

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

1

Table of Contents

Introduction to Java Programming ...2

Overview ... 2
Learning Objectives... 2
About Java ... 2

Useful Information ..3
Necessary Tools... 3
Web References... 3
Reference Books.. 3
Contact Information... 3

Linux Essentials...4
A Sampling of Basic Linux Commands .. 4

Creating Your Program..5
Program Names ... 5
The Program Template .. 5

Program Structure ..6
Statements.. 6
Code Blocks... 6
Case Sensitivity and Whitespace ... 6

Your First Program – HelloWorld.java ..7
Output Command: System.out.println()... 7
The HelloWorld.java Program... 7

Compiling and Executing ...8
Compiling Your Program .. 8
Executing Your Program ... 8

Program Documentation ..11
Comments.. 11

Calculations..13
Numbers .. 13
Operations.. 13

Memory ..14
Storing Data in Memory .. 14

More on Memory...15
Variables.. 15
Identifiers... 15
Declarations ... 15
Assignment Statements.. 15
Referencing Variables ... 16

Interactive Programs ..19
Input Command: UserInput.getType().. 19
Storing Input .. 19

Advanced Programming Constructs ...23
Conditional Statement: if (condition) { statements; } .. 23
Conditional Statement: else { statements; }.. 24

Advanced Programming Constructs ...27
Loops: for (initialization; condition; increment) { statements; } 27

Appendix A: UserInput.java Source Code... 31
Appendix B: Java GUI (Graphical User Interface)..32

Introduction to Java Programming

Overview

Computer programming is the process of planning and creating a sequence of steps for a
computer to follow. In general, this process will help us resolve a problem which is either
too tedious or difficult to work out otherwise. In this class we will utilize the Java
programming language, on a remote computer running the Linux operating system, to
implement the actual steps.

Learning Objectives

Over the course of the class you will learn how to perform the following tasks:

• create Java source code with a text editor

• compile your source code – identify and fix any programming errors

• run and test the executable – identify and fix any logical errors

• insert program documentation where appropriate

• incorporate advanced programming constructs

About Java

Java is a full-featured programming language similar in functionality to C++ and other
“high-level” languages. Once heralded as the next-best-thing for the web, Java is instead
regarded as an exceptional language for creating stand-alone applications. This is in no
small part due to the relative ease with which Java can create GUIs (Graphical User
Interfaces).

Many Colleges and Universities now teach Java in “Computer Programming 101”. The
High School AP (Advanced Placement) test in computer science will also be based on
Java starting in 2003.

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

2

Useful Information

Necessary Tools

• Text Editor: pico or vi on Linux machines
• J2SE SDK: Java 2 Platform, Standard Edition Software Development Kit

Web References

The official Java™ web site from Sun Microsystems – downloads, documentation, and
tutorials:

 http://java.sun.com/

The official API Specification for the Java 2 Platform, Standard Edition, v 1.4.1:

 http://java.sun.com/j2se/1.4.1/docs/api/

Reference Books

A comprehensive introductory text for beginning programmers:

Java How to Program, Fourth Edition by Deitel & Deitel – ISBN: 0-13-034151-7

A reference manual for experienced programmers:

 Java in a Nutshell, Third Edition by Flanagan – ISBN: 1-56592-487-8

Contact Information

Eric Ovaska, LANL 505-667-1019 ovaska@lanl.gov

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

3

http://java.sun.com/
http://www.challenge.nm.org/Java
mailto:ovaska@lanl.gov

Linux Essentials

A Sampling of Basic Linux Commands

Linux is essentially Unix running on PC hardware. It often has a Graphical User Interface
(GUI) similar to a Mac or PC. However, it is more common to interface with a Linux
machine remotely via textual commands. On the Mode machine, note that the prompt
will reflect which directory (folder) you are currently working in.

The following text-based commands will help you to get started:

ls – lists the names of the files and sub-directories inside the current directory

• ls -F – explicitly indicates which items are directories (folders) by appending a
forward slash to the directory name

• ls -l – supplies lots of information regarding your files and directories

cd – changes your current working directory

• cd .. – moves you into the parent directory
• cd directory – moves you into the subdirectory named directory

pico – invokes a menu-driven text editor for creating/editing files

• pico filename – edits (or creates) a file named filename

javac – invokes the Java compiler

• javac program.java – compiles the Java source code file named program.java,
and produces an “executable” file named program.class

java – invokes the JVM (Java Virtual Machine), which executes the program

• java program – executes the program instructions in the file program.class

At this time, connect to mode.lanl.k12.nm.us with your assigned login names
and password. Experiment with the above commands.

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

4

Creating Your Program

Program Names

Every file containing a Java program must end in “.java”, with the rest of the name
containing nothing more than letters, numbers, and the underscore character. By
convention, all program names in Java begin with a capital letter – each “word” in the
name is capitalized as well.

• No spaces in the filename!
• Make the name as short and descriptive as possible

The Program Template

Every program you create on Mode should contain, at a minimum, the following code:

filename: Template.java
import gov.lanl.java.UserInput;

public class Template
{

public static void main (String args[])
{

Your Statements Here;
Your Statements Here;
Your Statements Here;
Your Statements Here;
System.exit(0);

}
}

Note: you must always match the prefix of the filename and the class name!

The statements comprising your program instructions will be typed into this template
between the inner pair of curly braces – this area is the main code block. Your
instructions will also appear before the statement “System.exit(0);”

Typically, your statements are executed from top to bottom. We will see exceptions of
this later on …

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

5

Program Structure

Statements

A statement represents a single step in your program – it may be relatively complex at
times

• Always place a semicolon after a statement
• In general, try to place statements on individual lines within your program

Code Blocks

A code block is a collection of statements contained within a pair of curly braces

• In general, do not place semicolons after “block headers” – the statement
preceding a code block

Case Sensitivity and Whitespace

Be very mindful of how you type in your program – Java is a Case Sensitive language!.

Furthermore, Java is a free-format language. This means that most combinations of
whitespace (spaces, tabs, carriage returns, etc.) are ignored.

Note: The above program (Template.java) could thus be written entirely on one
line! It is, however, better to structure your code in such a way that it is visually
easy for you and others to interpret the source code.

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

6

Your First Program – HelloWorld.java

Output Statement: System.out.println()

A computer program is useless if we cannot obtain information back from it. It is
therefore essential that we be able to incorporate a command which will allow the
program to tell us what it knows.

System.out.println(information) – this command will output your information to the
screen, followed by a carriage return.

• The information may be a sequence of characters between double quotes

 Will display literally as entered between the quotes

• The information may also be a variable – more on this later …

The HelloWorld.java Program

Enter the following code using pico into a file named HelloWorld.java.

filename: HelloWorld.java
import gov.lanl.java.UserInput;

public class HelloWorld
{

public static void main (String args[])
{

System.out.println("Hello World!");
System.exit(0);

}
}

Changes from Template.java:

• File/class name (notice how all of the “words” are capitalized)
• One unique statement – an output command

Now what do we do with it? How do we actually execute (run) the
program? Use the tools in the J2SE SDK!

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

7

Compiling and Executing

Compiling Your Program

The instructions within your source file are only intelligible to you – not the computer.
i.e. the computer does not understand English words and phrases!

You must use the javac command to invoke the java compiler:

• Any programming errors will be reported at this time
o Typically syntactical or typing errors

• If there are no errors, translates the source code to “byte code”
o A file named program_name.class will be created

 1100010

1010101
0100101
0010100
1010011 HelloWorld.class

Java
Source
Code
written
in here HelloWorld.java

javac HelloWorld.java

Executing Your Program

The instructions inside of your “.class” file are (almost) in a language the computer truly
understands.

To execute your program, use the java command to invoke the java interpreter (JVM):

• Interprets the byte code at the “system level”, and executes your instructions

1100010
1010101
0100101
0010100
1010011

HelloWorld.class

java HelloWorld

Now you can compile and execute HelloWorld.java! Watch for errors …

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

8

Exercise 1

Create an Address Label Program for yourself which produces output similar to below.

Question:

• Try using System.out.print() instead of System.out.println() in
some of your statements – what is the difference?

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

9

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

10

Exercise 1 – Solution

filename: AddressLabel.java
import gov.lanl.java.UserInput;

public class AddressLabel
{

public static void main (String args[])
{

System.out.println("Eric Ovaska");
System.out.println("3959 Trinity Drive");
System.out.println("Los Alamos, NM");
System.out.println("87544");
System.exit(0);

}
}

Program Documentation

Comments

You may include notes to yourself (or others who may be working on the program) from
within your source code in the form of comments.

The compiler completely ignores any comments during the source-code translation. The
following code demonstrates the use of both single-line comments and multiple-line
comments:

filename: HelloWorld.java
import gov.lanl.java.UserInput;
/* This program created by Eric Ovaska
 on September 25, 2001 */

public class HelloWorld
{

public static void main (String args[])
{

System.out.println("Hello World!");
System.exit(0); // This line stops the JVM

}
}

• Single-line comments
o Compiler ignores all information between two forward slashes (//) and

the end of the line – the slashes are ignored as well

• Multiple-line comments
o Compiler ignores all information between a forward slash and asterisk

(/*) and an asterisk and forward slash (*/)

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

11

Exercise 2

Record the file size (in Bytes) of the following files in your java folder:

• HelloWorld.java

• HelloWorld.class

Liberally place comments throughout your source code. Once again compile and execute
this program.

Question:

How did the file sizes of “HelloWorld.java” and “HelloWorld.class” change?

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

12

Calculations

Numbers

Java can manipulate and store many types of data (information) in the memory of the
computer. We will only be concerned with two numeric types: int (whole numbers) and
double (decimal numbers).

• Any number typed into an equation with a decimal point will be considered to be
of type double – without a decimal point of type int

Operations

Java can perform arithmetic operations, using the four standard operators of addition
(+), subtraction (-), multiplication (*) and division (/). Java also follows the
standard algebraic order of operations.

Be aware of performing calculations with different data types. Note the results of
performing arithmetic operations with the following mixed data types:

• int & int = int
 5 + 4 = 9
 4 / 5 = 0

• int & double = double

 4 / 5.0 = .80
 3.2 * 7 = 22.4

• double & double = double

 5.3 / 8.5 = .6235294117647059

Once a computer performs a calculation, where does it store the results?

Where does a human store information?

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

13

Memory

Storing Data in Memory

A program can store, among other things, the results of an arithmetic expression into the
memory of the computer. This process typically involves using two statements:

1. Declaration Statement: Reserves a small portion of memory, called a variable,
to use in storing data

o Indicate what type of data will be stored there
o Give the memory location a descriptive reference name

2. Assignment Statement: Places your data into the variable

You may access the information in the variable simply by referring to the specific
reference name.

filename: Addition.java
import gov.lanl.java.UserInput;

public class Addition
{

public static void main (String args[])
{
 double sum; // declaration statement

sum = 7 + 5; // assignment statement
System.out.print("The Result Is: ");
System.out.println(sum); // printing a variable
System.exit(0);

}
}

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

14

More on Memory

Variables

A variable is a dedicated piece of memory in a computer, where a program may store
data during program execution.

Identifiers

An identifier is a reference name which is used for referring to a particular variable. You
may use any “word” which contain numbers, letters, and the underscore character to form
your identifier. By convention, all identifiers in Java begin with a lowercase letter –
thereafter, each additional “word” in the identifier is capitalized.

Declarations

A declaration statement has the following form:

 data_type identifier;

From this statement, we have reserved a location in memory (a variable) which may
contain data of the type data_type, and may be referenced later by using the identifier.

Assignment Statements

To place data into a variable, you must use an assignment statement. An assignment
statements has two parts; the left hand side with the variable name, and the right hand
side with an expression to be evaluated. The two parts are separated by an equals (=)
sign.

The expression is evaluated and the result is placed into the variable referenced
by the identifier.

The evaluated expression should be of the same data type as the
identifier on the left hand side references!

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

15

Referencing Variables

To access the data in a variable, you may simply use the identifier that references that
particular memory location.

Note: In order to output the data in your variable, it will be necessary to use the
identifier within a System.out.println(information)statement. The
identifier will be the information

Memory does not need to be used just for storing the results of calculations –
it can very readily be used to make your program more readable and
flexible!

filename: Addition2.java
import gov.lanl.java.UserInput;

public class Addition2
{

public static void main (String args[])
{
 double firstNum, secondNum; // notice multiple declarations
 double sum;

 firstNum = 7.3; // this is our input
 secondNum = 12.94; // so is this ...

sum = firstNum + secondNum; // this will be our output

System.out.print(firstNum);
System.out.print(" + ");
System.out.print(secondNum);
System.out.print(" = ");
System.out.println(sum);
System.exit(0);

}
}

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

16

Exercise 3

Create a program which will convert a given temperature in degrees Celsius to the
corresponding temperature in degrees Fahrenheit.

Use variables to represent both your input (degrees Celsius) and your output (degrees
Fahrenheit). Furthermore, use an “int” variable for the input and a “double” variable for
the output.

The formula to convert degrees Celsius to degrees Fahrenheit is as follows:

°F = 9 / 5 * °C + 32

Hints:

• Be mindful when using the formula to calculate Fahrenheit; make sure you watch
your use of “int” and “double” numeric data types!

Question:

• Are you more likely to find a temperature of 41° Celsius in Phoenix, Arizona or
Anchorage, Alaska?

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

17

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

18

Exercise 3 – Solution

filename: Temperature.java
import gov.lanl.java.UserInput;

public class Temperature
{

public static void main (String args[])
{
 int celsius;
 double fahrenheit;

 celsius = 12;
 fahrenheit = 9.0 / 5 * celsius + 32;

System.out.print(celsius);
System.out.print(" degrees Celsius = ");
System.out.print(fahrenheit);
System.out.println(" Fahrenheit!");
System.exit(0);

}
}

Interactive Programs

Input Command: UserInput.getType()

Suppose we want to use our “Addition2” program multiple times. Each time we would
have to edit the source code, re-compile, re-execute the program, edit the source code,
etc.

There is an easier way to make your program reusable to those who do not have the
knowledge to alter the source code!

• UserInput.getType(message) – this command will prompt the user with
a message requesting input. The user input should be of the specified data Type;

• The message must be a sequence of characters between double quotes – will

display literally as entered between the quotes

• UserInput.getInt(message) – for requesting a whole number

• UserInput.getDouble(message) – for requesting a decimal
number

** Note that these commands are only available for you to use if you have a copy of the
UserInput.class file in on your system!

Storing Input

The computer memory may also be used to store the data a user supplies to us as input to
the program. Once again, we use an assignment statement to achieve this task:

firstNum = UserInput.getDouble("What is the first number? ");

Remember: In an assignment statement, the expression on the right is evaluated
first, and the result is placed in the variable referenced by the identifier on the
left.

This would effectively grab the input from the user, and place it into the memory location
named “firstNum”.

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

19

The Addition3.java Program – Interactive!

filename: Addition3.java
import gov.lanl.java.UserInput;

public class Addition3
{

public static void main (String args[])
{
 double firstNum, secondNum, sum;

 firstNum = UserInput.getDouble("What is the first number? ");
 secondNum = UserInput.getDouble("What is the second number? ");

sum = firstNum + secondNum; // this will be our output

System.out.print(firstNum);
System.out.print(" + ");
System.out.print(secondNum);
System.out.print(" = ");
System.out.println(sum);
System.exit(0);

}
}

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

20

Exercise 4

Turn your temperature conversion program into an interactive program in which the user
is prompted for the temperature in degrees Celsius he/she wishes to have converted into
degrees Fahrenheit!

Hints:

• Be mindful when using the formula to calculate Fahrenheit; make sure you watch
your use of “int” and “double” numeric data types!

Questions:

• How long does it take you to fill in the following table?

Conversion Table

°C °F
-5

0
25
50
75
100

• What happens when you try to use a decimal value as input?

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

21

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

22

Exercise 4 – Solution

filename: Temperature2.java
import gov.lanl.java.UserInput;

public class Temperature2
{

public static void main (String args[])
{
 int celsius;
 double fahrenheit;

 celsius = UserInput.getInt("What is the temp in Celsius? ");
 fahrenheit = 9.0 / 5 * celsius + 32;

System.out.print(celsius);
System.out.print(" degrees Celsius = ");
System.out.print(fahrenheit);
System.out.println(" Fahrenheit!");
System.exit(0);

}
}

Advanced Programming Constructs

Conditional Statement: if (condition) { statements; }

By default, the commands in our main code block are executed top to bottom. With a
conditional statement, the code block associated with the if clause will only execute if
the condition evaluates to “true”.

• For our purposes, we will look at conditions that involve numerical comparisons

You may use the following numerical comparison operators to form a condition that will
evaluate to either true or false

• > “greater than”
• >= “greater than or equal to”
• == “equal to”
• != “not equal to”
• <= “less than or equal to”
• < “less than”

The following snippet of code from a program named “Compare.java” demonstrates the
use of the if statement:

firstNum = UserInput.getInt("What is the first number? ");
secondNum = UserInput.getInt("What is the second number? ");

if (firstNum == secondNum)
{

System.out.println("You entered the same number!");
}
System.exit(0);

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

23

Conditional Statement: else { statements; }

With a conditional statement, the code block associated with the if clause will only
execute if the condition evaluates to “true”. A code block associated with an else
clause will only execute if the condition evaluates to “false”.

• An if statement may or may not be followed by an else statement depending
upon whether or not the program requires it

• An else statement never appears alone – it always follows immediately after the

code block associated with an if statement

• There is no need to repeat the condition next to the else statement

The following snippet of code from a program named “Compare2.java” demonstrates the
use of the if statement:

firstNum = UserInput.getInt("What is the first number? ");
secondNum = UserInput.getInt("What is the second number? ");

if (firstNum == secondNum)
{

System.out.println("You entered the same number!");
}
else
{

System.out.println("You entered different numbers!");
}
System.exit(0);

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

24

Exercise 5

You own a theater which will be showing a “PG-13” movie. Create a “Movie Ticket”
program which queries the user for their age, and allows them to enter only if they are at
least 13 years old.

Hints:

Remember that you do not need semicolons after “block headers”.

Questions:

• What happens if the person is 13 years old?
• What if we only want to allow individuals who are teenagers (i.e. age 13-17)?

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

25

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

26

Exercise 5 – Solution

filename: MovieTicket.java
import gov.lanl.java.UserInput;

public class MovieTicket
{

public static void main (String args[])
{
 int age;

 e = UserInput.getInt("How old are you? Don’t lie ... "); ag

if (age >= 13)
{

System.out.println("Come on in! Enjoy the show. ");
}
else
{

System.out.println("Go away you punk kid!");
}

System.exit(0);

}
}

Advanced Programming Constructs

Loops: for (initialization; condition; increment)
 { statements; }

By default, the commands in our main code block are executed top to bottom. With loop
statements, the associated code block will execute over and over as long as the condition
evaluates to true.

• The for statement is typically used when you want to execute a certain block of
code a specified number of times.

When a for construct is encountered during program execution, the following steps are
executed:

1. The initialization statement is executed – this might set an int variable to a value
of 1

2. The condition (often involving the int variable) is evaluated. If it is “true”, then

the statements within the associated code block are executed. If it is “false”,
program execution continues immediately below the associated code block.

3. After the last statement is executed, the increment statement is executed – this

might increase the value of the int variable by 1.

4. Steps 2 and 3 are repeated.

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

27

The following snippet of code from a program named “Loop.java” demonstrates the use
of the if statement:

for (int i = 1; i <= 5; i = i + 1)
{

System.out.println("Hi there!");
}
System.exit(0);

Notice how the initialization statement both declares an int variable named
“i” and assigns a value of 1 to the memory location – all in one step!

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

28

Exercise 6

The following snippet of code will produce a randomly generated int value between 1 and
100:

1 + (int) (Math.random() * 100)

Create a “lottery” program which prints out a lottery ticket containing 5 randomly
generated numbers with values between 1 and 100 – use a “for” loop to considerably
shorten your program!

Hints:

You may give a variable a new value as many times as you like – each assignment
statement removes the old value (if there was one) and places in the new value!

Questions:

• You win the lottery if you have the numbers 4, 14, 73, 91, and 1 – did you win?

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

29

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

30

Exercise 6 – Solution

filename: Lottery.java
import gov.lanl.java.UserInput;

public class Lottery
{

public static void main (String args[])
{
 int randomNumber;

 System.out.println("Your lottery ticket numbers:");

 for (int i = 1; i <=5 ; i=i+1)
 {
 randomNumber = 1 + (int) (Math.random() * 100);
 System.out.print(randomNumber);
 System.out.print(" ");
 }

 System.out.println();

System.exit(0);
}

}

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

31

Appendix A: UserInput.java Source Code

/* UserInput.getInt() and UserInput.getDouble() will only work if you have a compiled
version of this program in the same folder as the one that requires these functions */

import java.io.*;

 public class UserInput {

 public static int getInt (String message) {

 int intInput = 0;
 String userInput = null;
 // prompt the user to enter data
 System.out.print(message + " ");

 // open up standard input
 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

 // read the data from the command-line; need to use try/catch with the
 // readLine() method
 try {
 userInput = br.readLine();
 } catch (IOException ioe) {
 System.out.println("IO error trying to read input!");
 System.exit(1);
 }
 // convert user input to an integer
 try {
 intInput = Integer.parseInt(userInput);
 } catch (NumberFormatException nfe) {
 System.out.println("Error: Input provided is not a valid Integer!");
 System.exit(1);
 }
 return intInput;
 }

 public static double getDouble (String message) {

 double doubleInput = 0;
 String userInput = null;
 // prompt the user to enter data
 System.out.print(message + " ");

 // open up standard input
 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

 // read the data from the command-line; need to use try/catch with the
 // readLine() method
 try {
 userInput = br.readLine();
 } catch (IOException ioe) {
 System.out.println("IO error trying to read input!");
 System.exit(1);
 }
 // convert user input to a double
 try {
 doubleInput = Double.parseDouble(userInput);
 } catch (NumberFormatException nfe) {
 System.out.println("Error: Input provided is not a valid Double!");
 System.exit(1);
 }
 return doubleInput;
 }

 } // end of UserInput class

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

32

Appendix B: Java GUI (Graphical User Interface)

Graphical Output: JOptionPane.showMessageDialog()

Previously we had used a System.out.println() command to obtain text-based
output. A relatively simple command is also available for graphical output

JOptionPane.showMessageDialog(null, information) – this command will display a
small graphical dialog box with the information displayed

• The information may be a combination of quoted messages (displayed literally as

typed in between the quotes) and variables

• When mixing quoted messages and variables, the two items must be joined

together with a plus symbol (+), known in this context as the concatenation
operator

filename: AdditionGraphic.java
// **** Note the new import statement! ****
import javax.swing.JOptionPane;

public class AdditionGraphic
{

public static void main (String args[])
{
 double sum;

sum = 7 + 5;

// The old way ...
// System.out.print("The Result Is: ");
// System.out.println(sum);

// The new way ...
JOptionPane.showMessageDialog(null, "The Result is: " + sum);

System.exit(0);

}
}

Note that using successive JOptionPane.showMessageDialog() commands will not
display the information from each command in the same dialog box – a new box will
appear for each individual command!

Using the concatenation operator (+) is thus essential for displaying a large
message within one dialog box.

Furthermore, the information must contain at least one quoted message … variables
alone will not work.

Also note that the sequence of characters “\n” (without the quotes) will produce a
newline character whenever it is encountered within a quoted message. In the previous
program example,

JOptionPane.showMessageDialog(null, "The Result is:\n" + sum);

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

33

would produce:

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

34

Graphical Input: JOptionPane.showInputDialog()

Previously, we had used UserInput.getInt() or UserInput.getDouble() to
obtain input from the user. A slightly more complicated command is available for
graphical input.

JOptionPane.showInputDialog(message) – this command will display a small
graphical dialog box with a message requesting input from the user.

• The message must be a sequence of characters between double quotes – will

display literally as entered between the quotes

• The input is not considered an int, or double, but rather a String – a new data type
which is nothing more than a sequence of characters

o must be converted to int or double for later use
o note the “S” in String must be capitalized

Converting Strings to Numbers

There are two useful commands to convert our String input to an int or double data type:

• Integer.parseInt(String)
o This command will convert the String into an int (whole number)

• Double.parseDouble(String)

o This command will convert the String into a double (decimal number)

After we have converted our String into a numerical data type, we may then perform
arithmetic calculations as we had previously.

filename: TemperatureGraphic.java
import javax.swing.JOptionPane;

public class TemperatureGraphic
{

public static void main (String args[])
{

String celsius1; // Note the String variable
int celsius2;
double fahrenheit;

celsius1 = JOptionPane.showInputDialog("Temperature in Celsius?");
celsius2 = Integer.parseInt(celsius1);
fahrenheit = 9.0 / 5 * celsius2 + 32;
JOptionPane.showMessageDialog(null, "Fahrenheit is: " + fahrenheit);
System.exit(0);

}
}

Keep in mind that it is difficult to display large amounts of output in this manner … more
advanced GUI programming techniques must be learned in order to handle more complex
situations.

Introduction to Java Programming – Supercomputing Challenge STI 2003
© LANL IM-2 Computer Education and Training
10/19/06

35

	 Introduction to Java Programming
	Overview
	Learning Objectives
	About Java

	 Useful Information
	Necessary Tools
	Web References
	Reference Books
	Java How to Program, Fourth Edition by Deitel & Deitel – ISBN: 0-13-034151-7
	A reference manual for experienced programmers:
	 Java in a Nutshell, Third Edition by Flanagan – ISBN: 1-56592-487-8

	Contact Information
	Eric Ovaska, LANL 505-667-1019 ovaska@lanl.gov

	 Linux Essentials
	A Sampling of Basic Linux Commands
	Linux is essentially Unix running on PC hardware. It often has a Graphical User Interface (GUI) similar to a Mac or PC. However, it is more common to interface with a Linux machine remotely via textual commands. On the Mode machine, note that the prompt will reflect which directory (folder) you are currently working in.
	The following text-based commands will help you to get started:
	ls – lists the names of the files and sub-directories inside the current directory
	pico – invokes a menu-driven text editor for creating/editing files
	javac – invokes the Java compiler
	 javac program.java – compiles the Java source code file named program.java, and produces an “executable” file named program.class
	java – invokes the JVM (Java Virtual Machine), which executes the program

	 Creating Your Program
	Program Names
	The Program Template

	 Program Structure
	Statements
	Code Blocks
	Case Sensitivity and Whitespace

	 Your First Program – HelloWorld.java
	Output Statement: System.out.println()
	System.out.println(information) – this command will output your information to the screen, followed by a carriage return.

	The HelloWorld.java Program

	Compiling and Executing
	Compiling Your Program
	Executing Your Program

	 Program Documentation
	Comments
	 Single-line comments

	 Calculations
	Numbers
	Operations

	 Memory
	Storing Data in Memory

	 More on Memory
	Variables
	Identifiers
	Declarations
	Assignment Statements
	Referencing Variables

	 Interactive Programs
	Input Command: UserInput.getType()
	Storing Input

	 Advanced Programming Constructs
	Conditional Statement: if (condition) { statements; }
	 Conditional Statement: else { statements; }

	 Advanced Programming Constructs
	Loops: for (initialization; condition; increment)
	 { statements; }
	 Appendix A: UserInput.java Source Code

	 Appendix B: Java GUI (Graphical User Interface)

