
Giving Signatures a Purpose
New Mexico

SuperComputing Challenge

Final Report

April 8 2020

Team 15

Desert Academy

Team Members:

Jonatan Kaare-Rasmussen

Ethan Garcia

Teachers:

Steff Eiter

Project Mentor:

Chris Zappe

Abstract:
In this project our goal was to make a signature forgery classification system. To do this

we decided to use a Neural Network to classify signatures. To use a Neural Network you need

to train it with a label dataset which, in our case, is a set of hundreds of labeled signatures. We

collected these by having people sign a signature 90 times. We then scanned the pages in and

separated them into separate image files using photoshop. We trained the network on the

scanned signatures and the network achieved 96 percent accuracy when we tested it on data it

has never seen before.

Problem:
Signatures have been a way of validation for centuries, but in today's world they are not

checked for validation even though we have the tools to do it accurately. When you buy

something with your credit card you need to write a signature. But that data does not go

anywhere, it is just a formality. So, our goal is to fix this issue and write a piece of software that

checks if the given signature is the user's signature or if it is forged.

Method:
To solve this problem we decided to use Artificial Intelligence. We created a Neural

Network that when given an image of a signature it can verify its validity . To create our network

we used a free and open-source google python library called TensorFlow. Using TensorFlow as

well as a few other libraries to assist in formatting the data and matrix calculations we were able

to make a network that can classify a test data set of 25 images with 96 percent accuracy.

What is a Neural Network:
A Neural Network is really just a big function. You input numbers and it outputs

numbers. In order to make the network output the correct numbers you need to adjust the

values of the functions parameters. These parameters are called weights. The structure of a

network is often described by nodes that are arranged in layers and each node in the first layer

is connected to every node in the next layer by a weight. All a weight is is a number that

alongside the node it is connected to on the first layer helps determine the value of a node in the

next layer Every node in the previous layer has a role in determining the value of any given

node in the next layer. In figure one you can a visual representation of an extremely simple

Neural Network. In this example the black arrows represent weights. This figure is a great visual

representation of how a Neural Network is structured

(Fig. 1) A visual representation of a Neural Network.

TensorFlow and Keras:
TensorFlow is a Google library that was written in python to simplify the process of

making a Neural Network. TensorFlow was made to be flexible and fast and is used by both

people new to AI, and professionals. TensorFlow allowed us to use an open source library

called Keras. TensorFlow has a version of Keras built in which simplifies the whole process of

building a Neural Network. Keras is a low-level Neural Network library that focuses on

experimentation and fast prototyping.

Our Process:
We started out this project by making a proof of concept to check if we could make

working Neural Networks. We used a MNIST fashion dataset from the internet to train our

network and achieved about 90 percent accuracy. The dataset consisted of images of clothes

that the network had to classify. This is different from signatures, but it worked well as a

proof-of-concept.

Our dataset has 5 different types of signatures in the training and testing datasets. There

are 5 test images and 82 training images for each type of signature. Collecting this data was a

big roadblock for this project. Our initial approach was to do everything digitally so we made a

simple processing drawing program that could be used to speed up the data collection process.

The problem we had with this approach was that most people do not know how to use a

drawing tablet. For this reason we decided to switch tracks. Our new idea was to have people

use pen and paper and scan their signatures in. To do this we created a chart that people filled

out and we scanned in. After getting the scans we separated the image files using photoshop

and prepared them for our network. This worked a lot better but our first dataset had too many

types of signatures and not enough of each type for the network to effectively train on it.

Training the network on this dataset resulted in a network that could classify signatures with 22

percent accuracy. This was not the result we were looking for so we decided to remake the

dataset. We decided to decrease how many types of signatures there were to 5. We increased

the amount of signatures per person to 90 signatures. We scanned and processed the data and

we ended up with a training dataset of 422 images and a test dataset of 25 images. Also to

avoid asking for real signatures. Instead we asked for words, like man123 or spoon. We trained

the data on this dataset and the network got a success rate of 80 percent, a huge improvement

but not quite good enough. So to improve the network further we experimented with how many

hidden layers the network should have and how big they should be. The best combination was a

network with 7 layers in total. The input, the output and 5 hidden layers. Each of the hidden

layers decreases with size which in a sense funneled the data down from the large amount of

input nodes to the very few amount of output nodes.

The Validity:
After seeing that our network classified the signature with a relatively high accuracy we

needed to see how it would work in real life conditions. We tried feeding the network forged

signatures to see how it would handle them and it classified them correctly with a low accuracy.

This is not ideal as a forged signature would ideally be incorrectly classified instead of classified

correctly. One important thing to note when considering the networks used in real life is that the

network was trained to classify with confidence. This means that if the network were to be fed a

signature that it was not trained on the output would say that the signature is in the dataset and

it is confident that it is a certain signature. This is important to note because in a real life

situation like using a credit card we know what the signature should be so if a signature is

written and the network classifies it as someone else's we know that the signature was forged.

There is a chance that the network will classify the signature correctly and therefore not flagging

it but this chance would be lowered the more people's signatures are used to train the network..

We created a small dataset of forged signatures which the network classified them incorrectly

84 percent of the time. This is very close to 4/5 which shows the correlation between the

amount of signatures in the data set as the amount people who wrote their signatures was five

and the amount of possible signatures that the network could classify as forged signatures is 4.

This means that if we have a network trained on 10,000 peoples signatures the amount of

forged signatures that would be classified correctly would be around 0.0001 percent.

Results:
The network we ended up creating worked well considering the dataset that we had to

train it on. With thousands of peoples signatures accounted for in the network, the network

would work even better than it did now. If the network were to be implemented into a real life

situation it would definitely lower the amount of signature forgery when in place. Even in its

current state in which it was trained on a far too small dataset according to our validity test it

would stop over 80 percent of forged signatures. So in short our model is successful and may

actually have a place in real life situations.

Conclusion:
Our goal was to create a program that could flag forged signatures. Our network does

this very well and has potential to do it even better with a more diverse dataset. There are a lot

of things that we can do to improve our model. One big thing that could be worthwhile to look

into is network structure. There are many types of neural network structures that are better at

image classification but they get significantly more complicated and require more data. But even

without a different structure we made a network that has a real use and could be used to stop

credit card fraud.

The Code:

This is the section of code that imports the third party libraries that we used such as TensorFlow

and Numpy.

This the section of code that imports the data set we created. It uses PIL(Python Imaging

Library) and the os library to import the image files on the harddrive to an array.

Here is where we create the labels for our dataset. Also this changes the range of pixel values

for in between 0 and 255 to in between 0 and 1 so the network can understand the data.

This is the code that actually creates the model. The Network has 5 deep layers and The Input

and output layers. The network is made so that all of the outputs add up to one so that the

output says not only what type of signature it is but also would certain it is that it is correct

This is the code that feeds the network the training data. The networks train 5 times on each

image in the dataset. We tried to do more than that but the network became overtrained and got

great scores on the training set but terrible ones on the test set. This is because the network

essentially memorized the training set.

This is the code that tells us how well the network works by testing it on the test dataset.

This is how it looks when the network is training. You can see that the accuracy goes up after

the first time training on the data as well as the loss going down.

This is how it looks after the network has completed Training. You can see that with each epoch

or iteration through the data the accuracy goes up and the loss goes down. You can also see

that the network is slightly overtrained because the accuracy goes down in the test data set.

This is the individual image view of the network's success on the test dataset.

This is an example of the network making the mistake.

Works Cited:

Nielsen, and Michael A. “Neural Networks and Deep Learning.” ​Neural Networks

and Deep Learning​, Determination Press, 1 Jan. 1970,

neuralnetworksanddeeplearning.com/.

Sanderson, Grant, director. ​Neural Networks​. ​YouTube​, YouTube, 1 Aug. 2018,

www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi.

“TensorFlow.” ​TensorFlow​, www.tensorflow.org/.

Yiu, Tony. “Understanding Neural Networks.” ​Medium​, Towards Data Science, 4

 Aug. 2019,

towardsdatascience.com/understanding-neural-networks-19020b758230.

