Introduction to Machine Learning Focus: Materials Science

Workshop Presentation by:

Ayana Ghosh^{1,2}

¹Department of Materials Science & Engineering, University of Connecticut, Storrs, CT 06269, USA ²Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Supercomputing Challenge Kickoff 2018-19

INTRODUCE YOURSELF!

la hasa

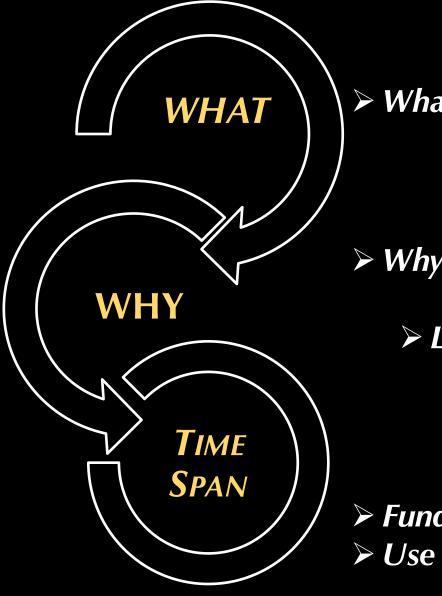
h himing n

Your NAME!

Your favorite material? (Eg. Coffee mug, soccer ball ...)

Town Square, Pra

OUTLINE

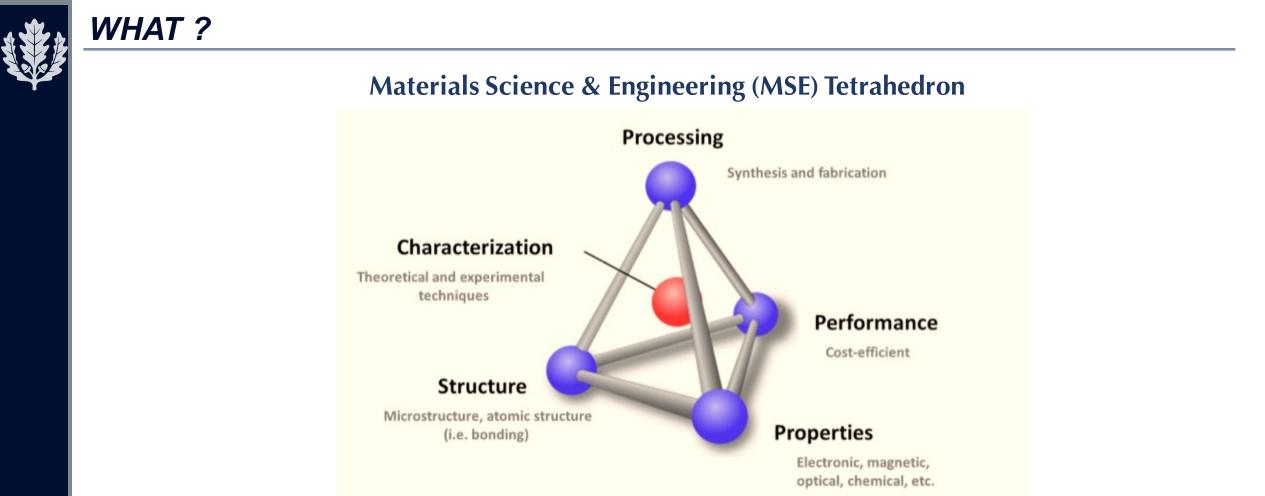


> What is Materials Science and Engineering ?

> Why should you be interested?

 Latest Trends
 Use of Machine Learning (Big Data-driven science)

Fundamentals of Materials ~25 minutes
Use of Machine Learning ~ 35 minutes



> Materials <u>Science</u> develops the <u>fundamental understanding</u> of the relationships and structure of materials.

> Materials <u>Engineering</u> uses this understanding to <u>engineer (design)</u> materials for real-life applications.

MATERIALS CLASSIFICATION: LET'S IDENTIFY...

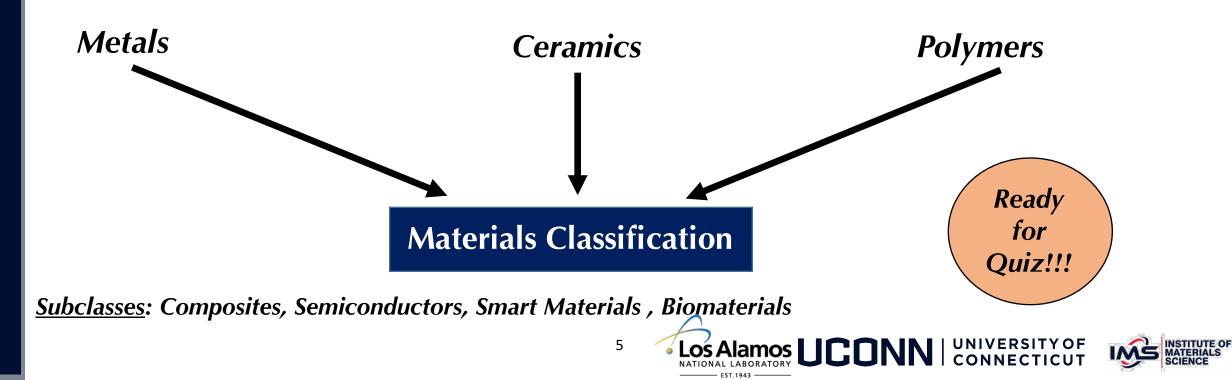
https://cdn-a.williamreed.com/var/wrbm_gb_food_pharma/storage/images/5/9/9/1/ 2501995-5-eng-GB/Coke-passes-green-for-Go!-with-UK-traffic-

light-nutrition-labeling.jpg

CCI Da Interi Maria

https://img.etsystatic.com/il/d1eb21/14160405 07/il_570xN.1416040507_bepi.jpg?version=0

http://cleanleap.com/sites/default/files/images/a dditional/2918/coke_bottles.jpg



CAN YOU CLASSIFY ?

Captured at Santa Fe, NM

Captured at Kouty, Czech Republic

PERIODIC TABLE

$\int_{H}^{Alkali metals} Alkaline earth metals$											ert (oger		es]	↓ 2 He				
3 Li 11 Na	4 Be 12 Mg	+		Tra	nsit	ion r	neta	Is			→	5 B 13 Al	6 C 14 Si	7 N 15 P	8 0 16 S	9 F 17 Cl	10 Ne 18 Ar	Ionization energy
19 K						28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	Electron affinity			
37 Rt	38	39 Y	40 Zr	41 Nb	42 Mo	43	44	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe	energy affinity acter
55 Cs	56	\setminus	72 Hf	73 Ta	74 W	75 Re	76 Os	77 r	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	vonmetalling octer
87 Fr	88		104 Rf	105 Db	106 Sg		108 Hs	109 Mt	110 Ds	111 Rg	112 Cp	113 Uut	114 Uuq		116 Uuh		118 Uuo	Atomic Metallic character
								_				_						
Rare ea	arth		57 La	58 Ce	59 Pr		61 Pm		63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	Atomic radius
Actinid	e se	ries	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md		103 Lr	
Post-transition metals Intermediate metals Non-n								e m	etals	n-me	etals							

7

CHARACTERISTICS OF METALS, CERAMICS AND POLYMERS

- Pure elements or combinations of metallic elements (alloys)
- Metallic bonding
- Good electrical conductors
- Good heat conductors
- Shiny appearance not transparent
- Strong (High Strength, Stiffness)
- > Deformable
- > At times Magnetic (Fe)

- Compounds between metallic and non-metallic elements
- Ionic or covalently bonded
- > Hard
- ➢ Brittle
- > Electrical insulators
- > Poor thermal conduction
- Heat & corrosion resistant
- Can be transparent or opaque

- Organic compounds based on
 C, H and other non-metallic elements
- Covalent and secondary bonding
- Huge variety of properties
- > Low densities
- > Non conductors
- > Low melting points
- > Can be very flexible

AMOS UC

SELECTION OF MATERIALS FOR REAL-LIFE APPLICATIONS

Determine the Application

Required Properties for appropriate uses (Mechanical, Electrical, Thermal, Magnetic, Optical)

Pick Candidates

(Develop Understanding about Structure, Composition) – Does it relate to the Application of interest ?

Processing

(Make the materials and also improve properties according to the requirements of applications)

Casting, Sintering, Vapor Deposition, Doping, Forming, Joining, Annealing

Analogy Apply Prepare **Applications** Select Schools Píck Major

LOS Alamos UCONN UNIVERSITY OF

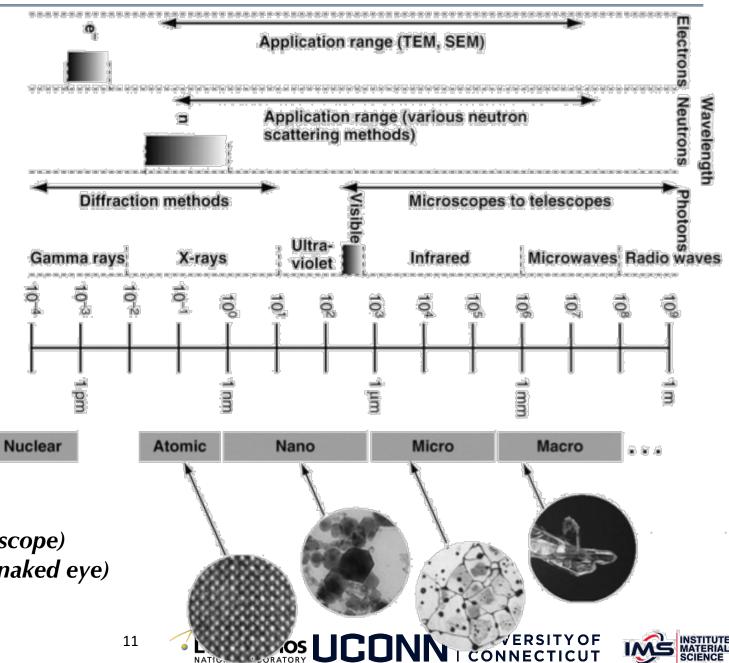
9

QUICK RECAP

> What is Materials Science and Engineering ?

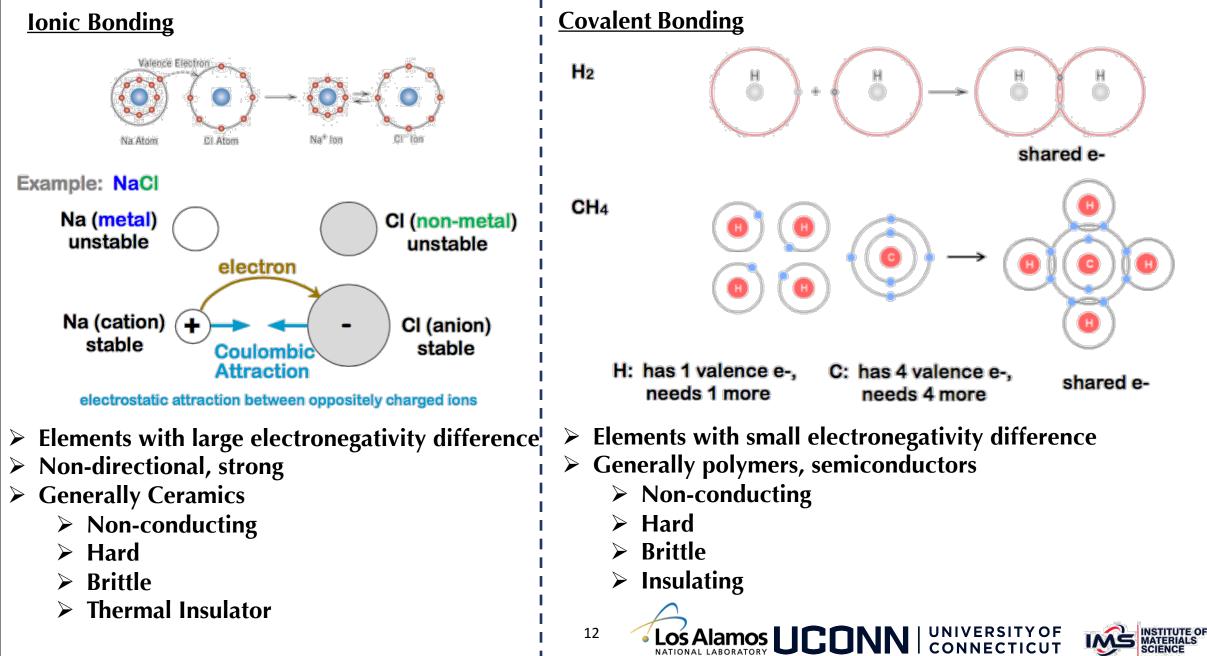
STRUCTURE: LENGTH SCALES

- Structures at many length levels
 - > Electronic (sub-atomic)
 - > Atomic (molecular, chemical)
 - > Crystal (group of atoms)

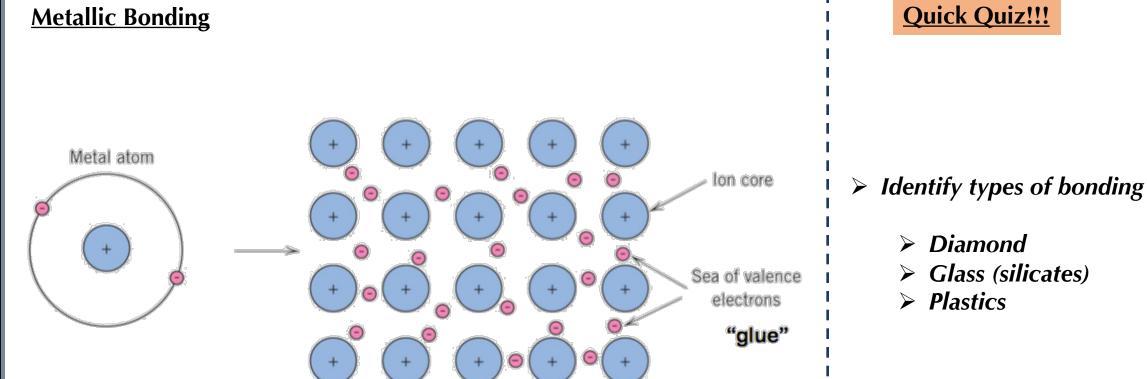


- > Microstructure (visible with microscope)
- > Macrostructure (you can see with naked eye)

BONDING: PRIMARY



BONDING: PRIMARY



13

Los Alamos

Secondary Bonding

IVERSITYOF

CONNECTICUT

INSTITUTE OF MATERIALS SCIENCE

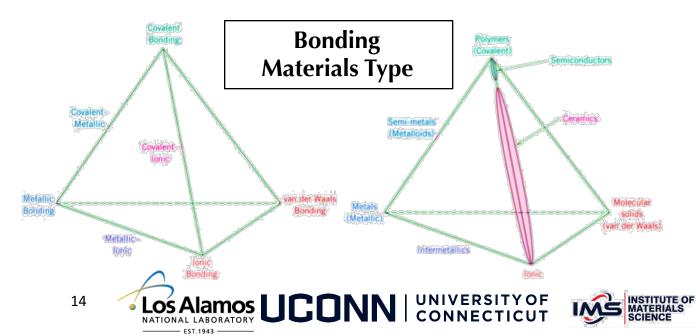
- > Availability of free electrons
- Mixed Ionic-covalent character
- Generally metals, alloys
 - Good electrical and thermal conductors

Bond Type	Bond Energy (KJ/mol)
Ionic Non-directional (ceramics)	625-1550
Covalent Directional (polymers, semiconductors, even few ceramics)	520-1250
Metallic Non-directional (metals)	100-800
Secondary Directional (inter-chain polymers, inter-molecular in molecular crystals)	<40

Higher the bond energy, more difficult it is to break the bond

➤ <u>Consequences...</u>

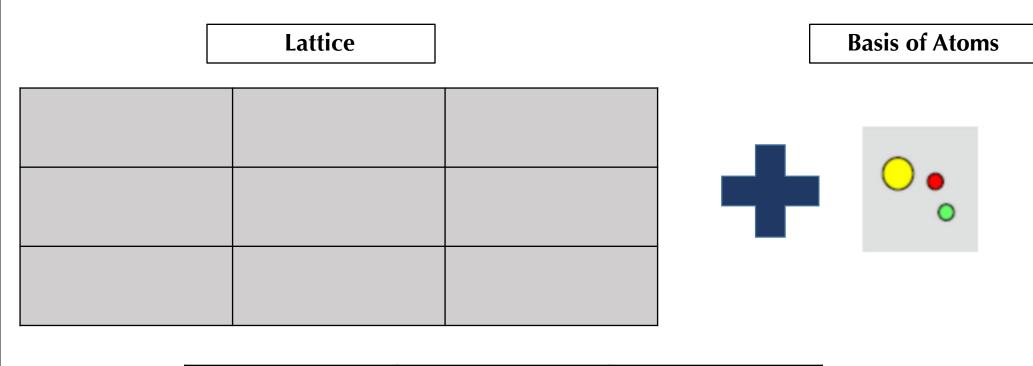
- Strongly bonded compounds Higher melting temperature
- Weakly bonded compounds Higher coefficients of thermal expansion



QUICK REVISION

> What is Materials Science and Engineering ?

CRYSTAL **S**TRUCTURES IN **2D**





How can you make them !!!

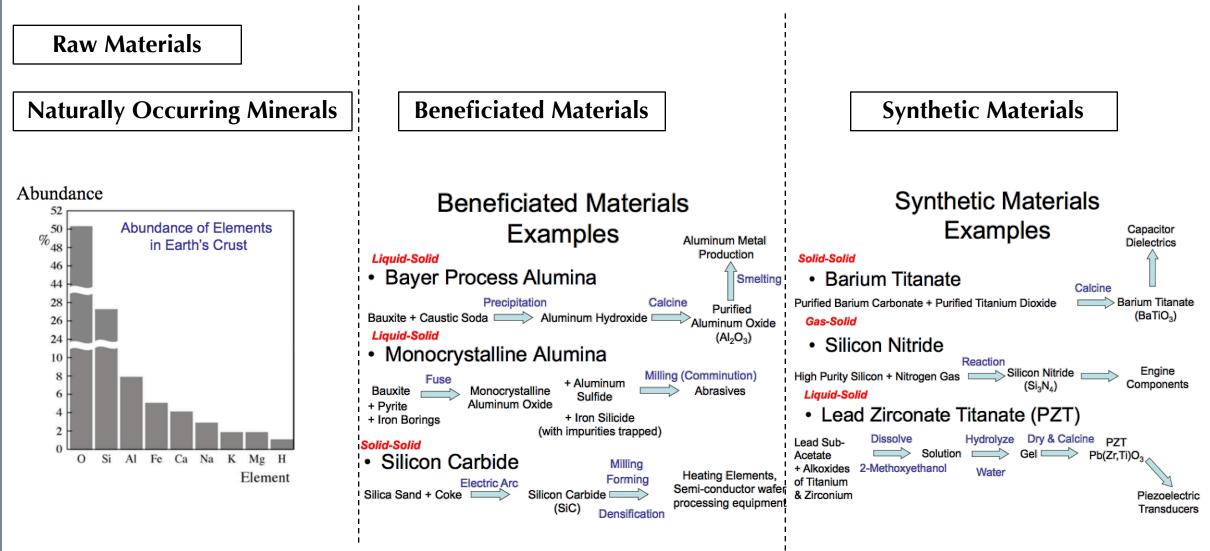
Let's play with Vesta & More! (Follow Handouts)

- ➤ Key Parameters to look for ...
 - > Lattice parameters
 - Unit cell volume
 - > Angles
 - Bond Length
 - Lattice Planes
- > Can you classify the type of bonding in these ?
- Atomic Packing Factor, Coordination numbers, types of crystals systems

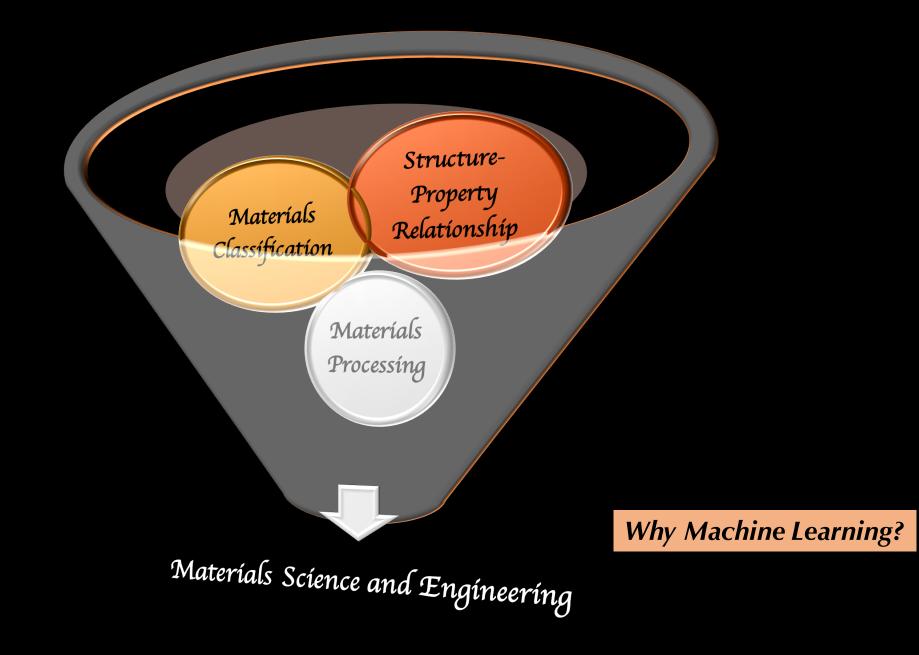
17

- Engineering Applications
 - > Single Crystals > Anisotropic - Single Crystal Diamond single crystals for abrasives \geq - Polycrystalline > Single crystal nickel alloys for turbine blades - Multi-phase – Glass Fiber Foam Composite **Bubbles**
 - Polycrystalline \succ
 - > Most engineering materials are polycrystalline
 - Isotropic \triangleright

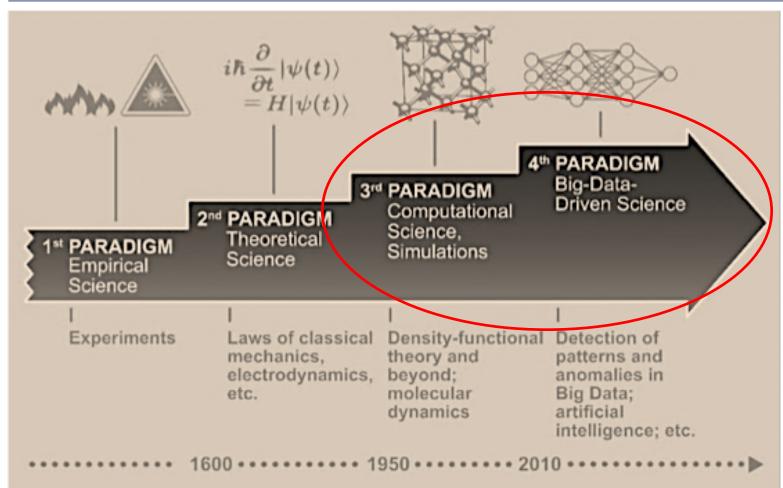
MATERIALS PROCESSING (ENGINEERING)



MATERIALS SCIENCE AND ENGINEERING



WHY MACHINE LEARNING IN MATERIALS SCIENCE?



Useful Weblinks: <u>NOMAD</u>: <u>https://www.nomad-</u> <u>coe.eu/index.php?page=centre-of-</u> <u>excellence</u>

Materials Project:

https://materialsproject.org

ICSD:

LOS Alamos UCONN | UNIVERSITY OF

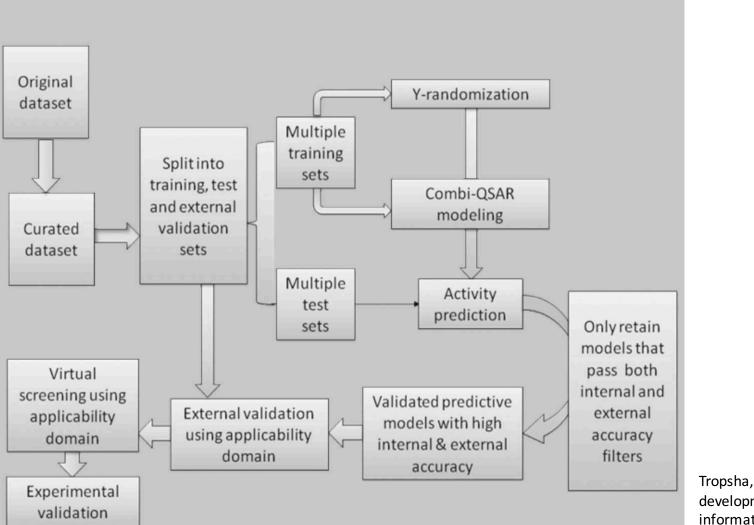
https://icsd.fizkarlsruhe.de/search/basic.xhtml

https://www.nomad-coe.eu/uploads/images/News/NOMAD_new_paradigms_material_science.png

21

Introduction to Machine Learning

QSPR (Quantitative Structure Property Relationship) -> Establish relations between structure of a molecule and its \geq chemical property



Example Problem ?

Tropsha, Alexander. "Best practices for QSAR model development, validation, and exploitation." Molecular informatics 29.6-7 (2010): 476-488.

Introduction to Machine Learning: Drug Discovery

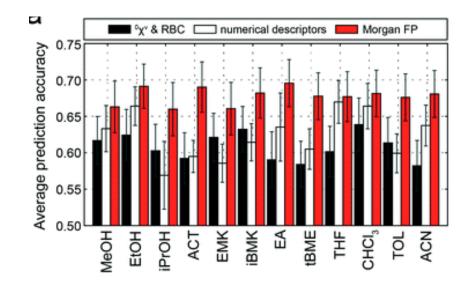
Crystalline or non-crystalline

	Non-crystalline	crystalline	Total
Training	13440	13453	22733
Test	4480	4485	8965
Total	17920	17938	35858

- Molecular Descriptors
- Build models
- Accuracy: 79% \geq

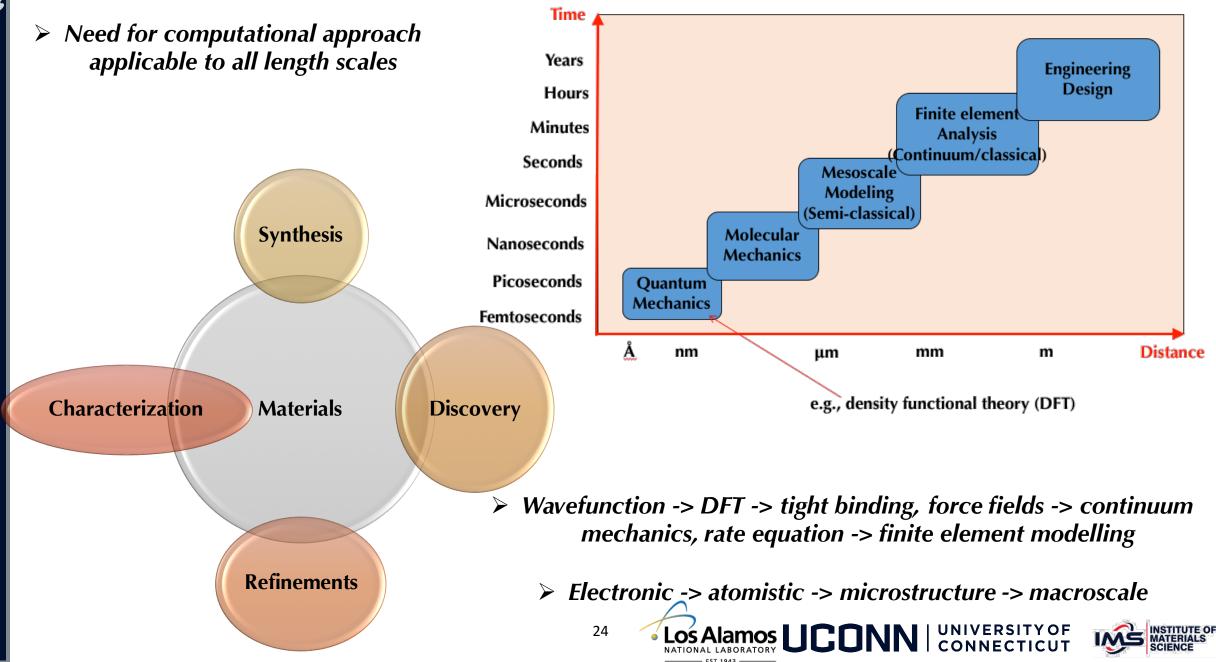
Wicker, J. G., & Cooper, R. I. (2015). Will it crystallise? Predicting crystallinity of molecular materials. CrystEngComm, 17(9), 1927-1934.

- Crystalline or non-crystalline, solvents dependency
- 319 small molecules in 18 different solvents
- Total of 5710 compounds
 - Training (50%)
- Molecular Descriptors, build models, accuracy

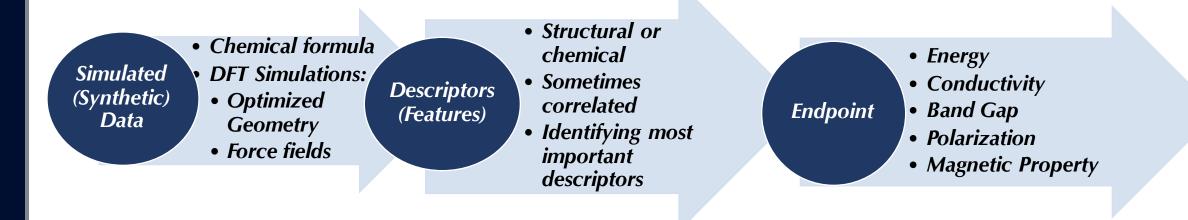


Pillong, M., Marx, C., Piechon, P., Wicker, J.G., Cooper, R. I., & Wagner, T. (2017). A publicly available crystallisation data set and its application in machine learning. CrystEngComm, 19(27), 3737-3745.

COMPUTATIONAL MATERIALS SCIENCE? (MACHINE LEARNING IN MATERIALS SCIENCE)



How DOES IT WORK?

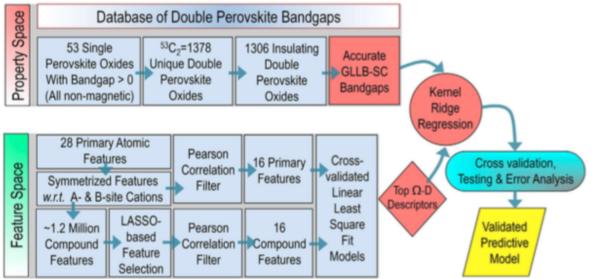


25

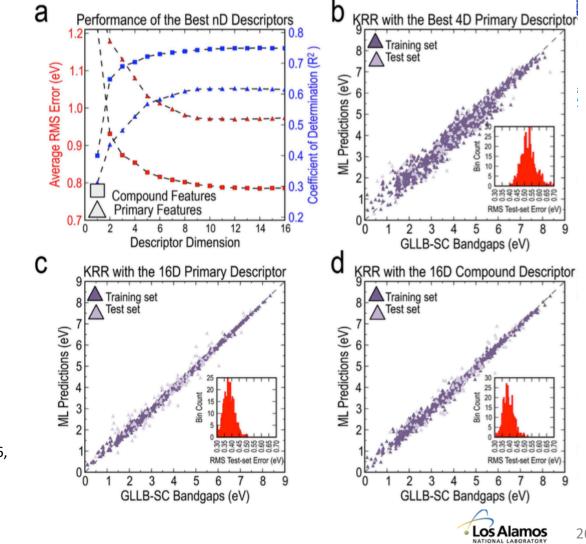
- Establish a quantitative trend between descriptors and endpoint
 Algorithms dependent
- > If based on simulated data only, experimental validations are needed
- > Accelerate the process of new materials discovery

Example Problem ?

Predict Band Gaps for Double Perovskites

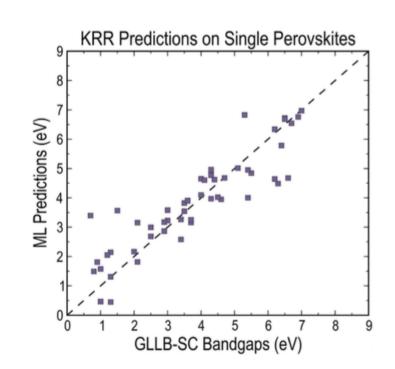


Pilania, G., Mannodi-Kanakkithodi, A., Uberuaga, B. P., Ramprasad, R., Gubernatis, J. E., & Lookman, T. (2016). Machine learning bandgaps of double perovskites. Scientific reports, 6, 19375.



Predict Band Gaps

Performan		ML mod criptors	els with p	Performance of KRR ML models with compound descriptors					
Descriptor	Traini (90	0	Test se	t (10%)	Descriptor	Traini (90		Test set (10%)	
Dimension	rms error (eV)	R ²	rms error (eV)	R ²	Dimension	rms error (eV)	R ²	rms error (eV)	R ²
1-D	0.959	0.634	1.056	0.546	1-D	0.954	0.638	1.056	0.545
2-D	1.059	0.554	1.114	0.493	2-D	0.888	0.686	0.879	0.685
3-D	0.689	0.811	0.867	0.692	3-D	0.774	0.762	0.777	0.753
4-D	0.306	0.963	0.501	0.897	4-D	0.716	0.796	0.742	0.775
5-D	0.270	0.971	0.529	0.885	5-D	0.566	0.872	0.637	0.834
6-D	0.302	0.968	0.521	0.889	6-D	0.502	0.900	0.594	0.855
7-D	0.356	0.949	0.510	0.892	7-D	0.426	0.928	0.554	0.875
8-D	0.281	0.969	0.429	0.925	8-D	0.437	0.924	0.563	0.870
9-D	0.219	0.981	0.406	0.932	9-D	0.399	0.937	0.550	0.876
10-D	0.139	0.992	0.397	0.935	10-D	0.300	0.964	0.484	0.904
11-D	0.178	0.987	0.413	0.930	11-D	0.249	0.975	0.455	0.915
12-D	0.074	0.998	0.393	0.936	12-D	0.222	0.980	0.451	0.917
13-D	0.137	0.993	0.365	0.944	13-D	0.187	0.986	0.418	0.928
14-D	0.110	0.995	0.397	0.935	14-D	0.169	0.989	0.413	0.930
15-D	0.087	0.997	0.377	0.941	15-D	0.144	0.992	0.376	0.942
16-D	0.080	0.997	0.371	0.939	16-D	0.132	0.993	0.360	0.947



Pilania, G., Mannodi-Kanakkithodi, A., Uberuaga, B. P., Ramprasad, R., Gubernatis, J. E., & Lookman, T. (2016). Machine learning bandgaps of double perovskites. Scientific reports, 6, 19375.

27

Key words

Machine Learning:

Alternative method where all possible data don't need to be computed.

- Conventional (Shallow) Learning:
 - Based on existent experimental data /theoretical simulations
 - Diverse dataset
 - > Define a <u>Target Property</u> Endpoint (This is the property you want to predict)
 - > Data mining: Extracting information already available, as applicable to predict Endpoint
 - Descriptors: Properties that are related to target property, which, when varied, may affect the target property

Key words

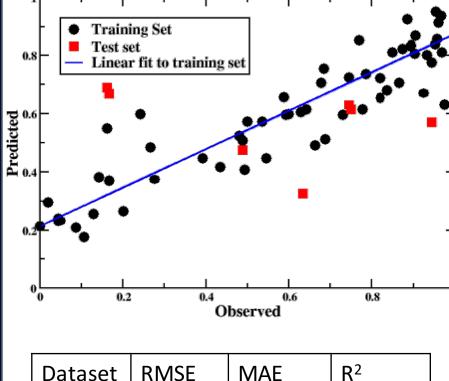
> Identify what type of problem it is: classification or regression

- Choosing Algorithms (Classification or Regression):
 - ➤ Linear
 - > non-linear (Random Forest, Support Vector Machine etc.)

Model Development:

- Divide dataset (training (on which your model will be built on), test (on which you will test your model) and validation set (test the true capability of model)
- > Both training and test sets are subjected to vary and are used during model building
- \succ <u>Validation set</u> is kept untouched and used at the very end.
- ➤ How do you decide what's a good model ???

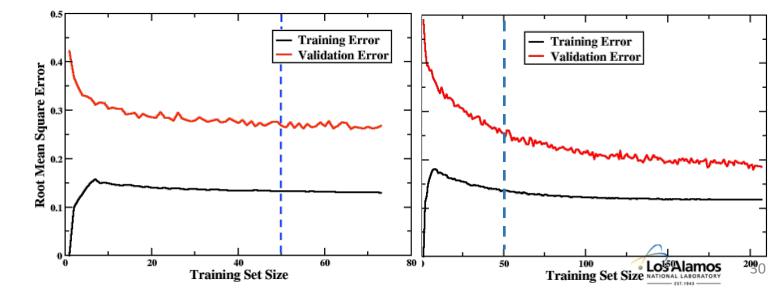
Key Points with quick Example plots



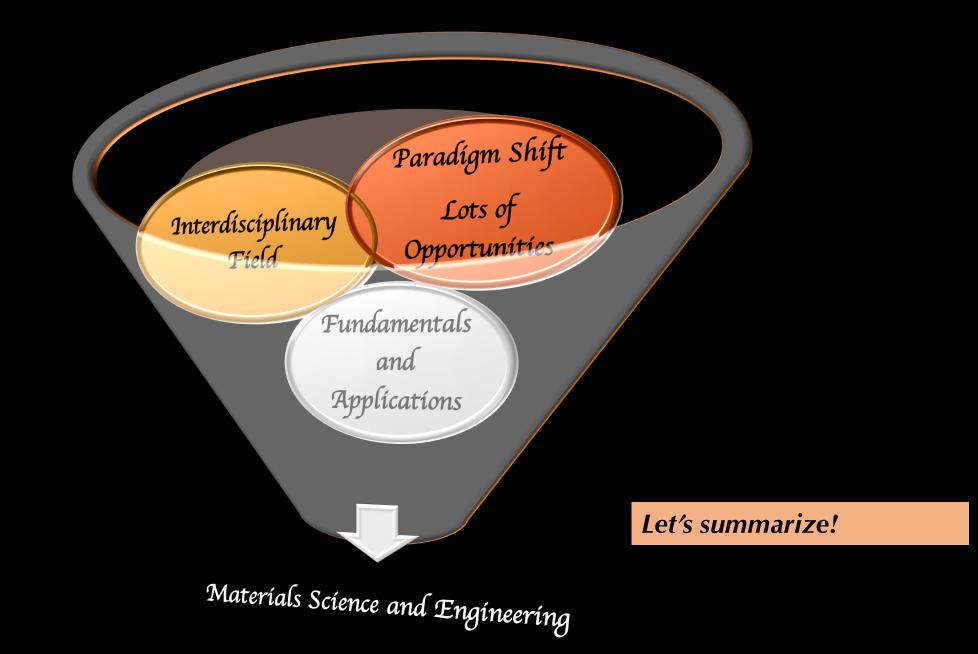
- For a comparatively small dataset sizes, these error values for training and test sets are going to vary: <u>statistical fluctuation</u> of some sorts
- Cannot be used to determine the optimal performance of a model
- Learning Curve:
 - Model predictability over a varying number of training sets

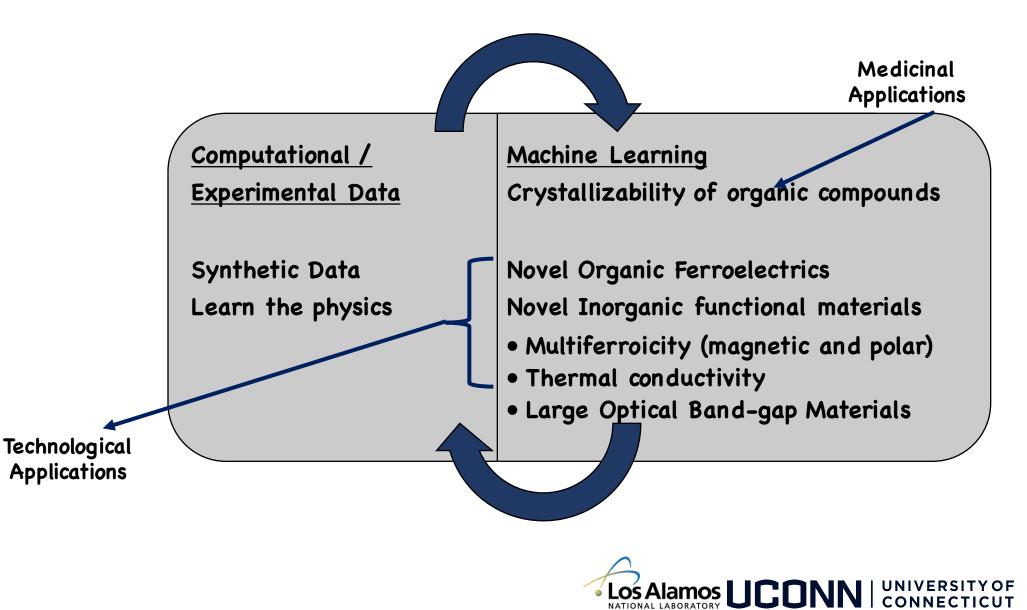
Dataset	RMSE	MAE	R ²
Train	0.14	0.11	0.86
Test	0.19	0.15	0.00

Training Set Size = 70, Test Set Size = 8



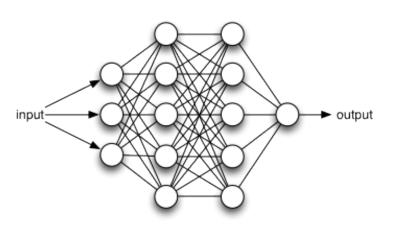
MATERIALS SCIENCE AND ENGINEERING



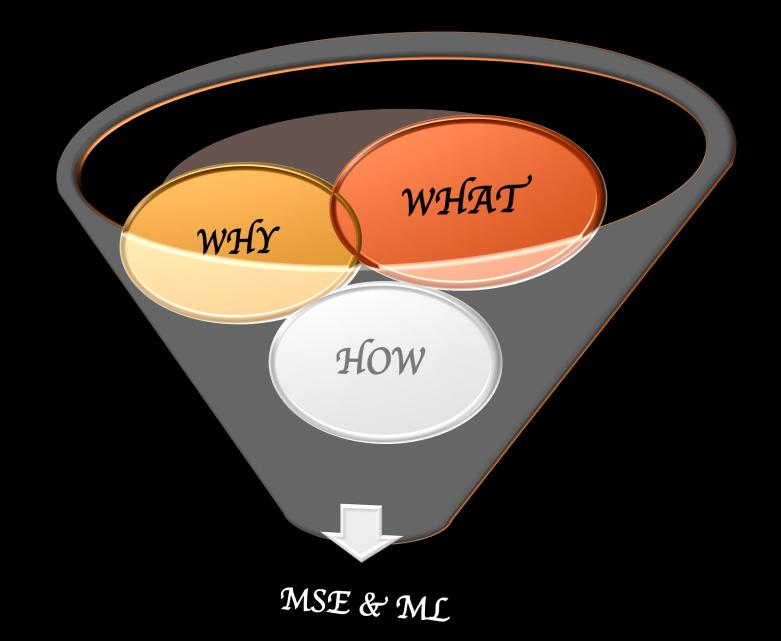


DAILY USES (WHAT I DIDN'T)

Search Engines Machine (Deep) Learning Maps E-mails **Big Data-set** Shopping Train Neural-net with layers <u>Self-driven cars</u> (No descriptors) Face-recognition <u>Smartphones</u> Prediction



MACHINE LEARNING IN MATERIALS SCIENCE



ACKNOWLEDGEMENTS

Questions!!!

Supercomputing Challenge Kickoff Organizers

LANL Advisor: Dr. Jian-Xin Zhu

UConn Advisor: Prof. Serge Nakhmanson

All Attendees of this workshop

Contact: ayana.ghosh@uconn.edu

35