
Parallel Computing Models

Why parallel? - A history
Parallel Strategies
Scalability
Performance Model

Tom Robey and Bob Robey

Supercomputing Challenge Kickoff 2009-2010
October 25-26, 2009



Nothing Doubles Forever

Computers emphasized faster clock speeds 
(Dr. Dobbs, January 1994)

Memory capacity doubles every 1.5 years

CPU performance doubles every 2 years

Data-bus width doubles every 5 years

DRAM chip speed doubles every 7 years

But clock speeds are no longer the driver of 
performance gains



Switch to Parallel Computing

Move from vectorized Cray supercomputers 
to massively parallel machines

Move from faster PC clock speeds to multi-
core

Cheaper to make many processors than a 
single very fast processor



Parallel Hardware

Cheap processors

Expensive low-latency communication

Wiring to all other processors does not scale
Early work focused on efficient mesh topology 
(ring, tree, hypercube, etc.)
Tunneling technology made communication mesh 
irrelevant (mesh exercise)
Dynamic topology



Memory Topology

Three primary memory architectures
shared memory
distributed memory
memory hierarchies (cache, memory, disk)

Access Speed Scalable Synchronization Bottleneck

Shared Fast No Memory Access Memory

Distributed Slow Yes Message 
Passing Network



Modern Architectures

Multi-core nodes (shared memory)

Specialized functions (CPU and GPU)

Hierarchical memory (cache, memory, disk)

Distributed memory for nodes



What is the Parallel Paradigm?
(Parallel Software)

Decompose the task into smaller tasks
Assign the smaller tasks to processors to work 
on simultaneously
Coordinate work and communicate when 
necessary
Not all problems have the same amount of 
parallelism
Solving problems on a parallel machine requires 
that we consider new approaches to programming



Computer Language Philosophies

Fortran
Single purpose code with a moderate amount 
of development time
Relies on the compiler to optimize the code

C/C++
Complex, multi-purpose code with a high 
amount of development time
Optimizing code is up to the programmers



Parallel Strategies

Data Parallel (High Performance Fortran, 
SplitC) - split the data amongst the 
processors and let the compiler handle the 
communication
Message Passing (MPI, PVM) - the 
programmer handles the communication
Object-Oriented - distribute objects
Task Parallelism - GPU
Distributed Computing - CORBA, Web 
Services



Team Strategies

Think about the types of parallel strategies listed 
on the previous slide.  Which strategies is your 
supercomputing team employing?

Which tasks are inherently serial?

What communication is required by your team’s 
strategy?

Your supercomputing team is much like a parallel 
computer, dividing up the work and hoping to accomplish 
more than a single person in a limited time frame.



Amdahl’s Law (Strong Scaling)- Limits of scaling for 
a fixed size problem

Scalability

S - speedup 
p - number of processors
α - serial fraction

Gustafson’s Law (Weak Scaling) - Increase the 
amount of work with the number of processors



Is Scalability Important?

Scalability is about getting a result in less time

Many parallel problems will not fit in the memory 
of a single processor

A parallel program is not just a serial program 
that has been ported; parallel programs often can 
do more physics than a serial program

For some applications, distributed computing 
provides convenience to the users even if it does 
not result in speedup



Asymptotic Notation
(Big O notation)

Used when we are only interested in the behavior 
of a function as the independent variables get 
large.

If f(x) is a sum of several terms, the one with 
the largest growth rate is kept, and all others 
omitted.

If f(x) has constants as part of terms, they are 
omitted.

Example:  f(x) = 6x2 + 4x + 2 = O(x2)



Isoefficiency Analysis

A generalization of Amdahl’s Law and Gustafson’s Law

n - size of an input
p - number of processors
W - sequential execution time of the best sequential 
algorithm
T0(W,p) - parallel overhead such as communication time
Tp - parallel execution time using p processors

Start by calculating Tp.  Then the parallel overhead is

  T0(W,p) = pTp - W



If the scalability condition

  T0(W,p) = O(W)

can be met then algorithm on that architecture is cost 
optimal.  The isoefficiency function is the equation

   W = KT0(W,p)

where K is a constant.



Communication Times

Operation Communication Time
One-to-all broadcast,
All-to-one reduction min((ts + tw) log p, 2(ts log p + twm))

All-to-all broadcast,
All-to-all reduction ts log p + twm(p - 1)

All-reduce min((ts + twm) log p, 2(ts log p + twm))

Scatter, Gather ts log p + twm(p - 1)

Communication times for a hypercube architecture.  ts is 
message start up time, tw is 1/bandwidth, m is message 
size, and p is the number of processors.



Isoefficiency Example
Consider a problem of adding n numbers on p processors.

Non-cost optimal solution
Assuming p and n are powers of 2, then the parallel time is

  Tp = O((n/p)log p + n/p) = O((n/p) log p)

where n/p is the local computation and (n/p)log p is the 
communication.

  T0(W,p) = pTp - W = O(nlog p) - O(n) = O(nlog p)

The scalability condition cannot be met so the problem is 
not cost optimal.



Cost optimal solution
For this algorithm the parallel execution time is

  Tp = O(n/p) + O(log p) = O(n/p + log p)

Then the overhead time is

  T0(W,p) = pTp - W = O(plog p)

The scalability condition

  O(plog p) = O(n)

or that the parallel algorithm is cost optimal as long as n 
= O(plog p).



Performance Curve
This curve assumes that the problem size does not 
change as we add nodes



Matrix-Vector Multiply Introduction

Matrix-vector multiply can either be thought of as
N vector-products of the rows of A with x
linear combination of the columns of A defined by 
x



Matrix-Vector Multiply Introduction
(Cont.)

Method 1 - distribute blocks of rows of A and the 
entire x-vector to each processor
Method 2 - distribute blocks of columns of A and 
blocks of the x-vector to each processor



Matrix-Vector Multiply 
Performance Model

Compute Tp for Method 1 and Method 2.  Use the chart 
for communication times.  The code in the following slide 
may help.  What does the scalability condition say for 
each method?



Matrix-Vector Multiply MPI Code

 program main
 integer dim1, dim2, dim3
 parameter (dim1=80, dim2=10, dim3=dim1*dim2)
 include “mpif.h”
 integer ierr, rank, size, root
 real a(dim1, dim1), apart(dim3), ypart(dim1), y(dim1),
&     x(dim1),xpart(dim2)
 
 root = 0

 call MPI_INIT(ierr)
 call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
 
 write(*,*) ‘START process ‘, rank



if (rank .eq. root) then
   do j=1,dim1
     x(j) = 1.0
     do i=1,dim1
       a(i,j) = i+j
     enddo
   enddo
 endif
 call MPI_SCATTER(a, dim3, MPI_REAL, apart, dim3, MPI_REAL, root,
&                       MPI_COMM_WORLD, ierr)
 call MPI_SCATTER(x, dim2, MPI_REAL, xpart,dim2, MPI_REAL, root,
&                       MPI_COMM_WORLD, ierr)
 do i=1,dim2
   do j=1,dim1
     if (i .eq. 1) ypart(j) = 0.0
     ypart(j) = ypart(j) + xpart(i)*apart((i-1)*dim1+j)
   enddo
 enddo
 call MPI_REDUCE(ypart, y, dim1, MPI_REAL, MPI_SUM, root,
&                     MPI_COMM_WORLD, ierr)
 write (*,*) ‘FINISH process ‘, rank
 call MPI_FINALIZE(ierr)
 end



Matrix-Vector Multiply HPF Code

! An example program to evaluate V = X*A where V and X are vectors of length
! M and A is an MxN matrix

! Distribute array A by block columns.  Place X and V on all processors

implicit none
integer NPROCS
parameter (NPROCS = 3)
!HPF$ processors, dimension(NPROCS) :: PROCS

real A(M,N), X(M), V(N)
!HPF$ distribute (*,block) onto PROCS :: A
!HPF$ distribute (block) onto PROCS :: V

intrinsic dot_product, matmul



! Vector-matrix product using
!   1) Fortran 90 matmul formulation
!   2) Fortran 90 vector formulation
!   3) Fortran 90 element-wise formulation

! Matrix (matmul) formulation.
V = matmul(X,A)

! Vector formulation
!HPF$ independent, new(I)
do I = 1,N
  V(I) = dot_product(X, A(:,I))
enddo

! Do-loop formulation
!HPF$ independent, new(I)
do I=1,N
  V(I) = 0.0
  do J=1,M
    V(I) = X(J)*A(J,I) + V(I)
  enddo
enddo



Matrix-Vector Multiply HPF Comments
Specify the number of processors with the HPF 
PROCESSORS directive
Distribute the matrix A and the vector X in blocks over 
the processors.  The vector V is on each processor
The processors each have a block of columns and a 
block of the elements of size approximately N/NPROCS 
and compute the elements of V that are on each 
processor
The alternative codes use a Fortran 90 vector notation 
or the traditional Fortran 77 (and 90) Do-loop notation
The HPF INDEPENDENT directive is a hint to the HPF 
compiler that there are no loop iteration dependencies-- 
the directive is not needed in the vector formulation as 
Fortran 90 states there are no dependencies by 
definition



Matrix-Vector Multiply Execution Plot



Matrix-Vector Multiply Conclusions

Method 1 and Method 2 have approximately the 
same floating-point overhead

Method 1 is superior to method 2 since it sends n/p 
instead of n data values



Conclusions

Parallel programming is hard
Knowing what you are trying to achieve (less time, 
bigger problem, more physics, it’s cool, etc.) in a 
parallel program is an important start
Different ways of organizing data and 
communications can have very different results
It helps to have a performance model before 
creating a parallel program
If the data does not agree with the performance 
model, why does it behave differently than 
expected?


