LA-UR-13-27416

Approved for public release;
distribution is unlimited.

Title: | High-Level Data Parallelism

Author(s): | Lij-ta Lo

Chris Sewell
Jim Ahrens

Pat McCormick

Intended for: | New Mexico Supercomputing Challenge Kick-off, Socorro,
NM, October 2013

/)
° Lg?s Alamos

NATIONAL LABORATORY
EST.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

High-Level Data Parallelism

Li-Ta Lo
Chris Sewell
James Ahrens
Patrick McCormick

Los Alamos National Laboratory

» Los Alamos

AAAAAAAAAAAAAAAAAA

Operate d by Los AI:::::quionql Security, LLC for the U.S. Department of Energy’s NNSA LA_ U R_ 13_274 16

Parallel Programming Pays a Life-Long Dividend
I

. Supercomputer Hardware Advances Everyday

— Higher and higher parallelism
— Every toy you play with today will be a dinosaur when you graduate from college

— Optimizations tailored to a certain architecture will be obsolete when you
implement it

. Parallel Programming APIs Come and Go

— Nobody programs with shaders for GPGPU anymore
— Will this also happen to OpenCL, CUDA, etc. in the future?

. High-Level Parallelism

— Will not change over time

» Los Alamos

AAAAAAAAAAAAAAAAAA

Operated by Los AI;:::BNaﬁonol Security, LLC for the U.S. Department of Energy’s NNSA LA_ U R_ 13_274 16

Five Operations You Can Do with

a Lot of Data in Parallel
e

. Generate/Create

- Automatically fill with programmatically defined data

. Transform

- Apply some “operation” to each element of the data

— Also called “Map” in many contexts

. Compact

— Take only the elements in which you are interested

- Also called “Filter” in many contexts

— The opposite of Compact

- Create a larger data set from a smaller data set

. Aggregate

- Calculate a “summary” of your data (e.g., sum or average)
- Also called “Reduce” or “Fold”
- “Scan” also provides all intermediate values

» Los Alamos

_— NATIONAL LABORATORY
EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_ U R_ 13_274 16

Brief Introduction to Thrust

. Thrustis a NVidia C++ template library for CUDA. It can also
target OpenMP and we are creating new backends to target
other architectures

. Thrust allows you to program using an interface similar the C++
Standard Template Library (STL)

. Most of the STL algorithms in Thrust are data parallel

» Los Alamos

AAAAAAAAAAAAAAAAAA

Operate d by Los Alqrr;osgNaﬁonoI Security, LLC for the U.S. Department of Energy’s NNSA LA_ U R_ 13_274 16

Simple Examples with Thrust Pseudocode
-

Generate
thrust::sequence(0,4) 0 1 2 3 4

Transform

input 4 5 2 1 3
thrust::transform(+1) 5 6 3 2 4
Compact

input 4 5 2 1 3
thrust::copy if(even) 4 2

Expand

input 4 5 2 1 3
thrust::for each(x,2x) 4 8 510 2 4 1 2 3 ©
Aggregate

input 4 5 2 1 3
thrust: :reduce (+) 15

» Los Alamos

AAAAAAAAAAAAAAAAAA

Operated by Los AI;:::BNqﬁonql Security, LLC for the U.S. Department of Energy’s NNSA LA_ U R_ 1 3 - 2 74 1 6

Generate Data in Parallel
]

. Many copies of a certain constant value

- // Ten elements with initial value of integer 1
thrust::device vector<int> x (10, 1);

. A sequence of increasing or decreasing values

- // Allocate space for ten integers, uninitialized
thrust::device vector<int> y(10);
// Fill the space with integers
thrust::sequence (y.begin(), y.end(), 5, 2);

. Random Values

— Multiple copies of a random number generator

— G@Give each one a different seed

» Los Alamos

AAAAAAAAAAAAAAAAAA

Operated by Los AI;:;:BNqﬁonol Security, LLC for the U.S. Department of Energy’s NNSA LA_ U R_ 13_274 16

Transform: Vector Addition
e

. Apply a binary operator “plus” to each element in xandy

— thrust::transform(x.begin(), x.end(), // begin and end of the
// first input vector

v.begin (), // begin of the second
// input vector

result.begin (), // begin of the result
// vector

thrust::plus<int>()); // predefined integer

// addition

y: 5 7 9 11 13 15 17 19 21 23

result: 6 8 10 12 14 16 18 20 22 24

» Los Alamos

NATIONAL LABORATORY
T.194

Operated by Los Al:rr;c:s 3Nqﬁonc1| Security, LLC for the U.S. Department of Energy’s NNSA LA_ U R_ 1 3 - 2 74 1 6

Transform: Uniform Sampling

of a Mathematical Function
I

. Q: How are we going to generate something more complicated?
A: Start from some sequence and apply some transformation

. Sampling the function f(x) = x? in the interval of [0, 1]

- // Generate a sequence of x. in [0,1] with dx=0.1
// in between each of them
float dx = 1.0£/10.0f%;
thrust: :sequence (x.begin(), x.end(), 0.0f, dx);

// Apply the square operation to each of the x;

// to transform into f(x;) = y; = x;?
thrust::transform(x.begin(), x.end(),
y.begin (),
square());
- Los Alamos

AAAAAAAAAAAAAAAAAA

Operated by Los AI;:::BNaﬁonol Security, LLC for the U.S. Department of Energy’s NNSA LA_ U R_ 13_274 16

Reduce: Simple Numerical Integration

] —
Apply what we learned to estimate the integral jf(x)dx by Zf('xi)dx
0

i=1

Create a constant vector of dx g

Sample the function on each x 108
T0.6

Apply multiply operation on each element of x, and dx B

= 0.302734

thrust::transform(y.begin(), y.end(), i
dx.begin(), y dx.begin(),
thrust: :multiply<float>());

dx = 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
f(x;) = 0.0 0.01 0.04 0.09 0.1 0.25 0.36 0.49 0.64 0.81 1.0
f(x;)*dx = 0.0 0.001 0.004 0.009 0.016 0.025 0.036 0.049 0.0064 0.081 0.1

1

1
Sum all the f(x;)*dx to get jf(x)dx

0
float result = thrust::reduce(y dx.begin(), y dx.end());

» Los Alamos

AAAAAAAAAAAAAAAAAA

Operated by Los AI;:::BNaﬁonol Security, LLC for the U.S. Department of Energy’s NNSA LA_ U R_ 13_274 16

Scan: Simple Numerical Integration

I O ——
What happens if we are interested in the integral F(¢) = F(0)+ jf(x)dt
0

on the interval [0, 1] instead of just a number?
Calculate a running sum by using scan

thrust::inclusive scan(y dx.begin(), y dx.end(),
F.begin());

01 0.004 0.009 0.016 0.025 0.036 0.049 0.064 0.081 0.1
01 0.005 0.014 0.030 0.055 0.091 0.140 0.204 0.285 0.385

f(x;)*dx =

. 0.0 0.0
F(t) = 0.0 0.0

The last element of the scan (0.385) is the same as the output of reduce

1
In mathematical terms, jf(x)dx =F(1)-F(0)
0

» Los Alamos

AAAAAAAAAAAAAAAAAA

Operated by Los AI;:;:BNqﬁonol Security, LLC for the U.S. Department of Energy’s NNSA LA_ U R_ 13_274 16

Scan: Calculating the Fibonacci Sequence

by Matrix Multiplication

The reduce and scan operators can also work with a user defined type

The Fibonacci Sequence is defined as

F

n+l

=F +F_ with

By “unrolling” the recurrence we have

i

F

"

F

F,=0,F =1

Thus we can compute F_ by matrix multiplication

Op

eeeee

» Los Alamos -

AAAAAAAAAAAA

RRRRRR

10
I

1] 1 1]
1 0] [1 0] [1
D 1] @ 1] [® 2
10| [1 1]]2 1

(1 1
o
® 5
H

LA-UR-13-27416

Compaction: Finding Prime Numbers

Using the Sieve of Eratosthenes

T e
. Start with a vector containing the sequence of integers from 2 to N

. The first element in this vector is prime

. Use compaction to copy only elements of the vector not divisible by
this prime into an updated vector

. The second element in this vector is prime

. Repeat the two steps above until you reach the end of the vector

@ 3 X 5 % 7 & 92011 22 13 4 15

2 3 5 7 %11 13 2§
2 3 (® 7 11 13
2 3 5 (D11 13
2 3 5 7 13
2~ 3 5 7 11 (3

AAAAAAAAAAAAAAAAAA

Operate d by Los Alqm.os National Security, LLC for the U.S. Department of Energy’s NNSA LA_ U R_ 13_274 16

Boid Simulation
e

Simulate flocking behavior of a group of “boids”

At each time step, velocities are adjusted based on three parameters, each dependent only upon
observing other nearby boids:

Cohesion: Each boid wants to move towards the centroid of other boids in its vicinity, to join the flock
Separation: Each boid wants to move away from other boids that are too close to it, to avoid collisions

Alignment: Each boid wants to adjust its velocity (direction and magnitude) to match that of other
boids in its vicinity, to move in sync with the flock

Positions are then updated for the next time step based on the new velocities

Thrust transform and for_each functions are used in order to parallelize the computations for all
the boids

Functors are used to compute the cohesion, separation, and alignment parameters for a boid,
and to update its velocity and position

Reference: http://syntacticsalt.com/2011/03/10/functional-flocks/ by Matt Sottile

A
B E(?sAlamos

NATIONAL LABORATORY
EST.194

Operated by Los Alqm.os National Security, LLC for the U.S. Department of Energy’s NNSA LA_ U R_ 13_274 16

http://syntacticsalt.com/2011/03/10/functional-flocks/
http://syntacticsalt.com/2011/03/10/functional-flocks/
http://syntacticsalt.com/2011/03/10/functional-flocks/

Boid Simulation Video

Boid Simulaton

/‘\
> L;% Alamos

_— NATIONAL LABORATORY
EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_ U R_ 13_2 74 1 6

boids.mp4

Outline of Flock Simulation Class

Elclass flock_sim

|}]{ struct cohesion { ... }

= struct separation| [... 1

| struct alignment| { ... }

struct update‘u’elocity
= struct updatePosition| { ... 1}

3 struct bDUl‘ICE

thrust::device vector<float3> m _positions, m_velocities;
thrust::device vector<float3> m _cohesion, m_separation, m_alignment;
ftloat m_cohesionWeight, m_separationWeight, m_alignmentlWeight;

= flock_sim(...)| { ... } |

B vold :::-per‘atc:-r‘{){}
¥

» Los Alamos
_— NATIONAL LABORATORY
EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_ U R_ 13_274 16

Main simulation loop
1

= void operator()()
{
// Compute the cohesion term for the velocity update
thrust::transform(m_positions.begin(), m_positions.end(), m_cohesion.begin(),
cohesion(m_n, m_cohesionThresholdSqg, thrust::raw_pointer_cast(&*m_positions.begin())));

// Compute the separation term for the velocity update
thrust::transform(m_positions.begin(), m_positions.end(), m_separation.begin(),
separation(m_n, m_separationThresholdSg, thrust::raw_pointer_cast(&*m_positions.begin())));

// Compute the alignment term for the velocity update
thrust::transform(thrust::make_zip_iterator(thrust::make_tuple(m_positions.begin(), m_velocities.begin())),
thrust: :make_zip_iterator(thrust::make_tuple(m_positions.end(), m_velocities.end())),
m_alignment.begin(),
alignment(m n, m_alignmentThresholdSq, thrust::raw pointer cast(&*m_positions.begin()),
thrust::raw_pointer_cast(&*m_velocities.begin())));

// Update the velocity based on the computed cohesion, separation, and alignment adjustments
thrust::transform(thrust::make counting iterator(®), thrust::make counting iterator(@)+m_n, m _velocities.begin(),
updateVelocity(m_cohesionWeight, m_separationWeight, m_alignmentWeight, m_wvelocityScale,
thrust::raw_pointer_cast(&*m_cohesion.begin()),
thrust::raw_pointer_cast(&*m_separation.begin()),
thrust::raw_pointer_cast(&*m_alignment.begin()),
thrust::raw_pointer_cast(&*m_velocities.begin())));

// Update the boid positions based on the new velocities for this time step

thrust::transform(thrust::make_zip_iterator(thrust::make_tuple(m_positions.begin(), m_velocities.begin())),
thrust::make_zip_iterator(thrust::make_tuple(m_positions.end(), m_velocities.end())),
m_positions.begin(), updatePosition(m_dt, m_minSpeed, m_maxSpeed));

// Clamp any boids that have moved outside the simulation boundaries, and reverse their velocities so they bounce back inside
thrust::for_each(thrust::make_counting_ iterator(®), thrust::make counting_ iterator(®)+m n,
bounce(m_boundaryMin, m_boundaryMax, thrust::raw_pointer_cast(&*m_positions.begin()),
thrust: :raw_pointer_ cast(&*m_velocities.begin())}));|

» Los Alamos
_— NATIONAL LABORATORY
EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_ U R_ 13_274 16

=

Cohesion Term

struct cohesion : public thrust::unary function<float3, float3>

{
int n;
float thresholdSq;
float3* positions;

__host__ __ device

cohesion(int n, float thresholdSq, float3* positions) : n(n), thresholdSq(thresholdSq), positions(positions) { };

__host__ __device__
float3 operator()(float3 a position) const

{
// Compute centroid of all neighbors by searching through all other boidﬂ

float3 centroid = make float3(®.6f, 0.6f, 0.8f);
int neighbors = @;
for (unsigned int i=0; i<n; i++)
i
tloat3 diff = a_position-positions[i];
if (dot(diff, diff) < thresholdSqg)
{
centroid = centroid + positions[i];
neighbors++;

}

}
if (neighbors == 8) return make float3(0.6f, 0.8+, 0.0f);

centroid.x /= neighbors; centroid.y /= neighbors; centroid.z /= neighbors;

// Add a term to the velocity pointed towards the centroid of the neighbors
return (centroid - a_position);

» Los Alamos

_— NATIONAL LABORATORY
EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

LA-UR-13-27416

=i

Separation Term

struct separation : public thrust::unary function<float3, float3:

{
int n;
float thresholdSq;
float3* positions;
__host_ device
separation(int n, float thresholdSg, float3* positions) : n(n), thresholdSq(thresholdSqg), positions(positions) { };
__host__ __device__
float3 operator()(float3 a_position) const
{
// Add a term to the velocity pointed away from each neighbor that is too close
float3 repel = make float3(@0.08f, 0.0f, 0.81);
for (unsigned int i=08; i<n; i++) ®
¢ o}
float3 diff = a_position-positions[i]; o
if ((dot(diff, diff) < thresholdSq) && (dot(diff, diff) > NEAR_ZERO)) o0
repel = repel + normalize(diff);
}
if (dot(repel, repel) < NEAR_ZERO) return make float3(@.ef, 0.8f, 8.8f);
return normalize(repel);
¥
¥

-
“" -
.
*
%
‘e
ay .

» Los Alamos

_— NATIONAL LABORATORY

EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

LA-UR-13-27416

Alignment Term

struct alignment : public thrust::unary function<thrust::tuple<float3, float3>, float3>
{

int n;

float thresholdSq;

float3 *positions, *velocities;

__host _ device
alignment(int n, float thresholdSq, float3* positions, float3* velocities) :
n(n), thresholdsg(thresholdSq), positions(positions), velocities(velocities) { };

__host device
float3 operator()(thrust::tuple<float3, float3> a_posAndVel) const

{
// Extract the position and the velocity from the tuple
float3 a_position = thrust::get<®>(a_posAndvel);
float3 a_velocity = thrust::get<1>(a_posAndvVel);

// Compute the average velocity for all neighbors by searching through all other boids
float3 avgVelocity = make float3(@.ef, 0.8f, 0.0f);
int neighbors = @;
for (unsigned int i=0; i<n; i++)
{
float3 diff = a_position-positions[i];
if (dot(diff, diff) < thresholdsq)
{
avgVelocity = avgVelocity + velocities[i];
neighbors++;
;

}
if (neighbors == @) return make float3(@.ef, @.0f, 0.0f);

aveVelocitv.x /= neighbors: aveVelocitv.v /= neighbors: aveVelocitv.z /= neighbors:

// Add a term to the velocity to make it closer to the average velocity of the neighbors
return (avgVelocity - a_velocity);

};

» Los Alamos

_— NATIONAL LABORATORY

EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

LA-UR-13-27416

Updating Velocities
I

- struct updateVelocity : public thrust::unary_function<int, float3»>
{
float cohesionlWleight, separationWeight, alignmentWeight, velocityAdjustmentScale;
float3 *cohesion, *separation, *alignment, *velocitiesﬂ

host device
updateVelocity(float cohesionWeight, float separationWeight, float alignmentWeight, float velocityAdjustmentScale,
= float3* cohesion, float3* separation, float3* alignment, float3* velocities) :
cohesionWeight(cohesionWeight), separationWeight(separationWeight), alignmentWeight(alignmentleight),
velocityAdjustmentScale(velocityAdjustmentScale), cohesion(cohesion), separation(separation),
alignment(alignment), velocities(velocities) { };

__host_ _ device_
= float3 operator()(int i) const
{
// Adjust the velocity based on the cohesion, separation, and alignment terms and their weights
float3 newVelocity = (velocities[i] + velocityAdjustmentScale*(cohesionlleight*cohesion[i] +
separationWeight*separation[i] + alignmentWeight*alignment[i]));

return newVelocity;

}
};

V 1=Vt-|-WV WCC‘-l-WSS-l-WaCl

[+

» Los Alamos

_— NATIONAL LABORATORY
EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_ U R_ 13_274 16

Updating Positions
I

N ..
B struct updatePosition : public thrust::unary_function<thrust::tuple<float3, float3», float3:
{
float dt, minSpeed, maxSpeed;
__host_ device
= updatePosition(float velocityScale, float minSpeed, float maxSpeed) : dt(dt),
| minSpeed(minSpeed), maxSpeed(maxSpeed) {};
__host_ _ device_
= ftloat3 operator()(thrust::tuple<float3, float3> a_poshAndVel) const
{
// Extract the position and the velocity from the tuple, and clamp the velocity between mimimum and maximum values
float3 a_position = thrust::get<®>(a_posAndvel);
float3 a_velocity = thrust::get<1>(a_posAndvel);
if (dot(a_velocity, a velocity) > maxSpeed*maxSpeed) a_velocity = maxSpeed*normalize(a_velocity);
if (dot(a_velocity, a_velocity) < minSpeed*minSpeed) a_velocity = minSpeed*normalize(a_velocity);
// Update the position based on the velocity computed by this timestep
return (a_position + a_velocity*dt);
i }
| ¥

X, =X, +VvAt

[+

» Los Alamos
_— NATIONAL LABORATORY
EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_ U R_ 13_274 16

Bouncing off boundaries
I

= struct bounce : public thrust::unary function<int, void:>
{

float3 clampMin, clampMax;

float3 *positions, *velocities;

__host_ device
= bounce(float3 clampMin, float3 clampMax, float3* positions, float3* velocities) :
clampMin(clampMin), clampMax(clampMax), positions(positions), velocities(velocities) { };

__host__ _ device__

= void operator()(int 1) const

{
// If the boid has moved outside the simulation boundaries, clamp it inside and reverse its velocity
float3 result = positions[i];
bool bounce = false;

if (result.x < clampMin.x) { bounce = true; result.x = clampMin.x; }
if (result.x > clampMax.x) { bounce = true; result.x = clampMax.x; }
if (result.y < clampMin.y) { bounce = true; result.y = clampMin.y; }
if (result.y > clampMax.y) { bounce = true; result.y = clampMax.y; }
if (result.z < clampMin.z) { bounce = true; result.z = clampMin.z; }
if (result.z > clampMax.z) { bounce = true; result.z = clampMax.z; }
positions[i] = result;

if (bounce) velocities[i] = -1.@f*velocities[i];

};

» Los Alamos
_— NATIONAL LABORATORY
EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_ U R_ 13_274 16

Interop

Without interop, separate memory is used on the GPU for computation
results and for rendering, and data transfer goes through the CPU

With interop, a shared region of memory on the GPU is used both for
computation and for rendering, eliminating the slow GPU-CPU data transfers

GPU

Computation
Results

CPU

GPU

Data

Shared
Vertex Buffer

Vertices for
Rendering

/

"

» Los Alamos

AAAAAAAAAAAAAAAAAA

Without interop

With interop

EST.1943
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

LA-UR-13-27416

Your Free Ride Today

. The example codes we showed are independent of the location of
data and execution

. It can be executed serially on CPU or parallel backends

. Debug on CPU during development; use parallel execution in
“production”

. Extend to other languages and libraries

— STLin C++

— Copperhead in Python
— SQL/LINQ for databases

» Los Alamos

AAAAAAAAAAAAAAAAAA

5§T.1943
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

LA-UR-13-27416

Your Free Lunch Tomorrow

. The high-level parallel algorithms you write today will still work with
new hardware in the future

. In fact, they will only get faster!

. The skills you learn in developing high-level parallel algorithms will
still be applicable in the future even as computing technology
improves

» Los Alamos

AAAAAAAAAAAAAAAAAA

Operate d by Los Alcm';os National Security, LLC for the U.S. Department of Energy’s NNSA LA_ U R_ 13_274 16

Conclusion

Think High-Level when
Programming in Parallel

» Los Alamos

LA-UR-13-27416

	HighLevelDataParallelismLAUR
	HighLevelDataParallelism

