

Traffic Model

New Mexico Supercomputing Challenge

Final Report

April 3, 2019

Rishi Tikare Yang

Team Number: 4

School Name: Albuquerque High School

Teacher: Joan Newsom

Executive Summary

Traffic flow in cites affects nearly everyone’s lives as our society depends on

automobiles for transportation. Making traffic more efficient could have effects ranging from

increased productivity of the city’s inhabitants, to reducing CO​2 emissions from cars. For my

project, I have modeled traffic focusing on the questions: What variables have the greatest

impact on traffic flow? How can we make traffic flow more efficient?

My model, developed in NetLogo , consists of roads on a rectangular grid. Each road is 1

two lanes, with one going in each direction and stop lights at intersections. My model can control

the following variables: stoplight cycle duration, the timing of lights relative to each other, car

follow distance, car spawn rate and car speed. My model tracks the percentage of cars waiting at

a given time and the average trip duration of the cars in the model. In this report, I will describe

my model, show results and discuss the effects and significance of each variable.

The only variable that could approach zero wait time was stoplights cycle duration. The

stoplight timing and cycle length could be optimized by timing lights according to the speed and

distance between intersection. With this timing, no cars waited after they entered the road

system. Theoretically this timing can be applied to any grid-like road system. Car follow distance

was only significant after a threshold which was dependant on car density.

My model can be applied to roads in our city to assist in optimizing the road system. My

model also can predict how advances in technology, such as self driving cars that can drive in a

precise manner, could increase or change efficiency of our roads, and how roads should be

designed to most effectively work with self-driving cars.

1 ​Wilensky, U. 1999. NetLogo. ​http://ccl.northwestern.edu/netlogo/​. Center for Connected Learning and
Computer-Based Modeling, Northwestern University. Evanston, IL.

http://ccl.northwestern.edu/netlogo/

Problem Statement

Almost everyone has to deal with traffic on a daily basis. Slow traffic and badly timed

lights are frustrating and waste time from everyone’s day. Not only does inefficient traffic waste

time, it increases pollution released from vehicles. A typical passenger vehicle emits about 4.6

metric tons of carbon dioxide per year , and it is predicted there will be 281.3 million registered 2

vehicles in the U.S. this year. Optimizing roads can help reduce the amount of fuels burned, 3

reduce wasted time of transportation, boost productivity, and save drivers money.

Solution​ ​Method

I have developed a model to test which variables affect traffic flow efficiency and to what

extent. I have created a NetLogo model that simulates cars driving through a road system. My

model is able to control variables of the cars, road, and stop lights, and tracks data on the

efficiency of vehicles moving through the system. By systematically changing my variables and

analyzing the results, I was able to determine how variables influence efficiency and to what

extent.. I created simulations that would collect data on the model, and gradually increase or

decrease a variable to chart the change in efficiency. This method proved effective and allowed

me to visualize and find trends of a changing variable.

 ​Model Description

2 ​https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle
3 ​https://hedgescompany.com/automotive-market-research-statistics/auto-mailing-lists-and-marketing/

https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle
https://hedgescompany.com/automotive-market-research-statistics/auto-mailing-lists-and-marketing/

My model consists of the a road system (see figure below), stoplights, and cars. Car

position and stoplight cycles are updated every tick, which is the unit of time. Each lane of a

roads has a set direction that cars follow. At every tick, cars move ahead a set distance which

simulates ​car speed​. Cars will only move if there are no cars within a given distance in front,

which I call ​car follow distance. If a car is stopped at an intersection, it reports it is ​waiting​, and

if a car approaches from behind a waiting car, it will stop right behind it, and then is also ​waiting​.

The percent of cars waiting is collected and plotted. At every tick, cars have a probability of

spawning at the beginning of each road, which I named ​car spawn probability. ​When a car

reaches the end of a road, it is despawned and reports the number of ticks it was alive, or it’s ​trip

duration​. The average trip duration is plotted. Stoplights are set to allow traffic horizontally or

vertically for a certain number of ticks, which I call ​stoplight cycle duration​. All stoplights in a

simulation have the same stoplight cycle duration

because all intersections are equidistant from each

other. The timing of stoplights switching directions

relative to each other can be controlled, and is called

relative stoplight timing​.

Validation

Cars and drivers follow specific patterns and

rules of traffic, and by using agent-based modeling to program agents to follows these same

rules, my model can prove accurate and useful in finding trends in traffic flow as a function of

model variables.. An example is having cars follow a set distance behind the car ahead, which

more accurately simulates cars accelerating out of an intersection. I have also considered

limitations in my model and tried to account for them while running simulations, as well as taken

care to completely isolate variables while testing. An example is during my simulations, the

calculated average trip duration of car in my model only averaged cars that completed their trip

in the last half of each interval, so that any adjustment period cause by a changed variable does

not influence my data. My model has limitations; it only has two lane roads, and does not

consider human behavior and variation in driving. A specific limitation is that NetLogo moves

each car one at a time, so cars have instantaneous reactions to cars ahead of them and to

stoplights. This allows my model to operate without stoplights altogether. This clearly is not how

people drive, but perhaps can be applied to self driving cars, where ideally every car in the

system can communicate and have accurate predictions of the positions of other cars, and have

instantaneous reactions.

Results

To collect data from my simulation, I used the plot feature in NetLogo that creates a graph and

collects data that I specify on intervals I specify. I then exported the data into the spreadsheet

software Google Sheets for analysis and visualization. For this simulation, I varied ​stoplight

cycle duration​. I initialized my model starting the stoplight cycle length to 5 ticks, randomized

the relative light timing, and all other variable were held constant. Every 1000 ticks, the stoplight

cycle length increased by 5 ticks and the relative light timing was re-randomized. The percent of

cars waiting was collected every tick and the average trip duration was found from the cars in the

last half of each interval. The data in the graph was an average of a couple simulation runs. The

first graph plots the percentage of cars waiting at every tick as blue dots. The red line is a trend

line fit to all these data points. The percentage of cars waiting and the variation in cars waiting

per tick increases with stoplight cycle duration. The second graph shows the average trip

duration correspondingly increased with stoplight cycle. The data points show wait times

increased almost linearly with stoplight cycle length, with a slight concavity down. This

simulation ignores the fact that in real traffic, with shorter stoplight cycles drivers must more

accurately predict when to accelerate and stop. My model assumes all drivers are always paying

attention and react instantaneously. This means my model is not an accurate predictor of human

drivers at the very short stoplight cycles, but my model might be able to predict how self-driving

cars would behave under these conditions. The trend that shorter stoplight cycles reduces wait

times is the obvious conclusion.

For the next simulation, I varied the relative ​stoplight cycle timing​. The stoplight cycle duration

was held constant at 40 ticks for the entire simulation, because this is the most efficient cycle

length for cascaded lights. During this simulation, I ran the model for 1000 tick intervals of

randomized, synchronized, or cascaded lights. I ran 4 intervals of different random stoplight

timings, and found the average trip length over all 4. The randomizing code initialized the

stoplights to randomly select between vertical or horizontal traffic, and randomly set the number

of ticks -between 0 and the stoplight cycle duration- until it changes directions. This means all

the lights cycle with the same cycle duration, but are randomly offset in direction and timing.

The synchronizing code initialized the lights to all be in horizontal traffic, and all change

direction on the same cycle. The code to cascade the lights initialized the stoplights to allow

vertical traffic, and then were timed so that adjacent lights switched 40 ticks later, which is

exactly the time it took for a car to travel from one intersection to the other. Because the cycle

duration was equal to the travel time between stoplights, by cascading in to the right and down

directions, the system it also is cascaded left and up. This simulation shows that with predictable

travel times between stop lights, roads can be optimized to have the same stoplight cycle

duration, and can be cascaded in all directions. The limitation of my model is again that it

ignores human reaction time. At short stoplight cycle durations, human reaction and prediction

would most likely be too imprecise and inconsistent to function at maximum efficiency, and

human drivers do not have perfectly predictable travel times between stoplights. The most

significant conclusion of this test it that it is possible to time lights on a grid pattern of roads to

allow drivers to never stop at intersection once they hit a green light. The limitation to this it that

cycle required might be too low to be efficient with human drivers, or with very dense traffic.

In the next simulation I varied the ​car follow distance​. I initialized the model to a stoplight cycle

duration of 50 ticks, initially randomized relative light timing, and set the car spawn probability

to 6%. Then, starting at 1, increased the car follow distance every 1000 ticks. Again, I collected

the percent of cars waiting per ticks, and the average trip duration of every interval. To ensure

the average was only influence by the current variables, I found the average trip duration of cars

in the last half of each interval, to give the model time to cycle through the transition periods

between varying car follow distances. I ran this simulation at 3 different car spawn probabilities,

shown in blue, red, and yellow, with car spawn percentages of 6%, 9%, and 12% respectively.

The data suggests that there is a threshold, that depends on the amount of cars on the road, where

below the threshold the car follow distance is not very significant, but over the threshold wait

times increase significantly with car follow distance. During the blue test (6% car spawn

probability), that threshold is around 8 car length, in the red test (9% car spawn probability) the

threshold is around 5 car lengths, and in the yellow test (12% car spawn probability) the

threshold is around 3 car lengths. There also appears to be a upper limit to how significant car

follow distance can be, but I believe this is because my model will only spawn cars as fast as

they can be spawned without backing up behind the spawn points. I believe this upper threshold

is caused by this limitation of my model. But in real traffic, there is also no reason to drive such a

large distance behind the car ahead of someone in the conditions my model simulates.

Conclusions

My model established trends of traffic efficiency for a changing variable, including

stoplight cycle duration, relative stoplight light timing, and car follow distance.

Stoplight cycle duration increased wait times almost linearly, with a slight concavity

downwards. Stoplight cycle duration was the only variable that had a lower limit of 0 percent of

cars waiting, as the stoplight cycle duration approached 0. The range of variation in percent of

cars waiting also increased with cycle duration, showing the larger and longer cycles caused by

the stoplights cycle. The shortest stoplight cycle durations are not valid for human drivers. My

model moves each car one at a time after checking the spaces ahead is not occupied. This means

the model operates so that cars react instantaneously and can drive in a precise manner, which

humans cannot do reliably. My model may still be valid for self-driving cars, and can be used

optimize stoplights for computer controlled cars that can both react instantaneously and predict

other car movement with precision.

Relative stoplight timing had a significant effect on the efficiency of traffic. The three

types of light timing my model implements are randomized, synchronized, and cascaded.

Randomized timing was fairly consistent, and in simulations where multiple random light

timings were tested, their average trip durations had little variation. The percent of cars waiting

had varying cycles and ranges, but had similar averages. Synchronized lights were less efficient

than randomized lights, and only were more efficient at specific stoplight cycle durations where

it mimicked cascaded light timing. Cascaded lights were the most efficient timing of the three at

specific stoplight cycle durations. Cascaded lights only required cars that were entering the

system to wait for the first green light. When creating the algorithm to cascade lights, I learned

that in a grid pattern, it is possible to cascade all roads in both directions if the stoplight cycle

duration was equal to the travel time between intersections, or half the travel time.

An interesting insight I reached through creating this algorithm is that for any road

system where only two roads meet at any intersection, there is a possible cascading light timing

that where no car will wait at any stoplight (except the initial light). This would required the

stoplight cycle duration to be equal to the lowest common factor of all travel times between all

intersections, and cars to travel between intersections in precise times. This is not always

possible for human drivers in city road systems because it would require, most likely, a very

short stoplight cycle duration and precision in driving time.

Car follow distance had a distinct threshold;below this threshold the follow distance had

little effect on efficiency, but above this threshold follow distance increasingly reduced

efficiency. This threshold depended on the number of cars on a road, or the car density. The

threshold at which follow distance became significant was lower with higher car density. In my

simulation I achieved higher car density by increasing the car spawn rate. In the graph of average

trip duration versus follow distance, there is a very shallow slope before this threshold, and after

a steep slope. My model shows an upper limit where longer car follow distances would not make

traffic more inefficient, and this limit was consistent regardless of car density. This conclusion is

not valid because of a limitation of my model, which would stop spawning cars if traffic backed

up to spawn points.

Achievements

I created my first numerical model, and used it to draw meaningful conclusions that could

be applied to our world. I learned how model-based simulations allow one to gain insights into

complex physical systems.

Acknowledgements

I would like to thank my teacher Ms. Newsom who introduced me and guided through

the Supercomputing Challenge. I would like to acknowledge the organizers of the

Supercomputing Challenge who provide a wonderful service to our community. I would like to

thank my parents for helping me proofread my work and general guidance.

Appendix

Code:
#main code

breed[cars car]
cars-own[go-dist maxspeed acceleration tic tics-alive follow-dist waiting?]

breed[intersections intersection]
intersections-own[up? down? right? left?]

directed-link-breed[redlinks redlink]

patches-own[direction direction? intersection?]

breed[stoplights stoplight]
stoplights-own[vert? switch maxswitch]

globals[cars-waiting total-trip-length num-of-cars-despawned selected-stoplight
num-of-sums CWS]

to setup
 clear-all
 reset-ticks
 setup-colors
 ;set CWS 0 set num-of-sums 0
 set total-trip-length 0 set num-of-cars-despawned 0
 make-roads
 setup-roads

 initialize-stoplights
end

to go
 if spawn-cars? [spawn-cars]
 move-cars
 work-stoplights
 despawn-cars
 monitor-cars-waiting
 ask cars [set tics-alive (tics-alive + 1)]
 if display-timing? [display-timing]
 tick
end

to setup-colors

 ask patches [set pcolor white]
 ask intersections [set color yellow set shape "flag"]

end
to make-roads
 ask patches [set intersection? false]

 make-intersections 70 1 -70 1
 make-intersections -70 -1 70 -1

 make-intersections 70 41 -70 41
 make-intersections -70 39 70 39

 make-intersections 70 -39 -70 -39
 make-intersections -70 -41 70 -41

 make-intersections 1 -70 1 70
 make-intersections -1 70 -1 -70

 make-intersections 41 -70 41 70
 make-intersections 39 70 39 -70

 make-intersections -39 -70 -39 70
 make-intersections -41 70 -41 -70

end

to initialize-stoplights

 make-stoplight 40 40
 make-stoplight 40 0
 make-stoplight 40 -40
 make-stoplight 0 40
 make-stoplight 0 0
 make-stoplight 0 -40
 make-stoplight -40 40
 make-stoplight -40 0
 make-stoplight -40 -40

 ask stoplights
 [
 set vert? false
 set maxswitch stoplight-cycle-length
 set switch random maxswitch
]
 randomize-lights
end

to make-stoplight [x y]
 ask patch x y [sprout-stoplights 1]
 ask patches with [pxcor > (x - 2) and pxcor < (x + 2) and pycor > (y - 2) and pycor < (y + 2)]
[set direction "fd"]

end

to make-intersections [x y xx yy]

 make-intersection x y
 make-intersection xx yy
 connect-intersections x y xx yy

end

to connect-intersections [x1 y1 x2 y2]
 ask patch x1 y1
 [
 ask intersections-here
 [
 create-redlink-to one-of intersections-on patch x2 y2
]
]
end

to make-intersection[x y]
 ask patch x y
 [
 set intersection? true
 set pcolor green
 sprout-intersections 1
]
end

to setup-roads
 ask patches [set direction? false]
 ask intersections
 [
 let x pxcor
 let y pycor
 ask out-link-neighbors
 [
 draw-road x y pxcor pycor
]
]
end

to draw-road [x1 y1 x2 y2];[here to there] or from [patch to patch]
 let numer (y2 - y1)
 let denom (x2 - x1)
 let g 1
 set g (GCD numer denom)
 set numer (numer / g)
 set denom (denom / g)

 if denom != 0 or numer != 0;if intersection is not on the same square
 [
 let ver-dir ""
 let hor-dir ""

 ifelse numer > 0 [set ver-dir "up"][set ver-dir "dn"]
 ifelse denom > 0 [set hor-dir "rt"][set hor-dir "lt"]

 let lastx x1
 let lasty y1

 while [lastx != x2 or lasty != y2]
 [

 ask patches with [pxcor <= max list lastx (lastx + denom) and pxcor >= min list lastx (lastx +
denom) and pycor = lasty];cordinates in the range i want, which is the last patch to the patch
xdistance away horzo r vert
 [
 set direction hor-dir
 set direction? true
 set pcolor grey

]
 set lastx (lastx + denom);remove form loop
 ask patches with [pycor <= max list lasty (lasty + numer) and pycor >= min list lasty (lasty +
numer) and pxcor = lastx];cordinates in the range i want, which is the last patch to the patch
xdistance away horzo r vert
 [
 set direction ver-dir
 set direction? true
 set pcolor grey

]
 set lasty (lasty + numer)
]

 ask patches with[pxcor = x1 and pycor = y1][set pcolor green]
 ask patches with[pxcor = x2 and pycor = y2][set direction? false]
]
end

to-report GCD [n d]
 if n = 0 or d = 0 [report 1]
 let num1 (abs n)
 loop
 [
 if(n mod num1 = 0) and (d mod num1 = 0)
 [
 report num1
]
 set num1 (num1 - 1)
]
 report 1
end

;---------End of Setup COmmands Only Run Commands Now-------------------------
;stoplights:

to work-intersections;i think this can be removed
 ask intersections
 [
 let r false
 let l false
 let u false
 let d false
 ask patch-at 0 1
 [
 if direction? = true [set u true]
]
 ask patch-at 0 -1
 [
 if direction? = true [set d true]
]
 ask patch-at 1 0
 [
 if direction? = true [set r true]
]
 ask patch-at 0 -1
 [
 if direction? = true [set l true]
]
 set up? u
 set down? d
 set right? r
 set left? l

]

end

to work-stoplights;switch from vert to horizontal
 ask stoplights
 [
 set maxswitch stoplight-cycle-length
 if switch <= 0
 [
 ifelse vert? = true [switch-horizontal xcor ycor set switch maxswitch]

 [switch-vertical xcor ycor set switch maxswitch]
]

 set switch (switch - 1)
]

end
to switch-stoplight [sl]
 ask sl [
 ifelse vert? = true [switch-horizontal xcor ycor]
 [switch-vertical xcor ycor]
]
end

to switch-horizontal [x y]
 ask patch (x - 2) (y - 1) [set direction "rt"]
 ask patch (x + 2) (y + 1) [set direction "lt"]
 ask patch (x - 1) (y + 2) [set direction "st"]
 ask patch (x + 1) (y - 2) [set direction "st"]
 ask patch x y [set pcolor green]
 ask stoplights-on patch x y [set vert? false]
end
to switch-vertical [x y]
 ask patch (x - 2) (y - 1) [set direction "st"]
 ask patch (x + 2) (y + 1) [set direction "st"]
 ask patch (x - 1) (y + 2) [set direction "dn"]
 ask patch (x + 1) (y - 2) [set direction "up"]
 ask patch x y [set pcolor red]
 ask stoplights-on patch x y [set vert? true]
end

to make-stoplights [h w trx try];height, width, top right x cor, top right y cor **not in use
 ask patch trx try [sprout-stoplights 1]
 ask patch trx (try - (h - 1)) [sprout-stoplights 1]
 ask patch (trx - (w - 1)) try [sprout-stoplights 1]
 ask patch (trx - (w - 1)) (try - (h - 1)) [sprout-stoplights 1]

 ask stoplights[ask patch-at 0 0 [set direction? true set direction "fd"]]

end

;--------------end of s tolights

;move, spawn, kill and cars stuff

to spawn-cars
 ask patches with[intersection? and pcolor = green]
 [
 if random 100 < spawn-percentage and not any? cars-on patch pxcor pycor
 [
 let dir direction
 sprout-cars 1
 [
 set shape "car"
 set color blue
 set go-dist 0
 ifelse random 100 < fast-car-spawn-rate [set maxspeed 2 set acceleration 1 set color red
][set maxspeed 1 set acceleration 1]
 set follow-dist car-follow-distance
 set waiting? false
 set tics-alive 0

 if dir = "rt" [facexy (xcor + 1) ycor]
 if dir = "lt" [facexy (xcor - 1) ycor]
 if dir = "up" [facexy xcor (ycor + 1)]
 if dir = "dn" [facexy xcor (ycor - 1)]
]
]
]

end

to move-cars
 let dir ""
 ask cars
 [

 ;let i 0
 ask patch-at 0 0 [set dir direction]
 if dir = "st" [set waiting? true set go-dist 0]

 if not waiting?
 [let w? false
 ask cars-on patch-ahead 1 [if waiting?[set w? waiting?]]
 set waiting? w?]
 ;while [i < spots and dir != "st"];stop
 ;[

 if go-dist < maxspeed [set go-dist (go-dist + acceleration)];used if cars accelerate
 if dir = "rt" and check-ahead follow-dist who and not any? cars-on patch-ahead 1;right
 [facexy (xcor + 1) ycor fd (go-dist * car-speed-multiplier) set waiting? false]
 if dir = "lt" and check-ahead follow-dist who and not any? cars-on patch-ahead 1;left
 [facexy (xcor - 1) ycor fd (go-dist * car-speed-multiplier) set waiting? false]
 if dir = "up" and check-ahead follow-dist who and not any? cars-on patch-ahead 1;up
 [facexy xcor (ycor + 1) fd (go-dist * car-speed-multiplier) set waiting? false]
 if dir = "dn" and check-ahead follow-dist who and not any? cars-on patch-ahead 1;down
 [facexy xcor (ycor - 1) fd (go-dist * car-speed-multiplier) set waiting? false]

 if dir = "fd" [fd go-dist * car-speed-multiplier] ;forward
 ;set i i + 1
 ;]

]
end

to turn-cars
 ask intersections
 [
 ask patch-at -1 -1 [ask cars-here []]
]

end

to-report check-ahead [x w];[how far ahead to check, the who # of the car]
 let move true
 let d x
 ask car w
 [
 while [d > 1]
 [
 if any? cars-on patch-ahead d [ask cars-on patch-ahead d [set move waiting?]]
 set d (d - 1)
]
]
 report move

end

to-report check-right [x w]

end

to-report check-left [x w]

end

to despawn-cars
 ask cars
 [
 ask patch-at 0 0
 [
 if not direction?
 [
 ask cars-here [
 if collect-trip-length? [set total-trip-length (total-trip-length + tics-alive)]
 die]

 if collect-trip-length? [set num-of-cars-despawned (num-of-cars-despawned + 1)]

]
]
]
end

;---monitor stuff and adjusting variable

to select-stoplight
 if mouse-down?
 [
 let xmouse mouse-xcor
 let ymouse mouse-ycor
 if any? stoplights-on patch xmouse ymouse
 [
 if selected-stoplight != 0[unlabel-current]
 set selected-stoplight one-of stoplights-on patch xmouse ymouse ;change selscted stolight
 label-current
]
]
end
;; label the current light
to label-current
 ask selected-stoplight
 [
 ask patch-at -2 5
 [
 set plabel-color black
 set plabel "current"

]
]
end
;; unlabel the current light (because we've chosen a new one)
to unlabel-current
 ask selected-stoplight
 [
 ask patch-at -2 5
 [
 set plabel ""
]
]
end
;--------------------------
to display-timing
 ask stoplights
 [
 let sw switch
 ask patch-at -2 3
 [
 set plabel-color black
 set plabel (word sw)
]
]
end
to change-timing
 ask selected-stoplight [
 set switch input-switch
 let sw switch
 ask patch-at -2 3
 [
 set plabel-color black
 set plabel (word sw)
]
]
end

to monitor-cars-waiting

 let summ 0
 ask cars[if waiting?[set summ (summ + 1)]]
 set cars-waiting summ

 ;if ticks mod 1000 = 0 [set CWS 0 set num-of-sums 0]
 ;set CWS (CWS + cars-waiting) set num-of-sums (num-of-sums + 1)

end
to reset-follow-distance
 ask cars[set follow-dist car-follow-distance]
end

to syncronize-lights
 ask stoplights
 [
 switch-horizontal xcor ycor
 set maxswitch stoplight-cycle-length
 set switch maxswitch
 display-timing
]
end
to randomize-lights
 ask stoplights
 [
 ifelse random 2 > 0[switch-horizontal xcor ycor][switch-vertical xcor ycor]
 set maxswitch stoplight-cycle-length
 set switch (random maxswitch)
 display-timing
]
end
to cascade-lights;only works if maxswitch is >=40, prioritize down and right traffic
 ;initializei it
 ask stoplights [switch-vertical xcor ycor]
 ask stoplights-on patch -40 40 [set switch 0]
 ask stoplights-on patch -40 0 [set switch 40]
 ask stoplights-on patch -40 -40 [set switch 80]

 ask stoplights-on patch 0 40 [set switch 40]
 ask stoplights-on patch 0 0 [set switch 80]
 ask stoplights-on patch 0 -40 [set switch 120]

 ask stoplights-on patch 40 40 [set switch 80]
 ask stoplights-on patch 40 0 [set switch 120]
 ask stoplights-on patch 40 -40 [set switch 160]

 display-timing

end

