Starlogo TNG model for 2012 Supercomputer Challenge Kick-Off

This write-up assumes you are working with SLTNG beginners, and tries to build a very simple model of urban heat islands, with one variable (the percentage of terrain that is white and so absorbs less heat). If you have more advanced students, allow them to quickly build the basic model and then modify it to make it more valid and verifiable (some ideas are discussed on the last page).

First, some basic information about urban heat islands, to share with students:

Urban Heat Islands (UHI) are urban areas with significantly warmer temperatures than surrounding rural areas.
[image: Urban Heat islands1.png]

Energy consumption rises when the outside ambient temperature increases.

	[image: Urban Heat islands3.png]
	[image: Urban Heat islands2.png]

[image: Urban Heat islands4.png]

So, having a high percentage of pavement and black roofs contributes to global warming, makes the summer temperature hotter in cities both day and night, and causes an increased use of energy to cool buildings in cities. If that energy is from a fossil fuel source (coal, oil, gas), producing and using that energy may also independently contribute to global warming.

If we paint roofs white, they will reflect more sunlight and so result in lower summer temperatures in cities (day and night), lower energy use, and so decrease global warming. The Starlogo model we will build is intended to model the relationship between black roofs and energy absorption, and how that could be changed by painting roofs white.
Set-up: Start by setting up and creating a single sun. Use Edit Breeds to choose a sphere, and create one sun, yellow, size 5, at an elevation of 30 in the center of the world. Be sure to use clear everyone, as we will be changing terrain later.

[image: Macintosh HD:Users:student:Desktop:Screen Shot 2012-10-05 at 11.45.22 AM.png]

Procedures:

1) Create solar energy: Next, create a new breed called solar energy (same shape), and then create a procedure for the sun to hatch the solar energy, make the agents small, and place them randomly in the sky.
[image: :Screen Shot 2012-10-05 at 12.15.21 PM.png]

2) Make solar energy fall to earth. Create a solar energy procedure to check altitude, and fall until the solar energy drops hit the ground. Be sure to make the solar energy die after it hits the ground, or you will quickly have too many agents to allow the program to run.

[image: :Screen Shot 2012-10-05 at 12.13.24 PM.png]

Run: I used a run block, rather than a forever block, to call these procedures, to make the data collection easier, and set a run time of 300 seconds. Don’t forget to teach the students to save and save next version.

4. Heat variable: Get a shared number variable from the variables drawer, and name it heat. Add a set heat 0 block to set-up.
[image: :Screen Shot 2012-10-05 at 12.22.05 PM.png]

Terrain builder:
Now we need to create a terrain-building program, to automatically create black and white patches on the terrain. First, create a slider (get a slider button from the set-up and run drawer, attach a shared number black from the variables drawer), and name it percent white.

[image: :Screen Shot 2012-10-05 at 12.38.44 PM.png]

With beginners, you might need to just have students copy this next section of code, rather than explaining it, but with more advanced students you can explain the procedure as you are building it together. You might find it simpler to create a separate set-up block (renamed create roofs). Once you are ready to run experiments, you might combine the two into a single setup block, so you are sure that all setup procedures are executed every time you restart the model. Here is the basic terrain building procedure as a separate set up:

[image: :Screen Shot 2012-10-05 at 12.41.22 PM.png]

In case that is too hard to read, here are just the repeat blocks:

[image: :Screen Shot 2012-10-05 at 1.20.08 PM.png]

Be sure to use stamp patch instead of stamp as stamp won’t work later, with the agents hitting the patches.

Create heat: In the solar energy step procedure, add a conditional block to make the agents check the patch color, add a small fraction of heat, and die:

[image: :Screen Shot 2012-10-05 at 1.05.14 PM.png]

Next, add a monitor and/or a graph to measure the heat:

[image: :Screen Shot 2012-10-05 at 1.07.50 PM.png]

If you want the graph and monitor to clear on set-up, add a reset clock button at the end of the set-up procedure.

So, you should get black and white terrain based on your slider setting, have solar energy being hatched and falling to the ground, have the heat absorbed to a greater or lesser degree, and graph and count the increasing heat.

Flashy modifications:

There are two easy ways to make this model look flashier, which might also help with some of the substantive modifications discussed later. First, instead of simply having the solar energy add heat then die when it hits the ground, you can have it change into a different breed and act accordingly. First, create two new breeds using edit breeds: reflected energy and absorbed energy.

1. Show reflected energy: In the solar energy step, have the solar energy set its breed to reflected energy when it hits a white patch, and set the color to red. If the roof is not white (in the else), have the solar energy set its breed to absorbed energy, and move the die block to apply to this breed only (for now):

[image: :Screen Shot 2012-10-05 at 1.37.24 PM.png]

Then, make a procedure for the reflected energy to go up from the ground before it dies, and call this procedure in your run block.

[image: :Screen Shot 2012-10-05 at 1.28.40 PM.png]

This just makes the program more visual, to see the sunlight reflecting off the white roofs, but it might be useful later to modify the program.

2. Show heat in terrain. Another easy visual element, which might be useful later, is to start with gray and white roofs, and have the gray roofs turn black as the solar energy hits them. Make the change in the create roofs set up procedure to create gray instead of black roofs. Then, add a block to the solar energy step procedure so the absorbed energy stamps the patch color -2, so that it looks blacker each time its hit by solar energy,

Substantive modifications (to discuss with students, probably not to build in the time available): Review your discussion about urban heat islands, and ask how the model could be modified to more accurately reflect reality. Some ideas:

1. Heat agent: Instead of a heat variable, you could use the absorbed energy as a heat agent, which moves along the surface for a while (you would probably want to hide this agent). If two heat agents collide, they could hatch another heat agent. You would need to have some limit to these heat agents, such as an age procedure after which they die, to make the model work. (And, in reality, heat doesn’t last forever, it cools off at night and when the seasons change). You would also need to change your system of data collection, so you are counting heat agents, rather than a heat variable. This will give you a more realistic graph, which doesn’t just show heat always increasing.

2. Albedo slider: You could vary the heat absorbed by black, gray, and white roofs to a percentage that is realistic (based on research). You could use a slider to control those percentages to reflect this research and make experiments easy. This would reflect the reality that the first unit of solar energy to hit a dark roof only adds some heat, but repeated hits are going to absorb more heat. The model is visually showing this in an unrealistic way (turning gray to black), but as it is, it is not capturing this information at all – each unit of solar energy adds the same amount of heat (depending on the color of the roof) as all others.

3. Cooling variable: You could add a related variable, like cooling, which mitigates the heat agent. That would solve one problem in this model, which is that the heat only goes up. (That could also be addressed by #1, where the heat agents lose energy over time or age, so eventually they go down). You would have to think about how cooling might realistically exist – imagine something like the use of air conditioners to cool the temperature inside the buildings, but which themselves might use energy to cool (electricity) that contributes to climate change. This might give some interesting feedback information, about the overall “cost” of black and white roofs, financially or in terms of climate costs.

4. Cooling roofs: You could alter this model to have black (absorbing) roofs, white (reflecting) roofs, and some type of green roofs -- either roofs that collect solar voltaic energy (to power traditional cooling) or literally green roofs, which grow plants that cool the atmosphere and absorb carbon. This requires much more research into how this works in the real world, but not that much more programming.

5. Solicit ideas from students about theoretical problems with this model, and what ideas should be added or changed to make this reflect reality.
image6.png
Son
= make solarenergy Ly

image7.png

image8.png
clear everyone.

setup.
create Sun

image9.png
slider.

image10.png
create roofs.

image11.png
e ;
repeat ifelse. stamppatch] " color m

elsel)
stamp|patch| colort’

repeat

“black

forward| steps “

image12.png
L=
o D

then
ifelse;
ifelse;

image13.png
aata

image14.png
ifelse)

Solar Energy

image15.png
Refiected|Energy)
‘= Reflected Energy Step "

image1.png
URBAN HEAT ISLANDS:
CONSUMER, KILLER.

image2.png
)9, (o;: €5 WHITE
ROOF Shilelo)3

BN,

image3.png
CCONSUMER: ENERGY

9%
76%

comonE LEAR ReNewisie
NATURAL GAS e

CITY DEMANDS ARE GROWING

image4.png
THE EARTH IN 2030

IFWE|PAINT [EVERY YEAR
)

TOTALSAVINGSIN CO? CO? EMITTED IN 2010 .

—
—
METRIC TONS METRIC TONS

Wl
v

White Roof

by i

image5.png
clear everyone.

