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Comparing Sparse and Dense Neural Networks:
Using AI to Detect Cancer.

Charles M. S. Strauss, Austin M. Thresher, Garrett T. Kenyon

Executive Summary

Pathologists view slides containing millions of cells, and gigabytes of
data, to discover tumors [3]. Even highly trained pathologists, however,
may still come to di↵erent diagnoses [3]. To assist pathologists, deep
learning models have been developed to provide an ”extra set of eyes” [5].
However, deep learning is a black box algorithm, in which the reasons for a
given decision are often unclear. Moreover, adversarial examples demon-
strate that deep learning often relies on meaningless or non-semantic fea-
tures [2]. Here, we apply a type of transfer learning based on autoencoders
for annotating pathology slides. Such an approach indicates which pix-
els the models uses as evidence for tumors, making their decisions more
explainable. Two types of autoencoder are examined: a deep denoising
bottleneck autoencoder, and a sparse autoencoder. We find that both
autoencoders did well at tumor discovery at the single pixel level, sup-
porting AUC ROC scores of approximately 0.85 on holdout slides. To
better visualize what features the models were using for classification, we
preformed standard adversarial attacks against the deep denoising bottle
neck autoencoder. We found that while some attacks appeared seman-
tically reasonable, others did not. Small amplitude attacks against the
deep denoising bottle neck autoencoder transferred poorly to the sparse
autoencoder, suggesting that the two classifiers may use di↵erent criteria
for classification. We conclude that autoencoders represent an approach
to developing tools for assisting pathologists.

1 Introduction

Tumor discovery in biopsies is currently a task done by human pathologists,
requiring an enormous amount of training and manual viewing of millions of
cells. Even highly trained pathologists can miss small tumors, or disagree on the
interpretation of an ambiguous region [3]. To help pathologists be more accurate
by providing ”an extra pair of eyes”, deep learning models have been trained on
datasets of annotated pathology slides [3]. On whole-slide-classification, some
deep learning models have outperformed human pathologist.

However, trained pathologists can not only spot a tumor in tissue slices
(pathology slides), but they can also explain how they classified the tissue. In
particular, pathologists can annotate which regions show evidence of tumor and

1



which regions do not, and do so at the cellular level. Although these complex
deep learning models appear to have human-pathologist-level performance, no-
body can currently tell exactly how these complex deep neural networks find
cancer, and the FDA does not allow black box (inexplicable) models for use in
medicine. It frequently occurs that minute pixel-level changes to an image can
“trick” the classifier into emitting the wrong classification. These alterations
can be so slight that humans can’t even perceive them. Thus the combination
of not knowing what a deep neural net uses to find tumor and unexpected ex-
treme sensitivity to small artifacts in images (such as a lens glint or unevenness
in staining the tissue) is a grave concern for AI medical diagnosis.

Our work addresses both of these issues. First, we compare the ability
of a deep neural network to extract information from the slides to a di↵erent
type of neural network, based on sparse coding, (We choose this approach be-
cause sparse coding concentrates the decision features into a smaller set than a
deep network, and thus simplifies interpretation.) we show that this (simpler)
sparse coded approach performs equally well to a (complex) deep neural net for
identifying cancer regions in pathology slides. Second, we will compare the two
networks on their robustness to small image artifacts. Not every random pertur-
bation will cause miss-classification. Instead, we discover a small perturbation
that causes miss-classification (known as an Adversarial Example). These allow
quantitative measures of robustness, and insight into what features the models
uses to make decisions.

Our approach is not intended to replace the Doctor but instead guide and
assure their own assessment. Notably, both the deep and sparse models we
create identify the pixels that are tumorous. Pixel-level classification is critical
because it directly shows the Doctor what in the slide is causing the cancer
diagnosis, and thus aids the Doctor’s judgment of the diagnosis. In contrast,
most other approaches to pathology slide analysis do not resolve cancer at the
pixel level, but instead predict whether a tumor is likely in the slide somewhere,
without identifying the source of the evidence for the Doctor to assess.

We demonstrate two models capable of making lesion-level annotations: a
Deep Convolutional Neural Network (DCN) model, and a Sparse Coding (SC)
model. Adversarial examples are generated on the DCN model, and transferred
to the SC model with varying amounts of the perturbation. Next, AUC ROC
and AUC PR were used to determine how well each model could classify on the
lesion-level.

2 Methodology

2.1 Dataset

We use the Camelyon 2016 dataset. We segmented each pathology slide into
tiles of size 512x512. The slides also consist of large areas of white space, so
areas that were found to be mostly white were left out entirely.

Labels were rasterized from the XML annotations provided by the Came-
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lyon 2016 dataset. Each slide that was not meant for testing has an XML file
associated with it, containing the actual pathologist annotations. A program
that checked if a point was inside the tumor annotation area was written, and
used to create black and white tiles of the annotations. These labels are of the
shape 128x128x1.

Figure 1: Left: Pathologist annotations. Red lines encircle tumorous areas.
Green lines encircle non-tumorous islands. Right: Labels created for training.
White is tumor, black is non-tumor.
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2.2 The Basic Model

Figure 2: Autoencoder neural network and classifier are trained separately.
Autoencoder compresses the tile into the red latent representation. The latent
representation is then used to predict a tumor heat map in the classifier.

The basic model is an autoencoder, which feeds a classifier. The autoencoder
is trained to reconstruct pathological tiles.

The classifier then takes the latent representation from the autoencoder,
and returns confidence levels in a 128x128x1 map of the slide. The classifiers
were trained using Binary Cross Entropy loss. Finally, their final outputs were
compared to the actual annotations through ROC and PR curves. ROC curves
were used by others who did the same task with deep learning, thus allowing us
to compare our results to theirs. PR is used for its capacity to better represent
highly unbalanced datasets, and to further compare the performance of the DCN
and SC models.

2.3 The DCN model

The DCN model consists of a deep denoising autoencoder, and deep classifier.
Because this model will be attacked with adversarial noise, it is trained as a
denoiser, meaning that it learns to remove noise from tiles. See Figure 3 for
performance on reconstruction.

2.4 The SC model

The SC model uses a sparse autoencoder to compress input tiles, and a deep
classifier to generate tumor heat maps. The sparse encoder was originally built
by [1], and adapted for use with our deep classifier. Sparsity enforces a con-
straint where the minimum number of neurons which best represent the given
information are used, hopefully making a sparse representation more di�cult to
alter. See Figure 4 for performance on reconstruction.
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Figure 3: Top Row: noisy inputs to deep denoising autoencoder (DCN). Row
2: Autoencoder reconstructions from noisy data. Row 3: noiseless inputs to
deep denoising autoencoder. Bottom Row: Autoencoder reconstruction from
noiseless inputs. Note: Details are preserved across the bottleneck, validating
the autoencoders latent representation.

Figure 4: Left: original tile. Right: reconstructed tile. Although the recon-
struction may look more blurry than the original, detail on the cellular level
and higher is clearly preserved.
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2.5 Adversarial Examples

Adversarial Examples were generated using the Fast Gradient Sign Method
(FSGM). After the gradient was taken, only a fraction was added to the input
tile, at 1%, 10%, and 15%. Both models were subjected to the adversarial
examples generated through the deep model. The 1% perturbation that was
added represents a change so small that it should be meaningless. No adversarial
examples were found for the sparse model. Outputs for original tiles, and tiles
with 1% and 15% of the perturbation are shown.

3 Results

We found that the sparse model was more robust to adversarial examples than
the deep model. Although, further research is warranted to determine if adver-
sarial examples generated for the sparse model can fool the deep model, and if
any adversarial examples generated could fool a human pathologist.

3.1 The DCN model

Figures 5 & 6 show how adding the 1% perturbation to the input of the DCN
model caused a 5% change in AUC ROC, and 14% change in AUC PR. The
perturbations added make no sense to a human (the added noise does not reflect
any features seen in pathological slides), so the DCN model can not be verified
as explainable.
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Figure 5: Blue: AUC ROC score of 0.85 for tiles that had no adversarial per-
turbation (straight from the dataset). Red: AUC ROC score of 0.40 on tiles
with the 15% perturbation. A true random guesser would get an AUC ROC of
0.50 here.

Figure 6: AUC PR is reduced to a third of its original AUC by the 15% pertur-
bation.
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Figure 7: Left: Original tile with no perturbation. Right: Predictions on tiles
with no perturbation. This slide has an AUC ROC of 0.85, and an AUC PR of
0.67.

Figure 8: Left: Slide with 1% perturbation. Right: Predictions on slide to the
left. This slide has an AUC ROC of 0.80, and AUC PR of 0.53.

Figure 8 is nearly identical to Figure 7 in input slides, however the predictions
are nearly inverted (tumor is where non-tumorous annotation should be and visa
versa). This demonstrates how little of a change is required to fool the DCN.
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Figure 9: Left: Slide with 15% perturbation. Right: Predictions on slide with
15% perturbation. This slide has an AUC ROC of 0.40, and AUC PR of 0.21.
The predictions are completely inverted.

3.2 The SC model

The same three adversarial examples shown earlier were tested on the SC model.
Below are predictions for the 15% and 1% added perturbation slide, and original
slide.

Figure 10: Left: Slide with 15% perturbation. Right: SC model predictions
on slide with 15% perturbation. Tumor is no longer recognised with much
confidence. However slide is not inverted, so is more robust than DCN model.

9



Figure 11: Left: Slide with 1% perturbation. Right: SC model predictions
on slide with 1% perturbation. The DCN model was nearly inverted by this
adversarial examples, yet the SC model is unaltered.

Figure 12: Left: Original Slide with no perturbation. Right: SC model predic-
tions on original slide.

Figures 11 & 12 appear to match, which makes sense, considering that the
tiles used to create them appear to match.
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Figure 13: Blue: AUC ROC score of 0.84. Red: AUC ROC score of 0.55.

Figure 14: Blue: AUC PR score of 0.76. Red: AUC ROC score of 0.31.

The SC model was e↵ected by the adversarial examples generated for the
DCN model. It was not e↵ected quite as adversely, though was e↵ected a
noticeable amount by the 15% perturbation in Figure 10, where its confidence
levels were severely weakened.
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4 Discussion

In a previous study, we found that small transferable adversarial perturbations
do not transfer well to sparse coding [4]. This conclusion was validated by the
fact that the SC model was unaltered by the 1% perturbation, while the DCN
model was nearly inverted. Here, we also see that amplifying the adversarial
perturbation wound up decreasing metrics for the sparse model as well. One
reason for this may be that the adversarial example also contained meaningful
features which, when amplified, actually turn images of tumors into non-tumors.

The adversarial examples we viewed did add meaningful changes to the tiles,
such as changing the color from pink to purple, or even adding cell-like shapes.
Below is an example of meaningful and meaningless adversarial perturbations.

Figure 15: First Column: original tile. Second Column: 1% perturbation.
Third Column: 10% perturbation. Fourth Column: 15% perturbation. Each
corresponding prediction tile was inferred using the deep model. Notice the
appearance of what could be described as nuclei in the third and fourth columns.
This could be an explainable feature to add, which may increase the confidence
in a cell being tumorous. At the same time, the white space in the upper center
area of the tile gains a bar-code like pattern, and the resulting predictions
indicate tumor. This is an example of a non-meaningful perturbation.

Compared to 1% perturbation, 15% perturbation caused the SC model to
lose confidence. We believe that the adversarial examples may have used mean-
ingful features, which tricked the SC model at this percentage of added change.
Even so, the SC model proved to be more robust than the DCN model on mean-
ingless changes. A next step would be to generate adversarial examples to the
SC model, by teaching a Generative Adversarial Neural Network to construct
fake sparse codes, and use the sparse decoder to turn these into tiles.
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5 Conclusion

We created a DNN that achieves state of the art accuracy, and a sparse coding
neural network with almost equal performance. By attacking the DNN classifier
we showed that it is, like almost all DNN classifiers, susceptible to adversarial
examples. We discovered that the very same meaningless adversarial examples
that disrupt the DCN model do not alter the SC model. However, with higher
perturbations, meaningful features arose in the tiles, which altered predictions
in both models.

6 Personal Statement

I, Charles Strauss have written over 4,000 lines of python code for this project,
which I started in June of 2019. Dr. Garrett T. Kenyon, my mentor, brought
me onto this project after having already built the Sparse Coding Autoencoder
with another team. I wrote all of the deep autoencoders, and all classifiers used
in this project myself. I also wrote the code that did the analysis, with guidance
on what algorithms to implement and how they work. Recently, I have been
given even bigger supercomputers to run my code on. I am planning on scaling
up my problem by using larger images. Previously, I used tiles, however now, I
will input entire slides.
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