
Coding Types Vs. Time and Accuracy

New Mexico Supercomputing Challenge

Final Report
April 7, 2021

Team 39
Media Arts Collaborative Charter School

Team Members
Everett Raucci

Mentors
Vary Coates

Creighton Edington

Coding Types Vs. Time and Accuracy
Everett Raucci
__
1. Executive Summary

The purpose of this experiment is to find the most efficient code that makes

the robot identify and stop at the blue block. I wrote four codes, each designed to

locate and drive to a colored object. The robot would stop, and that would be the

end of the code. My first code was the left-right. This code would make the robot

turn either left or right depending on where the colored object was. My second

code was the left-center-right, which would turn left, right, or drive forward

depending on where the colored object was on the screen. My next code was the

Brute Force, because there are over 900 lines of code. Brute Force tells the motors

to change their percentage of power by 1 for every one increment of change in the

horizontal position of the target on the screen. The last code I wrote was the Linear

Function. This code tells the robot to turn a certain amount either left or right based

on the output of a linear function with the input being the horizontal location of

the target value on the screen.

2. Introduction

This could be applied to the real world. For example we are needing robots

more and more as time progresses. One thing we could use is robots that can

recognise color in, say, a loading facility. The robot could identify color-coded

items and move them to different places. I wrote four different codes for my

Wallaby-controlled robot. A camera on the front of the robot sends images to the

robot giving it the location of the target along a horizontal axis. The camera

provides an x-axis value for the target location, and each code uses those values to

tell the motors what percentage of power to use.

The robot also has an infrared sensor for detecting how close the object is by

sending out an infrared beam. After the beam bounces off whatever is in front of it,

the beam returns to the sensor with a value corresponding to the strength of the

beam, indicating how far away the object is.

The robot has two wheels, and a ball bearing on the back for support. There are

two motors, one for each wheel. The motors are activated when the code starts.

I used the KISS* Institute for Practical Robotics (KIPR) software suite, and I wrote

the codes in C language. The first code is called Left-Right, which makes the robot

turn left or right toward the block depending on where it is on the screen. The next

code I wrote is called the Left-Right-Center. Again, this turned left, right, or drove

forward toward the block, depending on the location of the target on the screen.

The next is called Brute Force because there are over 900 lines of code. Brute

Force tells the motors to change their percentage of power by 1 for every one

increment of change in the horizontal position of the target on the screen.

The last code is the Linear Function. This code tells the robot to turn a certain

amount either left or right based on the output of a linear function with the input

being the horizontal location of the target value on the screen.

3. Hypotheses

H0 (null hypothesis): All four algorithms will perform the same as the “Basic

Left-Right Algorithm”.

H1 (negative hypothesis): None of the four algorithms will perform better than the

“Basic Left-Right Algorithm”.

H2 (positive hypothesis): All of the four algorithms will perform better than the

“Basic Left-Right Algorithm”.

H3 (mixed hypothesis): At least one of the four algorithms will perform better than

the “Basic Left-Right Algorithm”.

4. Methods

I used a basic Left-Right algorithm to compare the other algorithms against

(see Image 1).

Image 1. Left-Right algorithm

I ran the Left-Right algorithm robot code 15 times. However, my reaction

time to the robot stopping wasn’t precise enough. To address this problem, I added

code to use the internal clock of the robot to record how much time it took to get to

the target. This allowed me to record the value within a hundredth of a second. I

redid the Left-Right algorithm times and the misalignment of the robot from the

center of the target.

I then ran the Left-Center-Right algorithm (see Image 2) 15 times, testing

the time the robot took to get to the target and recorded its misalignment to the

center of the target.

Image 2. Left-Center-Right algorithm.

I then ran the Brute Force code (see Image 3, 4, and 5) 15 times, testing the

time the robot took to get to the target and recorded its misalignment to the center

of the target.

Image 3. Brute Force algorithm beginning

Image 4. Brute Force algorithm middle

Image 5. Brute Force algorithm end

I then ran the Linear Function code (see Image 6) 15 times, testing the time

the robot took to get to the target and recorded its misalignment to the center of the

target.

I tested the codes each 15 times, and then averaged the individual code

results (time and accuracy). The robot traveled 136 centimeters on a white

tablecloth during each test, and each time at the start of the test, the robot started at

a set point on the cloth, which stayed the same throughout the 15 tests. I used white

because it has no color like blue to confuse the robot. The robot is stopped by the

code when the infrared sensor returns the value 370. This meant that the robot

would stop a certain distance away. After the robot got to the target, I would

measure in centimeters how far off it was from the center of the block (accuracy).

After 15 tests, I averaged the individual code results. I also recorded the minimum

and maximum length of times and how close it was to the center of the target for a

tiebreaker.

5. Results

I measured the accuracy of the algorithms by measuring (in centimeters)

how far off the center of the camera was to the target. The Left-Right algorithm

was the least accurate, with the Left-Center-Right being slightly better. The Brute

Force and Linear Functions algorithms are about equal in terms of accuracy.. (See

figure 1.)

Figure 1

I used the internal clock of the robot to measure how long the robot took to

get to the target. The time was measured down to a hundredth of a second. The

Left-Right algorithm took the most time to get to the target, with the

Left-Center-Right and Brute Force with equal times better than the Left-Right. The

Linear Function was the most accurate, but by a small fraction of a second. (See

figure 2)

Figure 2

The results I found was that the Linear Function is the most efficient and

accurate out of the four codes, Brute Force being a close second. This supports my

last hypothesis, that at least one of three algorithms will work better than my

Left-right algorithm.

6. Acknowledgements

I want to thank Mr. Edington, who without I would have a much harder time
completing this project. He helped me stay on track and helped me understand how
to enter the challenge. I also would like to thank , who gave meVary Coates
feedback on all versions of my report, and gave me class time to work on it.

mailto:vcoates@nmmediaarts.org

