
unCAPTCHA: AI Recognition of
Distorted Text in Images

Supercomputing Challenge

April 11th, 2021

Team 10

Capital High School

Team Members:

Hansel Chavez

Manuel Bojorquez

Jonathan Garcia

Isel Aragon Miramontes

Teachers:

Barbara Teterycz bteterycz@sfps.k12.nm.us

Irina Cislaru icislaru@sfps.k12.nm.us

Mentor:

Przemek Wozniak wozniak@lanl.gov

mailto:bteterycz@sfps.k12.nm.us
mailto:icislaru@sfps.k12.nm.us
mailto:wozniak@lanl.gov

Contents

Abstract

Introduction

Research
Preprocessing

Thresholding
Connected Components Labeling
Extracting Single Characters
Data Conditioning

Character Recognition
Convolutional Neural Network (CNN)
Training
Testing and Validation

Complete unCAPTCHA
Workflow: From Images to Text
Demonstration

Results
Accuracy
Failure Modes

Conclusion
Future Changes

Acknowledgment

1

Abstract
With the growth of web security, many methods to block web traffic are needed to keep a
web business growing. CAPTCHA has become an important part of web security, since it
helps prevent machines (bots) to spam forum posts and shops from overflowing traffic, if
the bots are successful to push that limit, the website will lose business, and users.
Though after careful analysis, wondering over the future of both machine learning and
web security becomes a bit worrisome. Since, people can easily make machine learning
possible from its open-source Python modules, like TensorFlow and PyTorch. By seeing
if it’s possible to unCAPTCHA and having the machine possibly bypass it will be
worrisome to web business and web activity.

Introduction
Completely Automated Public Turing test to tell Computers and Humans Apart
(CAPTCHA) is a simple test to distinguish between both humans and machines. It is used
to help websites not create a major traffic load from the bots posting messages, video,
audio, and other forms of media. In today’s technology, a boost in machine learning (ML)
has become popular. By testing out how efficient the use of CAPTCHA in websites is,
ML will be needed to see if CAPTCHA does detect any attempts from a bot. There are
different types of CAPTCHAs, from image-based to web cookies. To make it simple,
CAPTCHA’s grayscale distorted text images are used and with it, see if the machine can
read and write the corresponding characters; decoding the distorted text. If the machine
can at least identify most of the characters in the image, then creating a bot with this
machine can not only overflow the amount of traffic to that website but also the
businesses that are running that website. This could affect a small portion of websites that
are easy to decode for the bot.

Research

Preprocessing
In any ML process, it is expected to create, retrieve, and use the data to make the ML
algorithm work as intended. With distorted text, it can be easily generated by using
FakeCaptcha.com, a free user-generated CAPTCHA like distorted text. By generating
these fake CAPTCHAs, it is needed to create a program to extract each character needed
for the ML algorithm to learn and recognize the characters given.

Thresholding
First, the program must be able to see clearly which pixels will be the main letters or
numbers and which is the background. Thresholding can help create this much clearer
coding for each pixel in the distorted text image. Thresholding is used in grayscale
images to check if the pixel value is greater than a threshold value, assigning it to one
value (maybe white), else it is assigned another value (maybe black)[1]. The program can

2

https://fakecaptcha.com
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_thresholding/py_thresholding.html#simple-thresholding

use different thresholding types, but the one chosen for the algorithm is the Adaptive
Gaussian Threshold. The difference between adaptive and standard thresholding is that it
can ignore shadows or light. Creating a much-fine-tuned image for the algorithm to learn.
Originally, attempts of using more fixed thresholding on half the maximum gray level
were made. However, after experimenting with different max and min value sets for each
pixel, it is best to move forward with the Adaptive Gaussian Threshold, both easy to use
and less time-consuming. When running the program, there are often characters being
merged having the extracting processes difficult.

By using cv2, a Python module used to change image appearance using different filters,
thresholding can be easily done using the cv2 module. Here is an example of using
thresholding on distorted text:

Original image

Added thresholding

In here, the thresholding on ‘asdffr,’ made the image clearer and helpful for creating the
connected components to find multiple character clusters.

Connected Components Labeling
When the thresholding is done, a cluster of the different characters from the generated
CAPTCHA will be formed. It is needed to understand which cluster has either just one
character or is joined with two or (rarely) three characters. To observe what characters are
a joint cluster, we will use Connected Component Labeling (CCL), an algorithm used to
help in labeling disjoint components of an image with unique labels[2]. When using CCL,
we will expect each cluster to be having a colored label.

Image after CCL

Above is an example of threshold clusters being labeled with colors. This helps the
human better classify what has joined clusters or not. This will also help the algorithm
best find the connected component and will split the joint characters into one single

3

https://en.wikipedia.org/wiki/Connected-component_labeling

character. By understanding what clusters the thresholding could find, the use of splitting
joints of two characters will be helpful later on.

Extracting Single Characters
After understanding where each cluster is located, the process of extracting each of the
clusters will be easier and proficient. To extract each cluster, the algorithm will detect the
location of each cluster that has been labeled. Each of those pixels in that cluster will
have their x and y position saved and will create a small image that the algorithm will
create with extra white space for the user to observe what characters are extracted. With
the locations of the x and y, it will be used to detect any type of patterns the generated
CAPTCHA has made. Then the extraction will begin simultaneously within each
character in order.

Back to the example used in both Thresholding and CCL, the extraction process went
well. Both the ‘f’ and ‘r’ characters in the generated CAPTCHA are shown to be great,
there are no other connected characters in one cluster and are shown visibly.

On the other hand, the other four characters are shown to have two characters joined
together. In this case from the examples used, ‘as’ and ‘df’ are joined together. If ever
there is one small pixel connected between two characters, in the case of ‘df’, it is shown
as still one cluster.

Data Conditioning
From the previous step, some contamination from a different character is expected
because of the distortion. This contamination is found within our extraction of clusters.
Occasionally, double characters will occur because of imperfect image segmentation. By
using a histogram in the algorithm, it will detect a very wide postage stamp (extracted
clusters) and will split them near the middle where the amount of print is minimum,
finding the minimum numbers of black pixels in each column.

4

Below is the histogram used to find the minimum amount of black pixels with the
connected characters. This will help the algorithm find what will be the best location to
split that connection. In this case, using the ‘df’ cluster, the connected pixels in the very
center have minimal black pixels.

Original cluster

Amount of Black Pixels in the ‘df’ Cluster

The algorithm will automatically cut the cluster in half to now retrieve the single
character needed to add to our data set.

Now that the data is retrieved, the algorithm will set a specific size that our ML algorithm
will need to learn. 28x28 is a good geometric ratio since it is expected for our neural
network to learn. By using two-dimensional interpolation, the algorithm can create a
much clearer image no matter the size. In images, two-dimensional interpolation uses
values of only the 4 nearest pixels, located in diagonal directions from a given pixel, to
find the appropriate color intensity values of that pixel[3]. Having the resizing less
compressed and helpful for the neural network to work. The algorithm will also invert the
image from black to white and vice versa. This will better help the neural network in
learning with the MNIST dataset, in which the character is white and the background
black.

5

https://en.wikipedia.org/wiki/Bilinear_interpolation#Application_in_image_processing

Character Recognition
After successfully retrieving the data needed for the neural network, creating the ML
algorithm will not be too much of a hassle since again the algorithm has made extracting
characters very easy. With the use of Keras (a TensorFlow library), creating the algorithm
for deep learning will be easier and more efficient.

Convolutional Neural Network (CNN)
CNN is a deep learning algorithm that can take in an input image, assign importance to
various aspects/objects in the image and be able to differentiate one from the other[4]. This
means that the network learns to optimize the filters (or kernels) through automated
learning, whereas in traditional algorithms these filters are hand-engineered[5].

By using Keras, an API that uses TensorFlow, implementing CNN will be easier and
efficient. When presented with a single character’s postage stamp image, the model will
output a vector of probabilities for each possible character 0-9. The character with the
highest probability is the predicted character.

model = keras.Sequential(
[

keras.Input(shape=input_shape),
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dropout(0.5),
layers.Dense(num_classes, activation="softmax"),

]
)

model.summary()

The deep CNN model presented above consists of the following layers:
- Input layer to accept training and test data (postage stamp images of single digits)
- 2D convolutional layer with 32 kernels, 3x3 pixels each to be learned with

Rectified Linear Unit (ReLU) activation function. ReLU is a piecewise linear
function that will output the input directly if it is positive, otherwise, it will
output zero[6].

- 2D max-pooling layer to block average the output from the previous layer in
areas 2x2 pixels.

- Another 2D convolutional layer with 64 kernels, 3x3 pixels each to be learned
with RELU activation function.

- Another 2D max-pooling layer to block average the output from the previous
layer in areas 2x2 pixels.

- Flattening step to go from 2D to 1D output.
- A dropout layer that simply forgets randomly selected half of all inputs.

6

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/

- A dense layer to go from remaining inputs to a softmax probability estimate for
each possible output.

Training
As mentioned before, the Modified National Institute of Standards and Technology
(MNIST) dataset is a large database of handwritten digits (0-9) containing 60,000 training
images and 10,000 testing images[6]. Using the MNIST data set, training the algorithm
will be more efficient.

model.compile(loss="categorical_crossentropy", optimizer="adam",

metrics=["accuracy"])

model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,

validation_split=0.1)

model.save('mnist_convnet.model')

To train the To minimize a loss function (compute the quantity that a model should seek
to minimize during training) the algorithm will be using categorical cross-entropy,
measuring the difference between two probability distributions for a given random
variable or set of events[7]. Using this, the algorithm can best predict class membership.
By using the Adam optimizer we can get similar results like the stochastic gradient
descent, but it is much more sophisticated and has adaptive features to improve
efficiency, convergence speed, etc. To track the progress, implementing a classification
accuracy metric (the fraction of correct classification predictions) to the algorithm, will
be more intuitive to humans than using cross-entropy. With this, saving the trained model
will set files in a folder used for later without needing to train the algorithm again.

Testing and Validation
By splitting the MNIST dataset into a training set and testing set, the algorithm will better
recognize the characters within the algorithm’s testing data, helping determine the
accuracy; this is a standard procedure. Then we will evaluate the accuracy, calling back to
our saved directory from our training algorithm.

score = model.evaluate(x_test, y_test, verbose=0)

print("Test loss:", score[0])

print("Test accuracy:", score[1])

y_class = model.predict_classes(x_test[:10])

y_pred = model.predict(x_test[:10])

for yc, yp, yt in zip(y_class, y_pred, y_test):

print(yc, 10*' %.3f' % tuple(yp), yt)

for i in range(10):

stamp = x_test[i,:,:]

7

https://en.wikipedia.org/wiki/MNIST_database
https://machinelearningmastery.com/cross-entropy-for-machine-learning/

plt.imshow(stamp)

plt.show()

When running the algorithm, the accuracy was very high, around 98%. The input data
was not handwriting data, using it as a proxy for distorted prints. It is not the same,
attempting with 0 domain adaptation from handwriting to distorted print. Expecting a
lower accuracy rate.

Complete unCAPTCHA

Workflow: From Images to Text
Now, the algorithm will be doing the process of identifying and connecting other datasets
to predict what digit from the MNIST data set will present from the extracted stamp. The
point of all this laborious preprocessing was to get to this place where the algorithm will
finally use the neural net to recognize single characters

Showing the Cluster with Predicted Result

PREDICTION: [3]

Demonstration
With the MNIST dataset, the algorithm must limit the scope, to handle five digits because
splitting doubles may have created more than 5. While developing the algorithm, albeit
using various examples of FakeCaptcha, with its use of graphics and text. The final script
does not do that. The algorithm will only show the main results.

from tensorflow import keras

model = keras.models.load_model('mnist_convnet.model')

digits = '0123456789'

captcha_prediction = ''

for stamp_img, x_location in clean_stamps:

Resize and rescale gray levels so that we can present

the data to the deep neural net model as expected.

resized_stamp_img = rescale_stamp(stamp_img)

print('X location/size:', x_location, stamp_img.shape,

8

resized_stamp_img.shape)

inp_data = np.expand_dims(resized_stamp_img, -1)

out_data = model.predict(np.array([inp_data]))

out_class = model.predict_classes(np.array([inp_data]))

output the prediction and show the cluster that

the algorithm has predicted.

print('PREDICTION:', out_class, out_data)

plt.imshow(1.-resized_stamp_img, cmap='gray')

plt.show()

Assemble captcha text one character at a time

captcha_prediction += str(out_class[0])

Though using the generated FakeCaptcha will be needed to recognize the said character.
MNIST is extremely important for this algorithm since it is the only dataset used to help
the neural network to predict and find better patterns for the stamps shown.

Results

Accuracy
The accuracy of the MNIST dataset was 98%, but the use of the FakeCaptcha was much
lower than MNIST. Since it’s handwriting and not print. But when running the algorithm,
the print was similar to handwriting, which worked very well. Yet many examples did not
work. Such as the prediction given in the Workflow: From Images to Text, where the
prediction is odd from limited patterns given, the general shape of that ‘d’ cluster, has
made the algorithm recognize it as a ‘3’. A possible reason is the distortion of the letter to
resize it to its geometric size of 28x28.

Failure Modes
There are many factors in why the prediction of these clusters is shown to be unreliable.
The print was thick in comparison to handwriting. Few examples have a font that is
‘hollowed’ out, with white pixels inside the black characters, having the algorithm split
single digits that are not needed to happen. Segmentation fails within the algorithm, not
having enough characters to return. Oftentimes, when generating the CAPTCHA, adding
thresholding, and/or resizing the geometry of that cluster will create too much distortion.
And lastly, again, when generating a CAPTCHA, the print will be too small for the
algorithm to detect and cut each cluster.

Conclusion
From what the algorithm has created, split, learn, and train. It is possible to unCAPTCHA
a certain print from the text made from using CAPTCHA. Though again, there are a few
problems where the algorithm can only learn digits, split specific font types, and have a
good dataset to have the neural network learn more proficient and effective. Though

9

results are shown, there is much needed to change to better improve the algorithm to
better recognize each character, font, and distortion level.

Future Changes
As mentioned before, having the algorithm retain adequate training data will better
improve its recognition rate from just patterns and distortion levels. Improve image
segmentation, having the algorithm better recognize the different patterns and shapes.
Though the amount the MNIST dataset has is good. Yet, having more data within the
algorithm will improve results effectively. Also, experimenting on modifications within
the neural network model will further improve the results. And lastly, obviously, is to
extend the training data to handle all alphanumeric values, not just digits.

Acknowledgment
Thanks to Irina Cislaru, for keeping us on track over deadlines, info over the competition,
and other info that the team will not accomplish. Thanks to Barbara Teterycz for helping
the project get the needed math and theory behind the complex topic of ML. And lastly,
Thanks to Dr. Przemek Wozniak for help better understand the complexity that is ML.
With his work in LANL and experience with this topic, learning the complex theories and
math will be both disorganized and scrapped for a different topic, the project would’ve
been where it is without Dr. Wozniak.

References
[1]
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_thresholding/
py_thresholding.html#simple-thresholding
[2] https://en.wikipedia.org/wiki/Connected-component_labeling
[3] https://en.wikipedia.org/wiki/Bilinear_interpolation#Application_in_image_processing
[4]
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli
5-way-3bd2b1164a53
[5] https://en.wikipedia.org/wiki/Convolutional_neural_network
[6]
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-
networks/
[7] https://machinelearningmastery.com/cross-entropy-for-machine-learning/

10

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_thresholding/py_thresholding.html#simple-thresholding
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_thresholding/py_thresholding.html#simple-thresholding
https://en.wikipedia.org/wiki/Connected-component_labeling
https://en.wikipedia.org/wiki/Bilinear_interpolation#Application_in_image_processing
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/cross-entropy-for-machine-learning/

