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Abstract/Executive Summary 

In the society we live in, we find an abundance of taboo topics. Topics that often, while 

important, are seemingly impossible to talk about, and any attempt often ends in political 

disagreements. A topic that falls under this taboo is guns. The topic of guns is one that has 

sprouted much debate and unfortunately little results. The truth is, our political system is slow, 

which can be bad and good, but at a national level, issues do not seem to get better. This pending 

frustration became the motivation for this project. We wanted to find a way that we could tackle 

the problem ourselves. We decided to try to make a gun detection system. With guidance from 

our mentor, this led us into the field of machine learning and neural networks. 

Methodology/Research 

The first step in achieving our goal was to get familiar with the topic. Instructed by our 

mentor, we started off with simple models and gradually moved to something that we wanted to 

use. The first neural network that we implemented was an MLP (Multi layer perceptron). This 

network can be divided into three distinct layers: the input layer, the hidden layer(s), and the 

output layer. Each one of these layers is composed of perceptrons, or artificial neurons. Each 

perceptron can be simply described as a container holding a numerical value. In order to explain 

how the MLP network works, let's analyze the example that we implemented to recognize 

handwritten numbers from one to ten. This example is common and convenient because of the 

easy access to a database of handwritten digits, called MNIST. This set of data includes around 

60,000 images and samples of such digits and is available online. 
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MLPs 

 

The input layer, as the name might suggest, is the layer in which we feed something into 

the system. This particular something is a value assigned to each pixel of an image based on 

color. For our data, since we are only considering black and white images, we use their 

Grayscale number where traditionally black is represented by 0 and white is represented as 1, 

with grays being a number in between zero and one. But, since our images have much more 

white than black, in order to minimize the number of operations, we flipped the values (thus 

making white 0 and black 1). This number is referred to the perceptron's activation, with zero 

being the lowest and one being the highest.  Also, this dataset works with 28x28 pixel images, so 

our total number of pixel values is 784. This happens so that we take each individual pixel value 

and reorganize it into a line that then is fed into the input layer. 
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Before going into the hidden layers, let's first talk about the output layer (as the hidden 

layers get straight into the math). The output layer is simply a set of possible outcomes in the 

network. For our example, the output layer would consist of ten possible outcomes: numbers 

zero through nine. At the end of the process we expect the network to give us a percentage of 

how much or how little it believes the picture is present in each of the possible outputs. The 

number with the highest percentage would therefore be the guess. For example, it could look 

like:  
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The hidden layers are where "learning" happens. Before getting into all the math, let's 

talk about what the hidden layer should do. Ideally, we would like the hidden layers to be able to 

pick out features in the images, like vertical edges, horizontal edges, or loops. In order to 

calculate the values of a perceptron in the first hidden layer, we take all the activation numbers 

from the input layer and multiply them by the weight that connects them with the perceptrons in 

the hidden layer. The weight is a random number, so in order to keep our answer between 0 and 

1 we use an activation function like the Sigmoid or ReLu functions. Even though these functions 

go beyond the high school curriculum, and are usually taught in the college-level, linear algebra, 

we were able to learn how the Sigmoid function is constructed and how it works. Here is what 

we’ve learned: the Sigmoid function (S(x)) is equal to 1 / (1 + e-x), where e is a mathematical 

constant equal to 2.71828… (it’s the limit of (1 + 1/n)n as n approaches infinity, so that the larger 

the n in (1 + 1/n)n, the closer to e). Sigmoid function (S(x)) squishes the value of x into the range 

between 0 and 1, which means that the negative inputs into this function produce a result that is 

close to 0 and positive inputs into this function produce a result close to 1, for example:  

for x = -1, S(x) = 1 (1 + 2.71828…1) = 1 / 3.71828… = 0.26894… 

for x = 0,  S(x) = 1 / (1 + 2.71828…0) = 1 / (1 + 1) = 0.5 

for x = 1,  S(x) = 1 / (1 + 2.71828…-1)  = 1 / (1 + 0.3678794…) = 0.731… 

for x = 3,  S(x) = 1 / (1 + 2.71828…-3) = 1 / (1 + 0.0497871688…) = 0.95257…   and so on. 

Only the highest positive result will light up the corresponding neuron (or node). Knowing this, 

we were able to understand the following Python function used to calculate the result of the 

Sigmoid function: 
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import numpy as np 

def f(x): 

   return 1.0 / ( 1.0 + np.exp(-x) ) 

where: numpy (np) is the name of the Python library widely used by the scientists, f represents 

the Sigmoid function (with x being its input), and exp(-x), a predefined function from the numpy 

library, is used to calculate the value of e to the power of what is inside the parentheses, so -x. 

 Before using the Sigmoid function we add a bias to the perceptron so that we can set a 

required amount of activity before it activates. Thus, the equation would more or less look like: 

; where: is the activation of the (w a  a  a ..  a b)a  
(1) = σ 1 1

(0) + w 2 2
(0) + w 3 3

(0) + . + w n n
(0) +    a (1)  

first hidden layer, the Sigmoid function, b is a bias, and  is the weight that connects theσ  w n  

neurons in layer 1 (  with neurons in layer 0 ( ), as represented by the image below. )a n
(1)  a n

(0)  
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With this equation what we can do is to assign random values to the weights and when 

we feed an image into this network, we do what is called a “back propagation”. We basically 

compare the desired result to what we got and adjust our weights. While this model works fine 

with mini projects, it is not for our end goal. This system has a couple flaws when dealing with 

images. To start with how the input layer works, any image at a higher resolution would have an 

insane amount of perceptrons in the input layer on its own. This would also lead to longer and 

less efficient training times. The way it squishes the image into a line is also problematic when 

dealing with spatial information and even a simple rotation. For these reasons we chose to use a 

CNN (Convolutional Neural Network).  

CNNs 

CNNs, unlike MLPs, use 2D matrix inputs. Instead of flattening the image, we just put 

the values into a 28x28 matrix. To deal with this new input format we can’t use the same hidden 

layers that we used in the MLP, but instead we use convolutional layers. For this reason, instead 

of using weights, we replace them with filters. Filters are used to pick out features in an image 

and are in their simplest form just matrices of themselves. The convolution process is the sliding 

of a filter across an image while solving dot products to create a new image.  
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The image above displays an example of a filter and where the filter would start. 

Calculating the dot product for the scenario illustrated is straightforward and you will end up 

with zero. This zero is then taken and placed on a new pixel map. After this is calculated then we 

move the filter over depending on the chosen stride length. For the sake of simplicity, let's do a 

stride length of one but skip some time into the process where things get more interesting. 

 

 

 

Things get a bit more practical when we reach a place with numbers other than zero. We 

do the exact same thing and calculate the dot product. The process continues until you have a 

new chart. This might not be obvious at first but due to the process not being able to do dot 

products of the outer layers, the final chart ends up being 26x26 pixels. In order to fix this we do 

what is called padding; which basically just adds a layer of zeros around the new pixel map. 
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These new pixel maps are then used to find features. Different filters are capable of finding 

different patterns in the images. 

Filter 1 is good at finding horizontal edges, while filter 2 is good at finding vertical edges. Filters 

like this would probably be found in one of the first convolutional layers and the deeper you get 

into the system, the filters also get more complex. It’s important to say that we don’t design the 

filters ourselves, but set them to random numbers and hope they evolve in certain ways when we 
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feed our training data into the system. This process can be tedious and long, so it is important to 

maximize efficiency where we can. One of the ways this is done is to do pooling before passing 

the filtered images to the next step. In essence, this process shrinks the image without 

compromising the details too much. We choose a pool size and then, in the similar way to the 

convolutional layers, we slide a filter across the image to reduce its size. For example, with a 

pool size of 2x2 you would take the average value, for regular pooling, or the maximum value, 

for max pooling, of a 2x2 section on the upper left of the image and place the new value in a new 

image. Typically, the pool size is also the stride length.  

 

 

  

Original 28×28 image Average-pooled 14×14 Max-pooled 14×14 

 

Since our images are so small, the max pooling has the effect of removing too much detail and 

even regular pooling is cutting it close. “In the MLPs, the process was to multiply input nodes by 

weights, add in a bias value, then apply the activation function. In a CNN, the weights are the 

filters that form the convolutional layer. They are applied during the convolutional step. Bias 
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values can then be added to the results and activation functions applied. That is, each element of 

the resulting convolved image data has a bias value added, and then each value is run through the 

activation function, producing another set of data, activated data.” (Gunter, D. 2019). 

Convolutional Neural Networks). This activated data is then squished like you saw in the first 

step of the MLP system and follows that structure afterwards. The difference is that now every 

perceptron in the hidden layer corresponds directly to the presence or absence of some feature in 

the image. 

Mask R-CNN 

For our final model we ended up using a Masked R-CNN. The “R” in the name stands for 

the region. This CNN adds a feature where it tries to predict objects of interest in the image. The 

Mask part of the CNN basically tries to classify every pixel to see if it is a part of an object. It 

does so by comparing color and texture among other things. In essence, it takes pixel mats that 

have been created by convolving and/or pooling the original image and it maps them as a mask 

on the original image by a process called ROIAlign. The other reason we chose it is that it has 

very impactful results with the masks making for some very neat visuals. To be perfectly honest, 

there is a lot about Masked R-CNNs that we are yet to fully dive into and understand. 

VGG Image Annotator  

VGG Image Annotator (VIA) is a simple manual annotation software that can be used for 

images, videos, and audio. VIA is an open source annotator that is based on HTML that runs in a 

web browser and does not require any installation. In this case, VIA annotation was used to 

annotate our gun images. First, we needed to upload our images to the VIA annotator. Next, we 
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created attributes by indicating if the images displayed a handgun or a long gun and if they were 

in-scene or isolated. We then used the region shape tool to trace around the gun by marking 

points as shown in the image below.  

  

We needed to do this for all guns that were in the images. After annotating hundreds of images 

the annotations were saved as .JSON files, which we then used as inputs to our machine learning 

(ML)  system. 
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Results 

As we fed images to our ML system we received various types of results. Under each 

image we have provided a description of our results as well as why we believe our results came 

back the way they did.  

 

In this case, the gun was detected almost perfectly. Our system was able to outline the gun 

properly due to all the images we used to train our system and the various angles of the images 

we trained it with.  
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In this image, our system was confused due to the shape of the wooden clip. The shape of it 

resembles the barrel of a gun, and the bottom part is similar to the handle of a gun. 

 

 

In this image our system did not detect anything. We believe this was because we did not feed 

enough images of the front of a handgun into our system, which is why it did not recognize 

anything.  
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This was another great result since our system was able to properly detect the gun. We used 

many images showing a hand gun from the side in our training set, which is why our system was 

very accurate in this particular scene. 
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In this image our system was able to detect the handle of the gun properly but it missed the rest 

of the barrel of the hand gun. We believe that this is due to the contrast in the image. Since the 

background is also black, it had trouble detecting the rest of the gun.  

 

This system found the gun fairly well and outlined it well despite the complexity of the gun. The 

only issue was that it thought it was a handgun and not a long-gun. This was because most of our 

current training set has been hand guns with a limited amount of long-guns. 
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We also used some images that were definitely not guns and our system did a great job getting it 

correct.  

Conclusion 

This has been an incredible process and opportunity for us to attempt to better the world 

we live in. We learned how to approach a massive problem through hard work, trial and error. 

We learned about various types of neural networks and through research and trials we found that 

Mask R-CNNs were a great way to approach this problem. Through this long process we came 

away with a well functioning system that can detect guns very well, especially handguns. We 

learned the values of teamwork and research to help guide us through the process.  Although our 

system is not perfect, we have worked hard to create a system that will serve as a step to a better 

future.  
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Future Work  

As we mentioned before, our system is not perfect. This is a massive project that could 

take years to improve as we continue to do research on machine learning and image recognition. 

Something that we can do in the near future is to feed more images from various angles and 

different backgrounds into the system. This would improve the accuracy as well as give us better 

results all around. Our system struggled with identifying guns from the front, which should be 

fixed as we feed more images of guns from the front into the system. In the near future, we could 

also train the system with more images that have difficult backgrounds so that it can find the gun 

in complex scenes. Overall, we hope to improve the accuracy of the system without 

compromising its speed. Our ideal system would be able to detect a gun fast enough in a live 

video stream, so it will help protect people and make the world safer.  
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