
Hunter Loen
Dorian Dixon
Mike Jacquez

Stuck in Traffic
Decreasing Congestion Through More Efficient

Traffic Lights

Table of Contents
Pg. 1 – Title Page
Pg. 2 – Table of Contents
Pg. 3 – Executive Summary
Pg. 4 – Introduction, Purpose
Pg. 5 – Significance, Background
Pg. 6 – Description, Scope
Pg. 7 – Materials, Methods
Pg. 8 – Computational Science Process, Mathematical Model
Pg. 9 – Computational Model
Pg. 10 – Appendix A – Source Code

Executive Summary

 This program set out to tackle the problem of inefficient traffic lights. If a traffic
light at an intersection can be simulated, the optimal cycle time for it can be found. Our
result is a NetLogo program that simulates traffic flow at a simple intersection. One of
the ways we found the best traffic flow was to raise the speed limit. Based on the findings
from our program, we recommend abolishing speed limits.

Introduction
 The inspiration for this project came, predictably enough, when one of the team
members was wasting precious minutes of his life at a traffic light. From there, it
progressed into a program that that simulates this common scenario, but without having
to subject precious real humans to the inhumane stresses of a thick commute.

Purpose
 The purpose of this program is to efficiently run simulations of a traffic light at an
intersection so as to find the optimal light cycle pattern as far as traffic flow is concerned.
The premise behind this program is that this will allow more cars to get through,
increasing quality of life for all involved. Also, fewer cars idling means less fuel burned
and, less smog created, and less greenhouse gasses released.

Significance
 The significance of this project is obvious to anyone who commutes to work in a
congested area. Cars were created to go places fast, not stay still. So, minimizing how
much time they waste at traffic lights is a worthy cause in itself. There are also a host of
environmental effects of traffic congestion.

Background
 Early automobile drivers found that, if you have cars coming from four directions
and all meeting up in one intersection, they will crash. This observation quickly led to the
semaphore, which resembled a railway symbol. Around the beginning of the 20th
Century, the first electric red-green traffic lights came into being. The first automatic
traffic system was found in Houston in 1922 (ITE Traffic Control Systems Handbook).
Traffic lights have not changed a lot since then, aside from optics upgrades and, of
course, the volume of traffic.

Description
 This program is written in NetLogo. It has the following variables:

• Speed limit
• Maximum acceleration cars are capable of
• Maximum braking cars are capable of
• What percentage of cars come from the north
• What percentage of cars come from the east
• How long the green light lasts
• How long the yellow light lasts.
The program simulates a simple intersection, where cars only go forward. It also only
simulates traffic coming from the north and from the east. The user can manually
control when the lights cycle or have it be automated.

Scope
 The scope of this program extends to anywhere there are roads, cars, and traffic
lights. Any commuter can see the value of maximizing traffic flows. This project goes
beyond how long office workers spend in traffic, though. It also has environmental
aspects, as when cars are sitting around idling, they release exhaust, which contributes to
smog, which in turn contributes to asthma and lung problems, not to mention all the CO2
emitted from these cars, which contributes to global warming.

Materials
 All that is needed for this program to work is a computer running Windows 98 or
higher (we used XP) with a modest amount of RAM, only about 256 MB. If this program
were to be kicked up a notch, and made to simulate hundreds or thousands of different
scenarios, it would require a bigger computer.

Methods
 We employed the method of agent-based modeling for this program. This is the
primary method used by NetLogo, which is the language/program we modeled this in. In
agent-based modeling, each agent (in this case, cars) directs itself, as opposed to being
centrally-controlled. Agent-based modeling works well for this situation because in real
life cars are controlled by independent people, and not centrally controlled.

Computational Science Process
 Our computational science process consists of gathering data from our simulation
and interpreting it. We do not as of yet have a systematic approach. Our experiments
mainly consist of tinkering with the variable to see what can be done to maximize traffic
flow. This is how we discovered that higher speed limits are good for traffic flow.

Mathematical Model
 This is not a scale model. We used speed based on the scale used in NetLogo, not
an approximation of real speeds encountered on roads.

Computational Model
 Our computational model revolves around creating as close to real-life conditions
in the simulation, and then having a computer simulate their logical progression. It is
helpful to use a computer in this, as they are much more systematic, have more stamina,
and can simulate real-life with a fraction of the resources it would take to recreate the
situations we are testing.

Appendix A
Program source code

globals [stop-light]
turtles-own [speed]
patches-own [clear-in]

;;SETUP PROCEDURES

to setup
 clear-all
 set-default-shape turtles "car"
 ask patches
 [set pcolor brown
 if abs pxcor <= 1 or abs pycor <= 1
 [set pcolor black]
]
 set stop-light "north"
 draw-stop-light

end

to draw-stop-light
 ask patches with [abs pxcor <= 1 and abs pycor <= 1]
 [set pcolor black]
 ifelse stop-light = "north"
 [ask patch 0 -1 [set pcolor red]
 ask patch -1 0 [set pcolor green]
]
 [ask patch 0 -1 [set pcolor green]
 ask patch -1 0 [set pcolor red]
]
end

;;RUNTIME PROCEDURES

to go
 move-cars
 make-new-cars
 if auto? ; switch the light automatically

 [if ticks mod (green-length + yellow-length) = 0
 [switch]
 if ticks mod (green-length + yellow-length) > green-length
 [ask patches with [pcolor = green]
 [set pcolor yellow]
]
]
 tick

end

to make-new-cars
 if (random-float 100 < freq-north) and not any? turtles-on patch 0 min-pycor
 [
 crt 1
 [set ycor min-pycor
 set heading 0
 set color 5 + 10 * random 14
 set speed min (list clear-ahead speed-limit)
]
]
 if (random-float 100 < freq-east) and not any? turtles-on patch min-pxcor 0
 [
 crt 1
 [set xcor min-pxcor
 set heading 90
 set color 5 + 10 * random 14
 set speed min (list clear-ahead speed-limit)
]
]
end

to move-cars
 ask turtles [move]
end

to move ;; turtle procedure
 let clear-to clear-ahead
 ifelse clear-to > speed
 [if speed < speed-limit
 [set speed speed + min (list max-accel (clear-to - 1 - speed))] ; accelerate
 if speed > speed-limit
 [set speed speed-limit] ; but don't speed
]
 [set speed speed - min (list max-brake (speed - (clear-to - 1))) ; brake
 if speed < 0 [set speed 0]

]
 repeat speed ; move ahead the correct amount
 [
 fd 1
 if not can-move? 1
 [die]

]
end

to-report clear-ahead ;turtle procedure
 let n 1
 repeat max-accel + speed ; look ahead the number of patches that could be travelled
 [if (n * dx + pxcor <= max-pxcor) and (n * dy + pycor <= max-pycor)
 [if([pcolor] of patch-ahead n = red) or
 ([pcolor] of patch-ahead n = orange) or
 (any? turtles-on patch-ahead n)
 [report n]
 set n n + 1
]
]
 report n
end

to switch
 ifelse stop-light = "north"
 [set stop-light "east"
 draw-stop-light
]
 [set stop-light "north"
 draw-stop-light
]
end

I love Clar

a.

