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INTRODUCE 
YOURSELF!

Your NAME!

Your favorite material? 
(Eg. Coffee mug, soccer ball …)

Taken	at	Old	Town	Square,	Prague



WHAT 

WHY

TIME
SPAN

ØWhat is Materials Science and Engineering ?
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OUTLINE

ØWhy should you be interested?

Ø Latest Trends
ØUse of Machine Learning 

(Big Data-driven science)

Ø Fundamentals of Materials ~25 minutes
ØUse of Machine Learning ~ 35 minutes
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WHAT ?
Materials Science & Engineering (MSE) Tetrahedron

Ø Materials Science develops the fundamental understanding of the relationships and structure of materials.

Ø Materials Engineering uses this understanding to engineer (design) materials for real-life applications. 
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MATERIALS CLASSIFICATION: LET’S IDENTIFY…

https://cdn-a.william-
reed.com/var/wrbm_gb_food_pharma/storage/images/5/9/9/1/
2501995-5-eng-GB/Coke-passes-green-for-Go!-with-UK-traffic-
light-nutrition-labeling.jpg

https://img.etsystatic.com/il/d1eb21/14160405
07/il_570xN.1416040507_bepi.jpg?version=0

http://cleanleap.com/sites/default/files/images/a
dditional/2918/coke_bottles.jpg

Metals

Ready 
for 

Quiz!!!

Ceramics Polymers

Materials Classification

Subclasses: Composites, Semiconductors, Smart Materials , Biomaterials



CAN YOU CLASSIFY ?

Captured	at	Santa	Fe,	NM Captured	at	Kouty,	Czech	Republic
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PERIODIC TABLE
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CHARACTERISTICS OF METALS, CERAMICS AND POLYMERS

Ø Pure elements or 
combinations of metallic 
elements (alloys) 

Ø Metallic bonding 

Ø Good electrical conductors 

Ø Good heat conductors 

Ø Shiny appearance - not 
transparent 

Ø Strong (High Strength, 
Stiffness)

Ø Deformable

Ø At times Magnetic (Fe)

Ø Compounds between 
metallic and non-metallic 
elements

Ø Ionic or covalently bonded

Ø Hard

Ø Brittle

Ø Electrical insulators

Ø Poor thermal conduction

Ø Heat & corrosion resistant

Ø Can be transparent or 
opaque 

Ø Organic compounds based on 
C, H and other non-metallic 
elements 

Ø Covalent and secondary 
bonding 

Ø Huge variety of properties 

Ø Low densities

Ø Non conductors

Ø Low melting points 

Ø Can be very flexible 
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SELECTION OF MATERIALS FOR REAL-LIFE APPLICATIONS

Determine the Application

Required Properties for appropriate uses

(Mechanical, Electrical, Thermal, Magnetic, 
Optical)

Pick Candidates

(Develop Understanding about Structure, 
Composition) – Does it relate to the 
Application of interest ?

Processing

(Make the materials and also improve 
properties according to the requirements of 
applications)

Casting, Sintering, Vapor Deposition, 
Doping, Forming, Joining, Annealing

Apply

Prepare 
Applications
Select Schools

Pick 
Major

Analogy
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QUICK RECAP

Materials	Classes Classification
Characteristics
Applications

Relate	
Structures	to	
Properties

Ø What is Materials Science and Engineering ?



11

STRUCTURE: LENGTH SCALES

Ø Structures at many length levels

Ø Electronic (sub-atomic)
Ø Atomic (molecular, chemical)
Ø Crystal (group of atoms)

Ø Microstructure (visible with microscope)
Ø Macrostructure (you can see with naked eye)
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BONDING: PRIMARY
Ionic Bonding Covalent Bonding

Ø Elements with large electronegativity difference
Ø Non-directional, strong
Ø Generally Ceramics

Ø Non-conducting
Ø Hard
Ø Brittle
Ø Thermal Insulator

Ø Elements with small electronegativity difference
Ø Generally polymers, semiconductors

Ø Non-conducting
Ø Hard
Ø Brittle
Ø Insulating
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BONDING: PRIMARY
Metallic Bonding Quick Quiz!!!

Ø Availability of free electrons
Ø Mixed Ionic-covalent character
Ø Generally metals, alloys

Ø Good electrical and thermal conductors

Ø Identify types of bonding

Ø Diamond
Ø Glass (silicates)
Ø Plastics

Secondary Bonding
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BONDING AND PROPERTIES

Bond Type Bond Energy (KJ/mol)

Ionic 
Non-directional (ceramics)

625-1550

Covalent
Directional (polymers, semiconductors, even few ceramics)

520-1250

Metallic
Non-directional (metals)

100-800

Secondary 
Directional (inter-chain polymers, inter-molecular in molecular crystals)

<40

Ø Higher the bond energy, more difficult it is 
to break the bond

Ø Consequences…

Ø Strongly bonded compounds – Higher 
melting temperature

Ø Weakly bonded compounds – Higher 
coefficients of thermal expansion

Bonding
Materials Type
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QUICK REVISION

Materials	Classes Classification
Characteristics
Applications

Relate	
Structures	to	
Properties

Ø What is Materials Science and Engineering ?
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CRYSTAL STRUCTURES IN 2D

Lattice Basis of Atoms

Crystal Structure 
(2D)
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CRYSTAL STRUCTURES IN 3D

How can you make them !!!

Ø Key Parameters to look for …
Ø Lattice parameters
Ø Unit cell volume
Ø Angles
Ø Bond Length
Ø Lattice Planes

Ø Can you classify the type of bonding in these ?
Ø Atomic Packing Factor, Coordination numbers, types of 

crystals systems 

Let’s play with Vesta & More! 
(Follow Handouts)
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CRYSTALS AS BUILDING BLOCKS

Ø Engineering Applications

Ø Single Crystals
Ø Anisotropic
Ø Diamond single crystals for abrasives
Ø Single crystal nickel alloys for turbine blades

Ø Polycrystalline
Ø Most engineering materials are polycrystalline
Ø Isotropic 
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MATERIALS PROCESSING (ENGINEERING)

Raw Materials

Naturally Occurring Minerals Beneficiated Materials Synthetic Materials
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MATERIALS SCIENCE AND ENGINEERING

Why Machine Learning?
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WHY MACHINE LEARNING IN MATERIALS SCIENCE?

https://www.nomad-coe.eu/uploads/images/News/NOMAD_new_paradigms_material_science.png

NOMAD:

https://www.nomad-
coe.eu/index.php?page=centre-of-
excellence

Materials Project:

https://materialsproject.org

ICSD:

https://icsd.fiz-
karlsruhe.de/search/basic.xhtml

Useful Weblinks:
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Introduction to Machine Learning

Ø QSPR (Quantitative	Structure	Property	Relationship)	 ->	Establish	relations	between	structure	of	a	molecule	and	its	
chemical	property

Tropsha,	Alexander.	"Best	practices	for	QSAR	model	
development,	validation,	and	exploitation."Molecular	
informatics 29.6-7	(2010):	476-488.

Example Problem ?
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Introduction to Machine Learning: 
Drug Discovery

Wicker,	J.	G.,	&	Cooper,	R.	I.	(2015).	Will	it	
crystallise?	Predicting	crystallinity	of	molecular	
materials. CrystEngComm, 17(9),	1927-1934.

Pillong,	M.,	Marx,	C.,	Piechon,	P.,	Wicker,	J.	G.,	
Cooper,	R.	I.,	&	Wagner,	T.	(2017).	A	publicly	available	
crystallisationdata	set	and	its	application	in	machine	
learning. CrystEngComm, 19(27),	3737-3745.

Ø Crystalline	or	non-crystalline	

Non-crystalline crystalline Total

Training 13440 13453 22733

Test 4480 4485 8965

Total 17920 17938 35858

Ø Molecular	Descriptors

Ø Build	models

Ø Accuracy:	79%

Ø 319	small	molecules	in	18	different	 solvents

Ø Total	of	5710	compounds
Ø Training	(50%)

Ø Molecular	Descriptors,	build	models,	accuracy

Ø Crystalline	or	non-crystalline,	 solvents	dependency	
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COMPUTATIONAL MATERIALS SCIENCE? (MACHINE LEARNING IN MATERIALS SCIENCE)

Materials

Synthesis

Discovery

Refinements

Characterization

Ø Wavefunction -> DFT -> tight binding, force fields -> continuum 
mechanics, rate equation -> finite element modelling

Ø Electronic -> atomistic -> microstructure -> macroscale

Ø Need for computational approach 
applicable to all length scales
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HOW DOES IT WORK?

Ø Establish a quantitative trend between descriptors and endpoint
Ø Algorithms dependent

Ø If based on simulated data only, experimental validations are needed

Ø Accelerate the process of new materials discovery

• Chemical formula
• DFT Simulations:
• Optimized 

Geometry
• Force fields

Simulated 
(Synthetic) 

Data

• Structural or 
chemical

• Sometimes 
correlated

• Identifying most 
important     
descriptors

Descriptors 
(Features)

• Energy
• Conductivity
• Band Gap
• Polarization
• Magnetic Property

Endpoint

Example Problem ?
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Predict Band Gaps for Double Perovskites

Pilania,	G.,	Mannodi-Kanakkithodi,	 A.,	Uberuaga,	B.	P.,	Ramprasad,	R.,	Gubernatis,	J.	E.,	&	
Lookman,	T.	(2016).	Machine	learning	bandgaps	of	double	perovskites. Scientific	reports, 6,	
19375.
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Predict Band Gaps

Pilania,	G.,	Mannodi-Kanakkithodi,	 A.,	Uberuaga,	B.	P.,	Ramprasad,	R.,	
Gubernatis,	J.	E.,	&	Lookman,	T.	(2016).	Machine	learning	bandgaps	of	
double	perovskites. Scientific	reports, 6,	19375.
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Key words

Ø Machine	Learning:
Ø Alternative	method	where	all	possible	data	don’t	need	to	be	computed.

Ø Conventional	 (Shallow)	Learning:
Ø Based	on	existent	experimental	data	/theoretical	simulations

Ø Diverse	dataset	

Ø Define	a	Target	Property	– Endpoint	 (This	is	the	property	you	want	to	predict)

Ø Data	mining:	Extracting	information	 already	available,	as	applicable	to	predict	Endpoint
Ø Descriptors:	Properties	 that	are	related	to	target	property,	which,	when	varied,	may	affect	the	target	

property	



29

Key words

Ø Identify	what	type	of	problem	 it	is:	classification	or	regression

Ø Choosing	Algorithms	 (Classification	or	Regression):
Ø Linear	
Ø non-linear	 (Random	Forest,	Support	Vector	Machine	etc.)

Ø Model	Development:
Ø Divide	dataset	(training (on	which	your	model	will	be	built	on),	 test (on	which	you	will	test	your	

model)	and	validation set	(test	the	true	capability	of	model)
Ø Both	training	and	test	sets	are	subjected	to	vary	and	are	used	during	model	building
Ø Validation	set	is	kept	untouched	and	used	at	the	very	end.

Ø How	do	you	decide	what’s	a	good	model	???
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Key Points with quick Example plots

Dataset RMSE MAE R2

Train 0.14 0.11 0.86
Test 0.19 0.15 0.00

Training Set Size = 70, Test Set Size = 8

Ø For	a	comparatively	small	dataset	sizes,	these	
error	values	for	training	and	test	sets	are	going	
to	vary:	statistical	fluctuation	of	some	sorts

Ø Cannot	be	used	to	determine	 the	optimal	
performance	of	a	model

Ø Learning	Curve:
Ø Model	predictability	over	a	varying	

number	of	training	sets
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MATERIALS SCIENCE AND ENGINEERING

Let’s summarize!



SUMMARY I (WHAT I BRIEFLY TALKED ABOUT)

Computational / 
Experimental Data

Synthetic Data
Learn the physics

Machine Learning
Crystallizability of organic compounds

Novel Organic Ferroelectrics
Novel Inorganic functional materials
• Multiferroicity (magnetic and polar)
• Thermal conductivity
• Large Optical Band-gap Materials

Technological 
Applications

Medicinal 
Applications



DAILY USES (WHAT I DIDN’T)

Search Engines
Maps
E-mails
Shopping
Self-driven cars
Face-recognition
Smartphones

Machine (Deep) Learning

Big Data-set
Train Neural-net with layers
(No descriptors)
Prediction
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MACHINE LEARNING IN MATERIALS SCIENCE
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