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Parallel Programming Pays a Life-Long Dividend 

● Supercomputer Hardware Advances Everyday 

– Higher and higher parallelism 

– Every toy you play with today will be a dinosaur when you graduate from college 

– Optimizations tailored to a certain architecture will be obsolete when you 
implement it 

● Parallel Programming APIs Come and Go 

– Nobody programs with shaders for GPGPU anymore 

– Will this also happen to OpenCL, CUDA, etc. in the future? 

● High-Level Parallelism 

– Will not change over time  
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Five Operations You Can Do with  
a Lot of Data in Parallel 

● Generate/Create 

– Automatically fill with programmatically defined data 

● Transform 

– Apply some “operation” to each element of the data 

– Also called “Map” in many contexts 

● Compact 

– Take only the elements in which you are interested 

– Also called “Filter” in many contexts 

● Expand 

– The opposite of Compact 

– Create a larger data set from a smaller data set 

● Aggregate 

– Calculate a “summary” of your data (e.g., sum or average) 

– Also called “Reduce” or “Fold” 

– “Scan” also provides all intermediate values 
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Brief Introduction to Thrust 

● Thrust is a NVidia C++ template library for CUDA. It can also 
target OpenMP and we are creating new backends to target 
other architectures 

● Thrust allows you to program using an interface similar the C++ 
Standard Template Library (STL) 

● Most of the STL algorithms in Thrust are data parallel 
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Simple Examples with Thrust Pseudocode 

● Generate 
thrust::sequence(0,4)  0  1  2  3  4 

● Transform 
input                  4  5  2  1  3 

thrust::transform(+1)  5  6  3  2  4 

● Compact 
input                  4  5  2  1  3 

thrust::copy_if(even)  4  2 

● Expand 
input                  4  5  2  1  3 

thrust::for_each(x,2x) 4  8  5 10  2  4  1  2  3  6 

● Aggregate 
input                  4  5  2  1  3 

thrust::reduce(+)      15 
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Generate Data in Parallel 

● Many copies of a certain constant value 

– // Ten elements with initial value of integer 1 

thrust::device_vector<int> x(10, 1); 

● A sequence of increasing or decreasing values 

– // Allocate space for ten integers, uninitialized 

thrust::device_vector<int> y(10); 

// Fill the space with integers 

thrust::sequence(y.begin(), y.end(), 5, 2); 

● Random Values 

– Multiple copies of a random number generator 

– Give each one a different seed 

LA-UR-13-27416 
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Transform: Vector Addition 

● Apply a binary operator “plus” to each element in x and y 

– thrust::transform(x.begin(), x.end(), // begin and end of the 

                                      // first input vector 

y.begin(),                            // begin of the second 

                                      // input vector 

result.begin(),                       // begin of the result 

                                      // vector 

thrust::plus<int>());                 // predefined integer 

                                      // addition 

–      x: 1  1  1  1  1  1  1  1  1  1 

                + 

     y: 5  7  9 11 13 15 17 19 21 23 

                = 

result: 6  8 10 12 14 16 18 20 22 24 
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Transform: Uniform Sampling  
of a Mathematical Function 

● Q: How are we going to generate something more complicated? 
A: Start from some sequence and apply some transformation 

● Sampling the function f(x) = x2 in the interval of [0, 1] 

– // Generate a sequence of xi in [0,1] with dx=0.1 

// in between each of them 

float dx = 1.0f/10.0f; 

thrust::sequence(x.begin(), x.end(), 0.0f, dx); 

 

// Apply the square operation to each of the xi  

// to transform into f(xi) = yi = xi
2 

thrust::transform(x.begin(), x.end(), 

                  y.begin(), 

                  square()); 
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Reduce: Simple Numerical Integration 

● Apply what we learned to estimate the integral                   by 

● Create a constant vector of dx 

● Sample the function on each xi 

● Apply multiply operation on each element of xi and dx 

● thrust::transform(y.begin(), y.end(), 

                  dx.begin(), y_dx.begin(), 

                  thrust::multiply<float>()); 

● dx       =  0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1 

f(xi)    =  0.0  0.01  0.04  0.09  0.16  0.25  0.36  0.49  0.64  0.81   1.0 

f(xi)*dx =  0.0 0.001 0.004 0.009 0.016 0.025 0.036 0.049 0.064 0.081   0.1 

● Sum all the f(xi)*dx to get 

● float result = thrust::reduce(y_dx.begin(), y_dx.end()); 
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Scan: Simple Numerical Integration 

● What happens if we are interested in the integral  
 
on the interval [0, 1] instead of just a number? 

● Calculate a running sum by using scan 

● thrust::inclusive_scan(y_dx.begin(), y_dx.end(), 

                       F.begin()); 

● f(xi)*dx =  0.0 0.001 0.004 0.009 0.016 0.025 0.036 0.049 0.064 0.081   0.1 

F(t)     =  0.0 0.001 0.005 0.014 0.030 0.055 0.091 0.140 0.204 0.285 0.385 

● The last element of the scan (0.385) is the same as the output of reduce 

● In mathematical terms,  
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Scan: Calculating the Fibonacci Sequence  
by Matrix Multiplication 

● The reduce and scan operators can also work with a user defined type 

● The Fibonacci Sequence is defined as 
                                             with  

● By “unrolling” the recurrence we have 

 

 

● Thus we can compute Fn by matrix multiplication 
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Compaction: Finding Prime Numbers  
Using the Sieve of Eratosthenes 

● Start with a vector containing the sequence of integers from 2 to N 

● The first element in this vector is prime 

● Use compaction to copy only elements of the vector not divisible by 
this prime into an updated vector 

● The second element in this vector is prime 

● Repeat the two steps above until you reach the end of the vector 

● 2  3  4  5  6  7  8  9 10 11 12 13 14 15 

2  3  5  7  9 11 13 15 

2  3  5  7 11 13 

2  3  5  7 11 13 

2  3  5  7 11 13 

2  3  5  7 11 13 
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Boid Simulation 

● Simulate flocking behavior of a group of “boids” 

● At each time step, velocities are adjusted based on three parameters, each dependent only upon 
observing other nearby boids: 

● Cohesion: Each boid wants to move towards the centroid of other boids in its vicinity, to join the flock 

● Separation: Each boid wants to move away from other boids that are too close to it, to avoid collisions 

● Alignment: Each boid wants to adjust its velocity (direction and magnitude) to match that of other 
boids in its vicinity, to move in sync with the flock 

● Positions are then updated for the next time step based on the new velocities 

● Thrust transform and for_each functions are used in order to parallelize the computations for all 
the boids 

● Functors are used to compute the cohesion, separation, and alignment parameters for a boid, 
and to update its velocity and position 

● Reference: http://syntacticsalt.com/2011/03/10/functional-flocks/ by Matt Sottile 

LA-UR-13-27416 
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Boid Simulation Video 
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boids.mp4
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Outline of Flock Simulation Class 
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Main simulation loop 
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Cohesion Term 
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Separation Term 
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Alignment Term 
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Updating Velocities 

 awswcwwvv ascvtt 1
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Updating Positions 

tvxx ttt 1
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Bouncing off boundaries 
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Interop 

● Without interop, separate memory is used on the GPU for computation 
results and for rendering, and data transfer goes through the CPU 

● With interop, a shared region of memory on the GPU is used both for 
computation and for rendering, eliminating the slow GPU-CPU data transfers 

GPU 

Computation 
Results 

Vertices for 
Rendering 

CPU 

Data 

GPU 

Shared 
Vertex Buffer 

Without interop With interop 
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Your Free Ride Today 

● The example codes we showed are independent of the location of 
data and execution 

● It can be executed serially on CPU or parallel backends 

● Debug on CPU during development; use parallel execution in 
“production” 

● Extend to other languages and libraries 

– STL in C++ 

– Copperhead in Python 

– SQL/LINQ for databases 

LA-UR-13-27416 
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Your Free Lunch Tomorrow 

● The high-level parallel algorithms you write today will still work with 
new hardware in the future 

● In fact, they will only get faster! 

● The skills you learn in developing high-level parallel algorithms will 
still be applicable in the future even as computing technology 
improves 
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Conclusion 

Think High-Level when 

Programming in Parallel 
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