
Chapter 17

Orbits

The n-body problem models planetary orbits.

The n-body problem in celestial mechanics is the study of a system of plan-
ets and the interaction described by Newton’s laws of motion and gravitational
attraction.

Over five hundred years ago, Johannes Kepler realized that if there are only
two planets in the model, the orbits are ellipses with a common focus at the center
of mass of the system. This provides a fair description of the moon’s orbit around
the earth, or of the earth’s orbit around the sun. But if you are planning a trip
to the moon or a mission to Mars, you need more accuracy. You have to realize
that the sun affects the moon’s orbit around the earth and that Jupiter affects the
orbits of both the earth and Mars. Furthermore, if you wish to model more than
two planets, an analytic solution to the equations of motion is not possible. It is
necessary to compute numerical approximations.

Our notation uses vectors and arrays. Let n be the number of planets and,
for i = 1, . . . , n, let pi be the vector denoting the position of the i-th planet. For
two-dimensional motion the i-th position vector has components (xi, yi). For three-
dimensional motion its components are (xi, yi, zi). The small system shown in
figure 17.1 illustrates this notation. There are three bodies moving in two dimen-
sions. The coordinate system and units are chosen so that initially the first body,
the gold planet, is at the origin,

p1 = (0, 0)

The second body, the blue planet, is one astronomical unit, or a.u., away from the
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gold planet.

p2 = (1, 0)

The third body, the red planet, is at position

p3 = (2/3, 3/4)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

p
1

p
2

p
3

Figure 17.1. Initial positions and velocities of a small system with three
planets in two-dimensional space.

We wish to model how the position vectors pi vary with time, t. The velocity
of an object is the rate of change of its position and the acceleration is the rate
of change of its velocity. We use one and two dots over pi to denote the velocity
and acceleration vectors, ṗi and p̈i. If you are familiar with calculus, you realize
that the dot means differentiation with respect to t. For our three body example,
the gold planet is initially stationary in this coordinate system, so its velocity is a
vector of zeros,

ṗ1 = (0, 0)

The initial velocity of the other two planets are

ṗ2 = (0,−1)

and

ṗ3 = (−1/2, 1/2)
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Newton’s law of motion, the famous F = ma, says that the mass of a planet
times its acceleration is proportional to the sum of the forces acting on it. Newton’s
law of gravitational says that the force between any two planets is proportional to
the product of their masses and inversely proportional to the square of the distance
between them. So, the equations of motion are

mip̈i = γ
∑

j 6=i

mimj
pj − pi

||pj − pi||3 , i = 1, . . . , n

Here γ is the gravitional constant, mi is the mass of the i-th planet, pj − pi is the
vector from planet i to planet j and ||pj − pi|| is the length or norm of that vector,
which is the distance between the two planets. The denominator of the fraction
involves the cube of the distance because the numerator contains the distance itself
and so the resulting quotient involves the inverse of the square of the distance.
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Figure 17.2. The double arrow depicts the vectors r23 = p3−p2 and −r32.
The length of this arrow is the distance between p2 and p3.

Figure 17.2 shows our three planet example again. The length of the vector
r23 = p3 − p2 is the distance between p2 and p3. The gravitation forces between
planets two and three are directed along r23 and −r23.

To summarize, the position of the i-th body is denoted by the vector pi. The
instaneous motion of this body is given by its velocity vector, denoted by ṗi. The
instaneous change in the velocity is given by the acceleration vector, denoted by p̈i.
The acceleration is determined from the position and masses of all the bodies by
Newton’s laws of motion and gravitation.
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The following notation simplifies the discussion of numerical methods. Stack
the position vectors on top of each other to produce an n-by-d array where n is the
number of planets and d = 2 or 3 is the number of spatial dimensions..

P =




p1

p2

...
pn




Let V denote a similar array of velocity vectors.

V =




ṗ1

ṗ2

...
ṗn




And, let G(P ) denote the array of gravitation forces.

G(P ) =




g1

g2

...
gn




where

gi = γ
∑

j 6=i

mj
pj − pi

||pj − pi||3

With this notation, the equations of motion can be written

Ṗ = V

V̇ = G(P )

For our three body example, the initial values of P and V are

P =




0 0
1 0

2/3 3/4




and

V =




0 0
0 −1

−1/2 1/2




The masses in our three planet example are

m1 = 1/2, m2 = 1/3, m3 = 1/6

From these quantities, we can compute the initial value of the gravitation forces,
G(P ).
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We will illustrate our numerical methods by trying to generate a circle. The
differential equations are

ẋ = y

ẏ = −x

With initial conditions x(0) = 0, y(0) = 1, the exact solution is

x(t) = sin t, y(t) = cos t

The orbit is a perfect circle with a period equal to 2π.
The most elementary numerical method, which we will not use, is known as

the forward or explicit Euler method. The method uses a fixed time step ∆t and
simultaneously advances both the positions and velocities from time tk to time
tk+1 = tk + ∆t.

Pk+1 = Pk + ∆t Vk

Vk+1 = Vk + ∆t G(Pk)

The forward Euler’s method applied to the circle generator problem becomes

xk+1 = xk + ∆t yk

yk+1 = yk −∆t xk

The result for ∆t = 2π/30 is shown in the first plot in figure 17.3. Instead of a circle
we get a growing spiral. The method is unstable and consequently unsatisfactory,
particularly for long time periods. Smaller time steps merely delay the inevitable.
We would see more complicated, but similar, behavior with the n-body equations.
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Figure 17.3. Three versions of Euler’s method for generating a circle.
The first plot shows that the forward method is unstable. The second plot shows that
the backward method has excessive damping. The third plot shows that symplectic
method, which is a compromise between the first two methods, produces a nearly
perfect circle.

Another elementary numerical method is known as the backward or implicit
Euler method. In general, it involves somehow solving a nonlinear system at each
step.

Pk+1 −∆t Vk+1 = Pk

Vk+1 −∆tG(Pk+1) = Vk
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Our simple circle example is linear, so xk+1 and yk+1 are easily computed by solving
the 2-by-2 linear system

xk+1 −∆t yk+1 = xk

yk+1 + ∆t xk+1 = yk

The result is shown in the second plot in figure 17.3. Instead of a circle we get a
decaying spiral. The method is stable, but there is too much damping. Again, we
would see similar behavior with the n-body equations.

The method that we actually use is a compromise between the explicit and
implicit Euler methods. It is the most elementary instance of what are known as
symplectic methods. The method involves two half-steps. In the first half-step, the
positions at time tk are used in the gravitation equations to update of the velocities.

Vk+1 = Vk + ∆t G(Pk)

Then, in the second half-step, these “new” velocities are used to update the posi-
tions.

Pk+1 = Pk + ∆t Vk+1

The novel feature of this symplectic method is the subscript k + 1 instead of k on
the V term is the second half-step.

For the circle generator, the symplectic method is

xk+1 = xk + ∆t yk

yk+1 = yk −∆t xk+1

The result is the third plot in figure 17.3. If you look carefully, you can see that the
orbit in not quite a circle. It’s actually a nearly circular ellipse. And the final value
does not quite return to the initial value, so the period is not exactly 2π . But the
important fact is that the orbit is neither a growing nor a decaying spiral.

There are more complicated symplectic algorithms that are much more accu-
rate per step than this symplectic Euler. But the symplectic Euler is satisfactory
for generating well behaved graphical displays. Most well-known numerical meth-
ods, including Runge-Kutta methods and traditional multistep methods, do not
have this symplectic stability property and, as a result, are not as satisfactory for
computing orbits over long time spans.

Figure 17.4 shows the first few steps for our example system. As we noted
earlier, the initial position and velocity are

P =
0 0

1.0000 0
0.6667 0.7500

V =
0 0
0 -1.0000

-0.5000 0.5000
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Figure 17.4. The first few steps of our example system.

After one step with ∆t = 0.20 we obtain the following values.

P =
0.0177 0.0049
0.9760 -0.1910
0.5615 0.8171

V =
0.0887 0.0247

-0.1201 -0.9548
-0.5258 0.3353

To get an idea of how this works, note that the first planet accelerates towards
the other two. In one step, its position changes from (0, 0) to small positive values,
(0.0177, 0.0049). The second planet is initially at position (1, 0) with velocity (0,−1)
in the negative y direction. In one step, its position changes to (0.9760,−0.1910).
The x-coordinate has changed relatively little, while the y-coorinate has changed
by roughly −∆t = −0.2000. The third planet moves in the direction indicated by
the velocity vector in figure 17.1.

After a second step we have the following values. As expected, all the trends
noted in the first step continue.

P =
0.0530 0.0129
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0.9293 -0.3725
0.4490 0.8564

V =
0.1764 0.0398

-0.2332 -0.9079
-0.5627 0.1964

It turns out that since our small system lacks a massive central sun, it behaves more
like three unruly asteroids than three actual planets. Figure 17.5 shows an initial
section of the trajectories.
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Figure 17.5. The initial trajectories of our example system.

Figure 17.6 shows the orbits for the four outer planets in the solar system.
The orbits are actually to scale with respect to each other. But, obviously, the
symbol for the sun in the center does not have the same scale. Our Experiments
program solar9 models nine objects in the solar system, namely the sun and eight
planets. Web sources for information about the solar system are provided by the
University Corporation for Atmospheric Research, the Jet Propulsion Laboratory,
and the US National Air and Space Museum,

http://www.windows.ucar.edu
http://www.jpl.nasa.gov/solar_system
http://airandspace.si.edu:80/etp/ss/index.htm

Here is the core portion of our Experiments program. The subfunction initialize_orbits
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Figure 17.6. Orbits of Jupiter, Saturn, Uranus, and Neptune.

provides initial positions and velocities and thereby specifies the number of bodies,
n, and the number of spacial dimensions, d. The other subfunctions control the plot
and the graphics user interface. An exercise asks you to explain how the doubly
nested for loops evaluate the n sums involved in Newton’s law of gravitation.

function nbody
% NBODY Motion of n bodies under mutual gravitional attraction.
% P = n-by-d array of position coordinates, d = 2 or 3.
% V = n-by-d array of velocities.
% M = n-by-1 array of masses.

[P,V,M] = initialize_orbits;
[H,stop,speed] = initialize_graphics(P);
n = size(P,1);

while ~get(stop,’value’)
% Advance velocities using current positions
dt = get(speed,’value’);
for i = 1:n

for j = i+1:n
r = P(j,:) - P(i,:);
g = dt*r/norm(r)^3;
V(i,:) = V(i,:) + M(j)*g;
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V(j,:) = V(j,:) - M(i)*g;
end

end

% Advance positions using advanced velocities
P = P + dt*V;
update_plot(H,P);

end

finalize_graphics(stop)
end

Exercises

17.1 Newton’s law. Explain how the doubly nested for loops in nbody or solar9
evaluate the n sums involved in Newton’s law of gravitation.

17.2 Pluto and Ceres. Change solar9 to solar11 by adding the erstwhile planet
Pluto and the recently promoted dwarf planet Ceres. See Wikipedia:

http://en.wikipedia.org/wiki/Planet
http://en.wikipedia.org/wiki/Ceres_(dwarf_planet)

and

http://orbitsimulator.com/gravity/articles/ceres.html

17.3 Comet. Add a comet to solar9. Find initial conditions so that the comet
has a stable, but highly elliptical orbit that extends well beyond the orbits of the
planets.

17.4 Twin suns. Turn the sun into a twin star system, with two suns orbiting each
other out of the plane of the planets. What eventually happens to the planetary
orbits? For example, try

sun1.p = [1 0 0];
sun1.v = [0 0.25 0.25];
sun1.m = 0.5;
sun2.p = [-1 0 0];
sun2.v = [0 -0.25 -0.25];
sun2.m = 0.5;

Try other values as well.


