
Dangerous Drivers

New Mexico

Supercomputing Challenge

April 4, 2007

Team 22

Bosque School

Team members

Calin Popa

Reed Sanchez

Jeremy Adkins

Teacher

Thomas Allen

Mentor

Jim Hicks

 2

Dangerous Drivers

Our project for the New Mexico Supercomputing Challenge involved making a

traffic simulator to represent crashes at an intersection. Our goal was to answer the

question: “What types of driving behaviors – such as shifting, braking, turning and

running red lights – cause accidents?” In order to do this, we used StarLogo agent-based

modeling. We created a cross-street intersection with a stoplight in the middle that gives

cars the signal to go, stop, and turn. The number of “cars” – or turtles in the case of our

program – in the intersection can vary from 2 to 99. They are programmed to shift and

make turns, which greatly increases the chances of a crash. The program uses “checks”

to determine if the turtles are likely to “crash” or not. These checks work by assigning a

random number for each turtle that determines if the turtle “drives” safely or not – in

other words, how aware the turtle is of its surroundings and if it checks for other turtle

before it shifts lanes or makes turns. When two turtles “crash,” or collide, a blue square

appears meaning a crash has occurred.

The first step we took of developing our model to answer the question was to gather

information on traffic accidents. For instance, “in 2002 43,005 people died due to traffic

accidents in America.” and “in 2004 42,836 people died due to traffic accidents in

America.”(MADD). “The injury rate per 100 million vehicle miles of travel decreased by

6.0 percent from 2003 to 2004 according to Reference: 2004 Annual Report and Fatality

Analysis Reporting System” (FARS). After gathering the data, we started to program an

interaction simulation with realistic driving actions. Our programmer, Reed Sanchez,

finished the model, we started to look for patterns in the crashes. We ran the program 6

times for approximately 5 minutes each time and recorded the data. The program would

 3

freeze when the number of turtles crashed (stacked up) in the intersection got too big. In

order to get better statistics, we need to run the program more times, yet we ran out of

time. The data presented below was gathered from our set of 6 runs.

Our data showed that crashes resulting from right turns and t-bone crashes, resulting

from running a red light, are uncommon. However, crashes resulting from shifting lanes

and braking are very common. We all believed that left turns would cause the most

crashes, yet we were mistaken. At this time, our model doesn’t take the severity of the

crash into account. “Rear ending” a car due to braking is not likely to be as bad a crash a

T-bone crash resulting from running a red light. From our model, we conclude that most

crashes occur while shifting lanes or braking. This makes some sense because changing

lanes is complicated and requires that the driver look and think about blind spots. Yet

this computer model doesn’t take the effect the full variability that humans and their

reaction time and driving skill would have on the results of this experiment.

We believe that our number one original achievement is making a realistic

simulation of a street intersection that has some aspects of realistic driving behavior

included – for instance, checking to see if a car is next to you before you shift lanes.

Also, we included a factor to make some drivers “worse” than others (the random number

check) in order to begin to account for human error and variability. In the future, we

want to explore the effect that the age of the driver may have on crashes in the

intersection. We want to make the car colors represent the age of the driver, and include

another variability factor, to see if the results are affected.

 4

ACKNOWLEDGEMENTS

We used StarLogo for our agent-based modeling, Microsoft Word to generate this report,

and Microsoft Powerpoint to create our interim presentation. We used data from the

MADD (Mothers Against Drunk Driving) website and FARS (Fatality Analysis

Reporting) for the information on crashes. We would like to thank our teacher Mr.

Thomas Allen for helping us, Mr. Jim Hicks who served as our mentor, our school

Bosque School and the New Mexico Supercomputing Challenge program for the help

that they gave us to do this project.

 5

Figure: Crash Results

0

2

4

6

8

10

12

14

test 1(low #

of people)

test 2(low #

of people)

test

3(medium #

of people)

test

4(medium #

of people)

test 5(high

of people)

test 6(high

of people)

lane changing

left turns

right turns

braking

t-bone crashes

Table: Crash Data

test 1(low # of
people)

test 2(low # of
people)

lane changing 4 lane changing 5

left turns 5 left turns 3

right turns 0 right turns 0

braking 4 braking 2

t-bone
crashes 0 t-bone crashes 0

test 3(medium # of
people)

test 4(medium # of
people)

lane changing 7 lane changing 10

left turns 0 left turns 3

right turns 0 right turns 0

braking 5 braking 7

t-bone
crashes 1 t-bone crashes 0

test 5(high # of
people)

test 6(high # of
people)

lane changing 13 lane changing 9

left turns 2 left turns 3

right turns 0 right turns 1

braking 6 braking 6

t-bone
crashes 0 t-bone crashes 3

 6

Picture of Setup

 7

Picture of Running Program

 8

TURTLE CODE

Turtles-own [haste place]

to start

if pc = green + 1 [ifelse ((count-turtles-at 0 1) not= 0) [die] [fd 1]]

if pc = green + 1.1 [ifelse ((count-turtles-at 1 0) not= 0)[die][fd 1]]

if pc = green + 1.2 [ifelse ((count-turtles-at 0 -1) not= 0)[die][fd 1]]

if pc = green + 1.3 [ifelse ((count-turtles-at -1 0) not= 0)[die][fd 1]]

findage

findhast

findwhere

gtwhere

end

to findage

if color = 1 [setc green]

if color = 2 [setc pink]

if color = 3 [setc orange]

if color = 0 [setc yellow]

end

to findhast

if ((Random 1000) > W)

 [sethaste 1]

end

to findwhere

let [:ran (random 2)]

ifelse ((random 100) < prob-of-change-lanes)

 [

 if :ran = 0 [setplace 0]

 if :ran = 1 [setplace 1]

 if :ran = 2 [setplace 2]

]

 [

 if pc-ahead = black + 5 [setplace 0]

 if pc-ahead = black + 6 [setplace 1]

 if pc-ahead = black + 7 [setplace 2]

]

end

to gtwhere

loop

 [

 9

 if place = 0

 [

 if pc-ahead = 7 [cll]

 if pc-ahead = 6 [cll]

 if pc-ahead = 5 [watchlights if pc = 5 [fd 1]]

 if pc-ahead = 3 [care fd 1 watchlights]

]

 if place = 1

 [

 if pc-ahead = 7 [cll]

 if pc-ahead = 5 [clr]

 if pc-ahead = 6 [watchlights if pc = 6 [fd 1]]

 if pc-ahead = 2 [care fd 1 watchlights]

]

 if place = 2

 [

 if pc-ahead = 6 [clr]

 if pc-ahead = 5 [clr]

 if pc-ahead = 7 [watchlights if pc = 7 [fd 1]]

 if pc-ahead = 1 [care fd 1 watchlights]

]

 if pc = 0 [care fd 1]

 if pc = green + 9 [die]

 if pc = 4 [lt 45 fd 1]

 if (count-turtles-here not= 1)

 [

 crash 0

 crash 1

 crash 2

 crash 3

 crash 4

 crash 5

 crash 6

 crash 7

 crash yellow

 crash 56

 crash 56.1

 crash 56.2

 crash 56.3

 if color = red [die]

]

 if color = red [die]

 if pc-ahead = blue [rt 90 fd 2 lt 90 fd 2 lt 90 fd 2 rt 90]

]

 10

end

to straight-all

if pc = green + 9 [die]

if pc = yellow [die]

if (count-turtles-here not= 1) [stamp blue die]

if pc-ahead = blue [rt 90 fd 2 lt 90 fd 2 lt 90 fd 2 rt 90]

if ((Random 1000) > w)

 [

 if pc = green [fd 1]

 if pc = red [fd 1]

 if pc = black [fd 1]

 if pc = black + 2 [fd 1]

 if pc = black + 3 [lt 45 fd 1]

 if pc = black + 4 [lt 45 fd 1]

]

end

to crash :colr

if pc = :colr

 [

 stamp blue

 wait 30

 stamp :colr

 grab one-of-turtles-here

 [setc blue setc-of partner red]

]

end

to watchlights

care

if pc = black [fd 1]

if pc = black + 2

 [

 waitchangelights 2 -6

 waitchangelights -2 6

 waitchangelights -6 -2

 waitchangelights 6 2

]

if pc = black + 3

 [

 waitchangelightl 3 -5

 waitchangelightl -3 5

 waitchangelightl -5 -3

 11

 waitchangelightl 5 3

]

if pc = black + 1 [fd 1 rt 90]

if pc = black + 4 [lt 45 fd 1]

end

To waitchangelights :x :y

ifelse (pc-at :x :y) = red

 [

 wait-until [(pc-at :x :y) = green] fd 1

]

 [

 if (pc-at :x :y) = green [fd 1]

]

end

To waitchangelightl :x :y

ifelse (pc-at :x :y) = red

 [

 wait-until [(pc-at :x :y) = green] lt 45 care fd 1

]

 [

 if (pc-at :x :y) = green [lt 45 fd 1]

]

end

to care

check 180 0 -1

check 90 1 0

check 270 -1 0

check 0 0 1

check 45 1 1

check (270 + 45) -1 1

check (45 + 90)1 -1

check (45 + 180)-1 -1

end

to check :heading :x :y

if heading = (:heading)

 [

 if ((count-turtles-at :x :y) not= 0)

 [wait-until [(count-turtles-at :x :y) = 0]]]

end

to clr

 12

rt 45

clsr 45 1 0

clsr 315 0 1

clsr 225 -1 0

clsr 135 0 -1

end

to clsr :heading :x :y

if heading = (:heading)

 [ifelse ((count-turtles-at :x :y) not= 0)

 [lt 45 care fd 1 clr] [fd 1 lt 45]]

end

to cll

lt 45

clsl 45 1 0

clsl 315 0 1

clsl 225 -1 0

clsl 135 0 -1

end

to clsl :heading :x :y

if heading = (:heading)

 [ifelse ((count-turtles-at :x :y) not= 0)

 [rt 45 care fd 1 cll] [fd 1 rt 45]]

End

OBSERVER CODE

to setup

ca

build

end

to build

crt 4

ask-turtles

 [

 fd 6 setc yellow pd fd 19 rt 90 pu fd 6 rt 90

 setc grey pd fd 19 pu fd 1 pd

]

ask-turtle 0

 13

 [

 setc black + 1 fd 1

 setc black + 2 fd 2

 setc black + 3 fd 1 pu fd 2 pd

 setc black + 4 fd 1 pu fd 4 pd

 setc grey fd 19 rt 90

 setc green + 1 pu fd 1 pd

 fd 4 pu fd 2

 setc green + 9 pd fd 4

]

ask-turtle 1

 [

 setc black + 1 fd 1

 setc black + 2 fd 2

 setc black + 3 fd 1 pu fd 2 pd

 setc black + 4 fd 1 pu fd 4 pd

 setc grey fd 19 rt 90

 setc green + 1.1 pu fd 1 pd

 fd 4 pu fd 2

 setc green + 9 pd fd 4

]

ask-turtle 2

 [

 setc black + 1 fd 1

 setc black + 2 fd 2

 setc black + 3 fd 1 pu fd 2 pd

 setc black + 4 fd 1 pu fd 4 pd

 setc grey fd 19 rt 90

 setc green + 1.2 pu fd 1 pd

 fd 4 pu fd 2

 setc green + 9 pd fd 4

]

ask-turtle 3

 [

 setc black + 1 fd 1

 setc black + 2 fd 2

 setc black + 3 fd 1 pu fd 2 pd

 setc black + 4 fd 1 pu fd 4 pd

 setc grey fd 19 rt 90

 setc green + 1.3 pu fd 1 pd

 fd 4 pu fd 2

 setc green + 9 pd fd 4

]

ask-turtles

 [

 pu rt 180 fd 6 lt 90 fd 1

 14

 setc black + 5 pd fd 17 pu rt 90 fd 1 rt 90 pd fd 17 pu

 setc black + 6 lt 90 fd 1 lt 90 pd fd 17 pu rt 90 fd 1 rt 90 pd fd 17 pu

 setc black + 7 lt 90 fd 1 lt 90 pd fd 17

]

ct

end

to people

ask-patches-with [pc = green + 1]

 [if ((Random 100) < n)

 [sprout [setc (random 3)]]]

ask-patches-with [pc = green + 1.1]

 [if ((Random 100) < n)

 [sprout [setc (random 3)rt 90]]]

ask-patches-with [pc = green + 1.2]

 [if ((Random 100) < n)

 [sprout [setc (random 3)rt 180]]]

ask-patches-with [pc = green + 1.3]

 [if ((Random 100) < n)

 [sprout [setc (random 3) lt 90]]]

end

to light

stop-sign

wait 10

go-vert-strait

wait 30

stop-sign

wait 10

go-hors-strait

wait 30

stop-sign

wait 10

go-vert-left

wait 30

stop-sign

wait 10

go-hors-left

wait 30

end

to go-vert-strait

ask-patch-at 1 0 [setpc green]

ask-patch-at -1 0 [setpc green]

ask-patch-at -2 0 [setpc green]

ask-patch-at 2 0 [setpc green]

 15

end

to go-hors-strait

ask-patch-at 0 1 [setpc green]

ask-patch-at 0 -1 [setpc green]

ask-patch-at 0 2 [setpc green]

ask-patch-at 0 -2 [setpc green]

end

to go-vert-left

ask-patch-at -1 -1 [setpc green]

ask-patch-at 1 1 [setpc green]

ask-patch-at -2 -1 [setpc green]

ask-patch-at 2 1 [setpc green]

end

to go-hors-left

ask-patch-at -1 1 [setpc green]

ask-patch-at 1 -1 [setpc green]

ask-patch-at -1 2 [setpc green]

ask-patch-at 1 -2 [setpc green]

end

to strate-sign

ask-patch-at -1 0 [setpc green]

ask-patch-at 1 0 [setpc green]

ask-patch-at 0 1 [setpc green]

ask-patch-at 0 -1 [setpc green]

ask-patch-at -2 0 [setpc green]

ask-patch-at 2 0 [setpc green]

ask-patch-at 0 2 [setpc green]

ask-patch-at 0 -2 [setpc green]

ask-patch-at -1 -1 [setpc green]

ask-patch-at 1 1 [setpc green]

ask-patch-at -2 -1 [setpc green]

ask-patch-at 2 1 [setpc green]

ask-patch-at -1 1 [setpc green]

ask-patch-at 1 -1 [setpc green]

ask-patch-at -1 2 [setpc green]

ask-patch-at 1 -2 [setpc green]

end

to stop-sign

ask-patch-at -1 0 [setpc red]

ask-patch-at 1 0 [setpc red]

ask-patch-at 0 1 [setpc red]

 16

ask-patch-at 0 -1 [setpc red]

ask-patch-at -2 0 [setpc red]

ask-patch-at 2 0 [setpc red]

ask-patch-at 0 2 [setpc red]

ask-patch-at 0 -2 [setpc red]

ask-patch-at -1 1 [setpc red]

ask-patch-at 1 -1 [setpc red]

ask-patch-at -1 2 [setpc red]

ask-patch-at 1 -2 [setpc red]

ask-patch-at -1 -1 [setpc red]

ask-patch-at 1 1 [setpc red]

ask-patch-at -2 -1 [setpc red]

ask-patch-at 2 1 [setpc red]

end

