
Form 836 (7/06)

LA-UR-
Approved for public release;
distribution is unlimited.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Title:

Author(s):

Intended for:

13-27416

High-Level Data Parallelism

Li-ta Lo
Chris Sewell
Jim Ahrens
Pat McCormick

New Mexico Supercomputing Challenge Kick-off, Socorro,
NM, October 2013

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

High-Level Data Parallelism

Li-Ta Lo
Chris Sewell

James Ahrens
Patrick McCormick

Los Alamos National Laboratory

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Parallel Programming Pays a Life-Long Dividend

● Supercomputer Hardware Advances Everyday

– Higher and higher parallelism

– Every toy you play with today will be a dinosaur when you graduate from college

– Optimizations tailored to a certain architecture will be obsolete when you
implement it

● Parallel Programming APIs Come and Go

– Nobody programs with shaders for GPGPU anymore

– Will this also happen to OpenCL, CUDA, etc. in the future?

● High-Level Parallelism

– Will not change over time

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Five Operations You Can Do with
a Lot of Data in Parallel

● Generate/Create

– Automatically fill with programmatically defined data

● Transform

– Apply some “operation” to each element of the data

– Also called “Map” in many contexts

● Compact

– Take only the elements in which you are interested

– Also called “Filter” in many contexts

● Expand

– The opposite of Compact

– Create a larger data set from a smaller data set

● Aggregate

– Calculate a “summary” of your data (e.g., sum or average)

– Also called “Reduce” or “Fold”

– “Scan” also provides all intermediate values

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Brief Introduction to Thrust

● Thrust is a NVidia C++ template library for CUDA. It can also
target OpenMP and we are creating new backends to target
other architectures

● Thrust allows you to program using an interface similar the C++
Standard Template Library (STL)

● Most of the STL algorithms in Thrust are data parallel

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Simple Examples with Thrust Pseudocode

● Generate
thrust::sequence(0,4) 0 1 2 3 4

● Transform
input 4 5 2 1 3

thrust::transform(+1) 5 6 3 2 4

● Compact
input 4 5 2 1 3

thrust::copy_if(even) 4 2

● Expand
input 4 5 2 1 3

thrust::for_each(x,2x) 4 8 5 10 2 4 1 2 3 6

● Aggregate
input 4 5 2 1 3

thrust::reduce(+) 15

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Generate Data in Parallel

● Many copies of a certain constant value

– // Ten elements with initial value of integer 1

thrust::device_vector<int> x(10, 1);

● A sequence of increasing or decreasing values

– // Allocate space for ten integers, uninitialized

thrust::device_vector<int> y(10);

// Fill the space with integers

thrust::sequence(y.begin(), y.end(), 5, 2);

● Random Values

– Multiple copies of a random number generator

– Give each one a different seed

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Transform: Vector Addition

● Apply a binary operator “plus” to each element in x and y

– thrust::transform(x.begin(), x.end(), // begin and end of the

 // first input vector

y.begin(), // begin of the second

 // input vector

result.begin(), // begin of the result

 // vector

thrust::plus<int>()); // predefined integer

 // addition

– x: 1 1 1 1 1 1 1 1 1 1

 +

 y: 5 7 9 11 13 15 17 19 21 23

 =

result: 6 8 10 12 14 16 18 20 22 24

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Transform: Uniform Sampling
of a Mathematical Function

● Q: How are we going to generate something more complicated?
A: Start from some sequence and apply some transformation

● Sampling the function f(x) = x2 in the interval of [0, 1]

– // Generate a sequence of xi in [0,1] with dx=0.1

// in between each of them

float dx = 1.0f/10.0f;

thrust::sequence(x.begin(), x.end(), 0.0f, dx);

// Apply the square operation to each of the xi

// to transform into f(xi) = yi = xi
2

thrust::transform(x.begin(), x.end(),

 y.begin(),

 square());

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Reduce: Simple Numerical Integration

● Apply what we learned to estimate the integral by

● Create a constant vector of dx

● Sample the function on each xi

● Apply multiply operation on each element of xi and dx

● thrust::transform(y.begin(), y.end(),

 dx.begin(), y_dx.begin(),

 thrust::multiply<float>());

● dx = 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

f(xi) = 0.0 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.0

f(xi)*dx = 0.0 0.001 0.004 0.009 0.016 0.025 0.036 0.049 0.064 0.081 0.1

● Sum all the f(xi)*dx to get

● float result = thrust::reduce(y_dx.begin(), y_dx.end());


1

0

)(dxxf 


n

i

i dxxf
1

)(


1

0

)(dxxf

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Scan: Simple Numerical Integration

● What happens if we are interested in the integral

on the interval [0, 1] instead of just a number?

● Calculate a running sum by using scan

● thrust::inclusive_scan(y_dx.begin(), y_dx.end(),

 F.begin());

● f(xi)*dx = 0.0 0.001 0.004 0.009 0.016 0.025 0.036 0.049 0.064 0.081 0.1

F(t) = 0.0 0.001 0.005 0.014 0.030 0.055 0.091 0.140 0.204 0.285 0.385

● The last element of the scan (0.385) is the same as the output of reduce

● In mathematical terms,



t

dtxfFtF
0

)()0()(

)0()1()(

1

0

FFdxxf 

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Scan: Calculating the Fibonacci Sequence
by Matrix Multiplication

● The reduce and scan operators can also work with a user defined type

● The Fibonacci Sequence is defined as
 with

● By “unrolling” the recurrence we have

● Thus we can compute Fn by matrix multiplication

11   nnn FFF 1,0 10  FF































1

1

01

11

n

n

n

n

F

F

F

F



















































































35

58

23

35

12

23

11

12

01

11

01

11

01

11

01

11

01

11

01

11

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Compaction: Finding Prime Numbers
Using the Sieve of Eratosthenes

● Start with a vector containing the sequence of integers from 2 to N

● The first element in this vector is prime

● Use compaction to copy only elements of the vector not divisible by
this prime into an updated vector

● The second element in this vector is prime

● Repeat the two steps above until you reach the end of the vector

● 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 5 7 9 11 13 15

2 3 5 7 11 13

2 3 5 7 11 13

2 3 5 7 11 13

2 3 5 7 11 13

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Boid Simulation

● Simulate flocking behavior of a group of “boids”

● At each time step, velocities are adjusted based on three parameters, each dependent only upon
observing other nearby boids:

● Cohesion: Each boid wants to move towards the centroid of other boids in its vicinity, to join the flock

● Separation: Each boid wants to move away from other boids that are too close to it, to avoid collisions

● Alignment: Each boid wants to adjust its velocity (direction and magnitude) to match that of other
boids in its vicinity, to move in sync with the flock

● Positions are then updated for the next time step based on the new velocities

● Thrust transform and for_each functions are used in order to parallelize the computations for all
the boids

● Functors are used to compute the cohesion, separation, and alignment parameters for a boid,
and to update its velocity and position

● Reference: http://syntacticsalt.com/2011/03/10/functional-flocks/ by Matt Sottile

LA-UR-13-27416

http://syntacticsalt.com/2011/03/10/functional-flocks/
http://syntacticsalt.com/2011/03/10/functional-flocks/
http://syntacticsalt.com/2011/03/10/functional-flocks/

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Boid Simulation Video

LA-UR-13-27416

boids.mp4

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Outline of Flock Simulation Class

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Main simulation loop

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Cohesion Term

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Separation Term

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Alignment Term

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Updating Velocities

 awswcwwvv ascvtt 1

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Updating Positions

tvxx ttt 1

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Bouncing off boundaries

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Interop

● Without interop, separate memory is used on the GPU for computation
results and for rendering, and data transfer goes through the CPU

● With interop, a shared region of memory on the GPU is used both for
computation and for rendering, eliminating the slow GPU-CPU data transfers

GPU

Computation
Results

Vertices for
Rendering

CPU

Data

GPU

Shared
Vertex Buffer

Without interop With interop

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Your Free Ride Today

● The example codes we showed are independent of the location of
data and execution

● It can be executed serially on CPU or parallel backends

● Debug on CPU during development; use parallel execution in
“production”

● Extend to other languages and libraries

– STL in C++

– Copperhead in Python

– SQL/LINQ for databases

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Your Free Lunch Tomorrow

● The high-level parallel algorithms you write today will still work with
new hardware in the future

● In fact, they will only get faster!

● The skills you learn in developing high-level parallel algorithms will
still be applicable in the future even as computing technology
improves

LA-UR-13-27416

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Conclusion

Think High-Level when

Programming in Parallel

LA-UR-13-27416

	HighLevelDataParallelismLAUR
	HighLevelDataParallelism

