nine hundred people tops the curve as the safest while

lesser or greater amounts endangers the audience. I would like to believe that

our most significant achievement regarding the project was the fact that our

agent based model became the most advanced that has come to the

challenge this year when it comes to modeling Emergency Egress.

 Panic can kill as easily as the fire we have emulated for the people to flee

from, this has relevance with our project due to the fact that a lot of the children

are killed by being trampled rather than the fire. Because people panic, more

lives are lost, panic can kill you even if nothing else wants to, as shown by our

model when it is run without the fire.

Works Cited

Helbing, Dirk, Tamas Vicsek, Illes J. Farkas, and Peter Molnar. Simulation of Pedestrian

Crowds inNormal and Evacuation Situations. Eotvos U.,Clark Atlanta U. Oo. 27 Oct.

2006.

Pan, Xiaoshan, Charles S. Han, and Kincho H. Law. A MULTI-AGENT BASED

SIMULATIONFRAMEWORK FOR THE STUDY OF HUMAN AND SOCIAL

BEHAVIOR IN EGRESS ANALYSIS. Stanford U. 1-12. 3 Jan. 2007.

 Wilensky, Uri. Flocking Model. 1998

Acknowledgments

Our thanks to:

Mr. Gaylor,

Mr. Orth,

Mr. Caton,

Mr. Phipps,

Mr. Bennett,

Mr. and Mrs. Bob Mayberry,

Mr. and Mrs. Charles Haldeman,

Mr. and Mrs. Tracy Kinnibrugh,

Mr. and Mrs. ____ Wilson,

Mrs. Mathis,

Mr. Conner,

Mr. Roberts,

and all others who made the Challenge possible.

Appendix: Code

breed [averagers averager] 1

breed [elderly senior] 2

breed [children child] 3

globals [4

 fire-temperature 5

 spontaneous-combustion-threshold 6

 normal-combustion-threshold 7

 seat-color 8

 max-scent 9

 wall-color 10

 safe-color 11

] 12

 13

patches-own [14

 on-fire? 15

 temperature 16

 fuel 17

 is-wall? 18

 chemical 19

 food 20

 nest? 21

 scent 22

 is-safe? 23

] 24

 25

turtles-own [26

 carrying-food? 27

 flockmates 28

 nearest-neighbor 29

 energy 30

 trampled? 31

] 32

 33

; Following are setup procedures: 34

 35

to setup 36

 ca 37

 setup-globals 38

 setup-patches-from-import 39

 diffuse-scent 40

 setup-turtles 41

 setup-fire 42

end 43

 44

to setup-globals 45

 set max-scent 1000 46

 set wall-color blue 47

 set safe-color cyan 48

 set seat-color brown 49

 set fire-temperature 2 50

 set spontaneous-combustion-threshold 1 51

 set normal-combustion-threshold 0.5 52

end 53

 54

to setup-patches-from-import 55

 import-pcolors "Aud_5426rsd2.png" 56

 ask patches 57

 [set nest? 58

 (((abs pxcor) = max-pxcor) or ((abs pycor) = max-pycor)) 59

 if (nest?)[set pcolor violet]] 60

 ask patches [61

 set is-safe? false 62

 set is-wall? false 63

 set scent 0 64

 ifelse (shade-of? pcolor 115) [65

 set nest? true 66

 set scent max-scent 67

] [68

 if (shade-of? pcolor wall-color) [69

 set is-wall? true 70

] 71

]] 72

end 73

 74

to diffuse-scent 75

 loop [76

 let propagation-set (77

 patches with [78

 not nest? 79

 and not is-wall? 80

 and any? neighbors with [81

 not is-wall? 82

 and ((scent - scent-of myself) > (0.001 + sqrt 2)) 83

] 84

] 85

) 86

 ifelse (any? propagation-set) [87

 ask propagation-set [88

 set scent (89

 max list 90

 max values-from neighbors4 [scent - 1] 91

 max values-from neighbors [scent - sqrt 2] 92

) 93

] 94

] [95

 stop 96

] 97

] 98

end 99

 100

to setup-turtles 101

 ask (n-of number-of-averagers 102

 (patches with [pcolor = seat-color])) [103

 sprout-averagers 1[104

 setxy (xcor - 0.5 + random-float 1) (ycor - 0.5 + random-float 1) 105

 set size 2 106

 set color red 107

 set carrying-food? true 108

 set energy 100 109

 set trampled? false 110

 set breed (averagers)] 111

] 112

 ask (n-of number-of-children 113

 (patches with [pcolor = seat-color])) [114

 sprout-children 1[115

 setxy (xcor - 0.5 + random-float 1) (ycor - 0.5 + random-float 1) 116

 set size 2 117

 set color green 118

 set carrying-food? true 119

 set energy 60 120

 set trampled? false 121

 set breed (children)] 122

] 123

 ask (n-of number-of-elderly 124

 (patches with [pcolor = seat-color])) [125

 sprout-elderly 1[126

 setxy (xcor - 0.5 + random-float 1) (ycor - 0.5 + random-float 1) 127

 set size 2 128

 set color yellow 129

 set carrying-food? true 130

 set energy 40 131

 set trampled? false 132

 set breed (elderly)] 133

] 134

end 135

 136

to setup-fire 137

 ask patches [138

 set on-fire? false 139

 set temperature 0 140

 ifelse (shade-of? pcolor cyan) [141

 set fuel 0 142

 set is-safe? true 143

][144

 set fuel 50 145

 set is-safe? false] 146

 ifelse (shade-of? pcolor blue) [147

 set fuel 1 148

 set is-wall? true 149

] [150

 set fuel 50 151

 set is-wall? false 152

] 153

 ifelse (shade-of? pcolor violet) [154

 set fuel 0 155

 set nest? true 156

][157

 set fuel 50 158

 set nest? false 159

] 160

 draw-color-gradient 161

] 162

end 163

 164

 165

; Run Procedures: 166

 167

to do-fire 168

 if (mouse-down?) [169

 ask patch-at mouse-xcor mouse-ycor [170

 catch-fire 171

 draw-color-gradient 172

] 173

] 174

end 175

 176

to iterate 177

 dissipate-heat 178

 ask patches with [on-fire?] [179

 burn 180

 set scent 0 181

] 182

 ask patches [183

 spread-fire 184

 draw-color-gradient 185

 set temperature (temperature * 0.99) 186

] 187

 ask turtles [flock?] 188

 ask turtles [if carrying-food? [return-to-nest]] 189

 diffuse chemical (diffusion-rate / 100) 190

 ask turtles [trample] 191

 ask turtles [if pcolor = yellow [die]] 192

 193

end 194

 195

 196

to dissipate-heat 197

 diffuse temperature 0.75 198

 ask patches with [is-wall?] [199

 set temperature (temperature * 0.45) 200

] 201

 ask patches with [is-safe?] [202

 set temperature 0 203

] 204

 ask patches[205

 set chemical (chemical * (100 - evaporation-rate) / 100)] 206

end 207

 208

to draw-color-gradient 209

 if (not is-wall?) [210

 ifelse (on-fire?) [211

 set pcolor yellow 212

] [213

 set pcolor scale-color red temperature 0 2 214

] 215

] 216

end 217

 218

to burn 219

 set temperature 2 220

 set fuel (fuel - 1) 221

 if (fuel <= 0) [222

 set on-fire? false 223

] 224

end 225

 226

to catch-fire 227

 set on-fire? true 228

 set temperature 2 229

end 230

 231

to spread-fire 232

 if ((not on-fire?) and (fuel > 0)) [233

 ifelse (temperature >= spontaneous-combustion-threshold) [234

 catch-fire 235

] [236

 if ((temperature >= normal-combustion-threshold) and (any? neighbors4 with [on-fire?])) 237

[238

 catch-fire 239

] 240

] 241

] 242

end 243

 244

to flock? 245

 if nest? 246

 [set carrying-food? false 247

 stop 248

] 249

 if (not nest? and not is-wall?) 250

 [set carrying-food? true 251

 if (is-wall?) 252

 [set carrying-food? true 253

 step 254

 find-flockmates 255

] 256

 find-flockmates 257

 if any? flockmates 258

 [find-nearest-neighbor 259

 ifelse distance nearest-neighbor < minimum-separation 260

 [separate] 261

 [align 262

 cohere] 263

]] 264

end 265

 266

to find-flockmates 267

 set flockmates (turtles in-radius vision) with [self != myself] 268

end 269

 270

to find-nearest-neighbor 271

 set nearest-neighbor min-one-of flockmates [distance myself] 272

end 273

 274

to separate 275

 turn-away (heading-of nearest-neighbor) max-separate-turn 276

end 277

 278

to align 279

 turn-towards average-flock?mate-heading max-align-turn 280

end 281

 282

to-report average-flock?mate-heading 283

 report atan sum values-from flockmates [sin heading] 284

 sum values-from flockmates [cos heading] 285

end 286

 287

to cohere 288

 turn-towards average-heading-towards-flockmates max-cohere-turn 289

end 290

 291

to-report average-heading-towards-flockmates 292

 report atan mean values-from flockmates [sin (towards myself + 180)] 293

 mean values-from flockmates [cos (towards myself + 180)] 294

end 295

 296

to turn-towards [new-heading max-turn] 297

 turn-at-most (subtract-headings new-heading heading) max-turn 298

end 299

 300

to turn-away [new-heading max-turn] 301

 turn-at-most (subtract-headings heading new-heading) max-turn 302

end 303

 304

 305

to turn-at-most [turn max-turn] 306

 ifelse abs turn > max-turn 307

 [ifelse turn > 0 308

 [rt max-turn] 309

 [lt max-turn]] 310

 [rt turn] 311

end 312

 313

to return-to-nest 314

 ifelse nest? 315

 [set carrying-food? false 316

 stop 317

][318

 step 319

 if (not is-wall? and not nest?)[320

 uphill-nest-scent 321

 wiggle 322

]] 323

end 324

 325

to step 326

 if (any? ((patches in-cone 3 60) with [on-fire?])) [327

 let danger-patches ((patches in-radius 5) with [on-fire?]) 328

 face max-one-of neighbors [min values-from danger-patches [distance myself]] 329

 forward 1 330

] 331

 if is-wall?-of patch-ahead 1 [332

 let x dx + xcor 333

 let y dy + ycor 334

 face min-one-of neighbors with [not is-wall?] [distancexy x y] 335

] 336

fd 1 337

end 338

 339

to uphill-nest-scent 340

 wiggle 341

 let min-scent min values-from neighbors with [not is-wall?] [scent] - 4 342

 let selected-neighbor max-one-of neighbors with [not is-wall?] [(scent - min-scent) * 343

random-float 1] 344

 face selected-neighbor (step) 345

end 346

 347

to wiggle 348

 if (not is-wall?) [349

 rt random 40 - random 40 350

 if not can-move? 1 351

 [rt 180]] 352

end 353

 354

to-report get-nest-scent [angle] 355

 let p patch-right-and-ahead angle 1 356

 if p != nobody 357

 [report scent-of p] 358

 report 0 359

end 360

 361

to trample 362

if not nest? [363

let victim one-of (other-turtles-here 364

with [energy <= energy-of myself]) 365

if victim != nobody [366

ask victim [367

get-trampled 368

] 369

] 370

] 371

end 372

 373

to get-trampled 374

set trampled? true 375

set energy energy - 2 376

if energy <= 0 [377

die] 378

end 379

