Parallel Computing Models

Tom Robey and Bob Robey

- Why parallel? A history
- Ø Parallel Strategies
- Scalability
- Ø Performance Model

Supercomputing Challenge Kickoff 2009–2010 October 25–26, 2009

Nothing Doubles Forever

- Computers emphasized faster clock speeds (Dr. Dobbs, January 1994)
 - Memory capacity doubles every 1.5 years
 - © CPU performance doubles every 2 years
 - Data-bus width doubles every 5 years
 - Ø DRAM chip speed doubles every 7 years
- But clock speeds are no longer the driver of performance gains

Switch to Parallel Computing

- Move from vectorized Cray supercomputers to massively parallel machines
- Move from faster PC clock speeds to multi-core
- Cheaper to make many processors than a single very fast processor

Parallel Hardware

Cheap processors

Section Sec

- Wiring to all other processors does not scale
- Early work focused on efficient mesh topology (ring, tree, hypercube, etc.)

 Tunneling technology made communication mesh irrelevant (mesh exercise)

Ø Dynamic topology

Memory Topology

- Three primary memory architectures
 - shared memory
 - ø distributed memory
 - ø memory hierarchies (cache, memory, disk)

	Access Speed	Scalable	Synchronization	Bottleneck
Shared	Fast	No	Memory Access	Memory
Distributed	Slow	Yes	Message Passing	Network

Modern Architectures

- Ø Multi-core nodes (shared memory)
- Specialized functions (CPU and GPU)
- Hierarchical memory (cache, memory, disk)
- Distributed memory for nodes

What is the Parallel Paradigm? (Parallel Software)

- Decompose the task into smaller tasks
- Assign the smaller tasks to processors to work on simultaneously
- Coordinate work and communicate when necessary
- Not all problems have the same amount of parallelism
- Solving problems on a parallel machine requires that we consider new approaches to programming

Computer Language Philosophies

Fortran

- Single purpose code with a moderate amount of development time
- Relies on the compiler to optimize the code

@ C/C++

- Complex, multi-purpose code with a high amount of development time
- Ø Optimizing code is up to the programmers

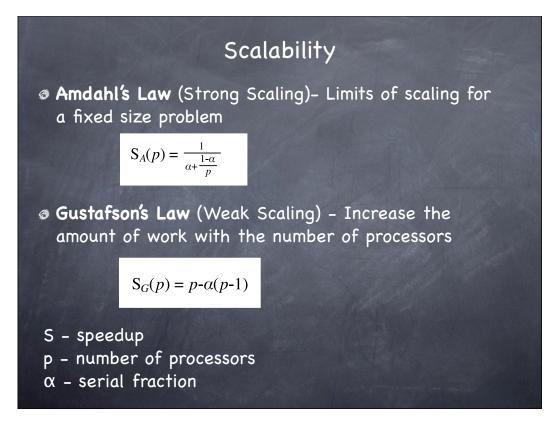
Parallel Strategies

- Data Parallel (High Performance Fortran, SplitC) – split the data amongst the processors and let the compiler handle the communication
- Message Passing (MPI, PVM) the programmer handles the communication
- Ø Object-Oriented distribute objects
- 🛛 Task Parallelism GPU
- Distributed Computing CORBA, Web Services

Team Strategies

Your supercomputing team is much like a parallel computer, dividing up the work and hoping to accomplish more than a single person in a limited time frame.

- Think about the types of parallel strategies listed on the previous slide. Which strategies is your supercomputing team employing?
- Which tasks are inherently serial?
- What communication is required by your team's strategy?



Is Scalability Important?

- Scalability is about getting a result in less time
- Many parallel problems will not fit in the memory of a single processor
- A parallel program is not just a serial program that has been ported; parallel programs often can do more physics than a serial program
- For some applications, distributed computing provides convenience to the users even if it does not result in speedup

Asymptotic Notation (Big O notation)

- Sed when we are only interested in the behavior of a function as the independent variables get large.
 - If f(x) is a sum of several terms, the one with the largest growth rate is kept, and all others omitted.
 - If f(x) has constants as part of terms, they are omitted.
 - @ Example: $f(x) = 6x^2 + 4x + 2 = O(x^2)$

Isoefficiency Analysis

A generalization of Amdahl's Law and Gustafson's Law

n – size of an input

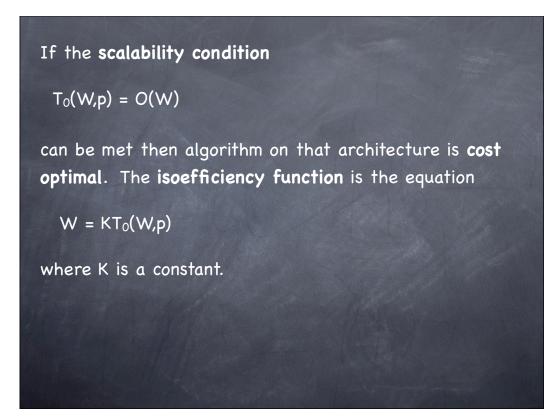
p - number of processors

W – sequential execution time of the best sequential algorithm

 $T_0(W,p)$ – parallel overhead such as communication time T_p – parallel execution time using p processors

Start by calculating T_p . Then the parallel overhead is

 $T_0(W,p) = pT_p - W$



Communication Times

Communication times for a hypercube architecture. t_s is message start up time, t_w is 1/bandwidth, m is message size, and p is the number of processors.

Operation	Communication Time	
One-to-all broadcast, All-to-one reduction	min((ts + tw) log p, 2(ts log p + twm))	
All-to-all broadcast, All-to-all reduction	t _s log p + t _w m(p – 1)	
All-reduce	min((ts + twm) log p, 2(ts log p + twm))	
Scatter, Gather	t _s log p + t _w m(p – 1)	

Isoefficiency Example

Consider a problem of adding n numbers on p processors.

Non-cost optimal solution

Assuming p and n are powers of 2, then the parallel time is

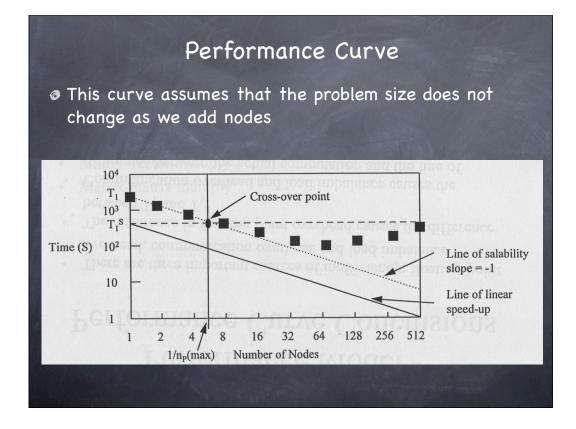
 $T_p = O((n/p)\log p + n/p) = O((n/p) \log p)$

where n/p is the local computation and $(n/p)\log p$ is the communication.

 $T_0(W,p) = pT_p - W = O(nlog p) - O(n) = O(nlog p)$

The scalability condition cannot be met so the problem is not cost optimal.

Cost optimal solution For this algorithm the parallel execution time is $T_{p} = O(n/p) + O(\log p) = O(n/p + \log p)$ Then the overhead time is $T_{0}(W,p) = pT_{p} - W = O(p\log p)$ The scalability condition $O(p\log p) = O(n)$ or that the parallel algorithm is cost optimal as long as n = O(plog p).



Matrix-Vector Multiply Introduction

Matrix-vector multiply can either be thought of as

N vector-products of the rows of A with x

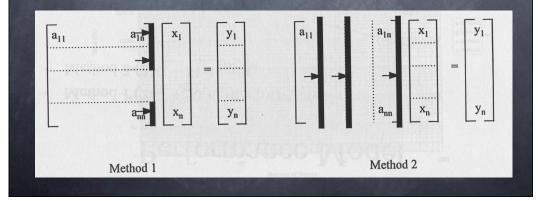
X

Inear combination of the columns of A defined by

$$\begin{bmatrix} a_{11} \dots a_{1n} \\ \dots \\ a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \dots \\ y_n \end{bmatrix} \qquad Ax = y$$

Matrix-Vector Multiply Introduction (Cont.)

- Method 1 distribute blocks of rows of A and the entire x-vector to each processor
- Method 2 distribute blocks of columns of A and blocks of the x-vector to each processor



Matrix-Vector Multiply Performance Model

Compute T_p for Method 1 and Method 2. Use the chart for communication times. The code in the following slide may help. What does the scalability condition say for each method?

Matrix-Vector Multiply MPI Code

program main integer dim1, dim2, dim3 parameter (dim1=80, dim2=10, dim3=dim1*dim2) include "mpif.h" integer ierr, rank, size, root real a(dim1, dim1), apart(dim3), ypart(dim1), y(dim1), & x(dim1),xpart(dim2)

root = 0

call MPI_INIT(ierr) call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr) call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

write(*,*) 'START process ', rank

```
if (rank .eq. root) then
  do j=1,dim1
    x(j) = 1.0
   do i=1,dim1
     a(i,j) = i+j
    enddo
  enddo
 endif
 call MPI_SCATTER(a, dim3, MPI_REAL, apart, dim3, MPI_REAL, root,
&
                   MPI_COMM_WORLD, ierr)
call MPI_SCATTER(x, dim2, MPI_REAL, xpart,dim2, MPI_REAL, root,
                   MPI_COMM_WORLD, ierr)
&
do i=1,dim2
  do j=1,dim1
   if (i .eq. 1) ypart(j) = 0.0
   ypart(j) = ypart(j) + xpart(i)*apart((i-1)*dim1+j)
  enddo
 enddo
 call MPI_REDUCE(ypart, y, dim1, MPI_REAL, MPI_SUM, root,
                 MPI_COMM_WORLD, ierr)
&
write (*,*) 'FINISH process ', rank
call MPI_FINALIZE(ierr)
 end
```

Matrix-Vector Multiply HPF Code

! An example program to evaluate V = X*A where V and X are vectors of length ! M and A is an MxN matrix

! Distribute array A by block columns. Place X and V on all processors

implicit none integer NPROCS parameter (NPROCS = 3) !HPF\$ processors, dimension(NPROCS) :: PROCS

real A(M,N), X(M), V(N) !HPF\$ distribute (*,block) onto PROCS :: A !HPF\$ distribute (block) onto PROCS :: V

intrinsic dot_product, matmul

! Vector-matrix product using

- ! 1) Fortran 90 matmul formulation
- ! 2) Fortran 90 vector formulation
- ! 3) Fortran 90 element-wise formulation

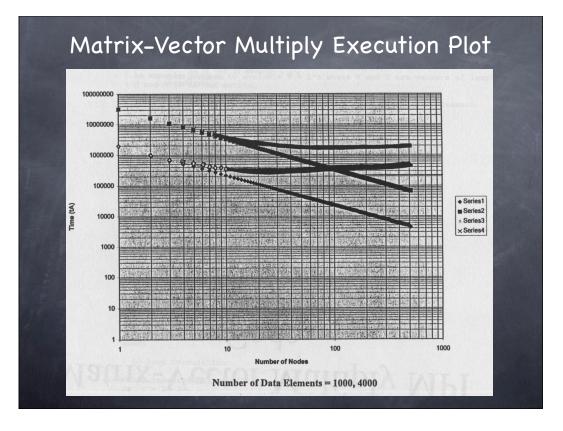
! Matrix (matmul) formulation. V = matmul(X,A)

! Vector formulation !HPF\$ independent, new(I) do I = 1,N V(I) = dot_product(X, A(:,I)) enddo

! Do-loop formulation !HPF\$ independent, new(I) do I=1,N V(I) = 0.0 do J=1,M V(I) = X(J)*A(J,I) + V(I) enddo enddo

Matrix-Vector Multiply HPF Comments

- Specify the number of processors with the HPF PROCESSORS directive
- O Distribute the matrix A and the vector X in blocks over the processors. The vector V is on each processor
- The processors each have a block of columns and a block of the elements of size approximately N/NPROCS and compute the elements of V that are on each processor
- The alternative codes use a Fortran 90 vector notation or the traditional Fortran 77 (and 90) Do-loop notation
- The HPF INDEPENDENT directive is a hint to the HPF compiler that there are no loop iteration dependencies—the directive is not needed in the vector formulation as Fortran 90 states there are no dependencies by definition



Matrix-Vector Multiply Conclusions

- Method 1 and Method 2 have approximately the same floating-point overhead
- Method 1 is superior to method 2 since it sends n/p instead of n data values

Conclusions

- Parallel programming is hard
- Knowing what you are trying to achieve (less time, bigger problem, more physics, it's cool, etc.) in a parallel program is an important start
- Different ways of organizing data and communications can have very different results
- It helps to have a performance model before creating a parallel program
- If the data does not agree with the performance model, why does it behave differently than expected?