New Mexico SuperComputing Challenge
Final Report
April 2021

Project Title:Traveling on the Road

Team Number: 57

School Name(s): Saturday Science and Math Academy

Team Members: Isaac Rankin, McLight Emma-Asonye, Kingsley Walker
Sponsor(s): Caia Brown

Project Mentor: Wayne Witzel

Problem Statement

In middle school, my friend (let’s call him Jimmy) was always late to class, so much so
that he got suspended from the school dance. He lived far away from school so traffic
always made the drive long. This is a common experience for many, and sometimes the
consequences are greater than getting suspended from the school dance. There are
many problems on the road including: traffic, fuel consumption, and safety issues. In
2018, approximately 3,520 minutes, or 58.6 hours per person were spent a year at red
lights. Due to traffic, someone can be late or miss an important event. At red lights, cars
are still using gas which wastes fuel. The average price of gasoline is around $2.50.
About 6 million car accidents occur a year, car crashes are the leading cause of death
among young people ages 15-29. These are problems on the road that we can manage
computationally in order to improve the driving experience. In this project we seek to

analyze these problems using NetLogo.

To reduce fuel consumption and decrease travel time we used a NetLogo model that
simulates traffic and changed it so that only one car was on the model. We then
implemented the A* pathfinding algorithm and added our own algorithm that finds the
best path and sees if the lights are red or green. Our algorithm looks at the light ahead

and estimates if it will be red or green by the time the car arrives at the intersection. So

if the light will be green, then the car will go to that intersection, so this way you use less
fuel and get to your destination faster. We used one-way streets (going West and
South), so if the light was red, the car would turn and continue pathfinding on the other
road. We chose to use the A* pathfinding algorithm because it is generally said that A*
is the best algorithm to solve pathfinding problems among the coding community. This

would allow people to be on time for work, school, and other events.

To test our model we chose random spots on the board and made our algorithm and
the normal A* algorithm go to the chosen spot. To find how long it took to get to the
chosen spot we looked at how many ticks passed until the program ended. Sometimes
the normal A* algorithm reached the destination faster than our algorithm, which wasn’t
supposed to do that, so we had to fix that. This issue was caused by a bug in our
algorithm; the paths it took were random if it couldn’t find the best path. To fix that, we
changed when the next path was determined. After we fixed the bug, our algorithm
showed great improvement from before and beat the normal A* algorithm’s time every

time. Here are our results.

STARTING COORDINATE: (-18, 14)

Dest. Coordinate | Our algorithm (time in ticks) Normal pathfinding (time in ticks)
(18, -18) 212 303
(12, -7) 93 213
(8, -1) 73 161
(-8,-7) 81 122
(-3, 4) 70 154

This chart shows that in far distances and short distances, our algorithm excelled in
pathfinding. In 60% of our tests, our car took half the time than normal pathfinding took

to reach our destination.

Code to Date (Used in NetLogo, 627 lines)

Initialize the display by giving the global and patch variables initial values.

16 globals Create nua-cars of turtles if there are enough road patches for one turtle to
3 grid-x-inc ;5 the amount of patches in between two roads in the x direction <E i 'S’:t;;““d per road patch. set up the plots.

5 grid-y-inc i} the amount of patches in between two roads in the y direction 3 o Mt n

5 acceleration i} the constant that controls how much a car speeds up or slows down by if 5| Cerll

6 55 it is to accelerate or decelerate = e

7 phase 33 keeps track of the phase - . 1

5 num-cars-stopped i} the number of cars that are stopped during a single pass thru the go procedure 33 First we ask the patches to drow themselves and set up 3 few variables
9 current-light 53 the currently selected light setup-patches . .

- make-current one-of intersections

1 33 patch agentsets label-current

12 intersections ;; agentset containing the patches that are intersections

3 roads ;5 agentset containing the patches that are roads set-default-shape turtles "car”

1 dest-patch

15 Finalocost if (num-cars > count roads)

16 r

-

user-message (word "There are too many cars for the amount of "
"road. Either increase the amount of roads
by increasing the GRID-SIZE-X or "

18E turtles-own
19

20 spesd ; the speed of the turtle "GRID-SIZE-Y sliders, or decrease the "

21 up-car? true if the turtle moves downwards and false if it moves to the right “number of cars by lowering the NUMBER slider.\n"

22 turn-direction| “The setup has stopped.”)

23 wait-time ;; the amount of time since the last time a turtle has moved stop

24 onroad 7 1

25 randomTurn 77

26 route 33 Now create the turtles and have each created turtle call the functions setup-cars and set-car-color
27 manual-route 9 creste-turtles num-cars

25 index)

29 setup-cars

set-car-color
record-data

]

B patches-oun

intersection? ;; true if the patch is at the intersection of two roads

green-light-up? ;; true if the green light is above the intersection. otherwise, false.
;5 false for a non-intersection patches.

my-row 33 the row of the intersection counting from the upper left corner of the
55 world. -1 for non-intersection patches.

53 give the turtles an initial speed
ask turtles
r

set-car-speed

set route A* patch-here patch 11 11

my-colu 35 the column of the intersection counting from the upper left corner of the 9
33 world. -1 for non-intersection patches. 91
my-phase 55 the phase for the intersection. -1 for non-intersection patches. %2
auto? 33 whether or not this intersection will switch automatically. reset-ticks
35 false for non-intersection patches. nd
active?
visited? ;; Initialize the global variables to appropriate values
Cost-path to setup-globals
father

set current-light nobody
set phase ©

st for now, since there are no lights yet

set auto? true

set my-row floor((pycor + max-pycor) / grid-y-inc)
set my-column floor((pxcor + max-pxcor) / grid-x-inc)
set-signal-colors

set num-cars-stopped @
set grid-x-inc world-width / grid-size-x
set grid-y-inc world-height / grid-size-y

55 don't make acceleration @.1 since we could get a rounding error and end up on a patch boundary
set acceleration @.099 end

end

SE to-report next-intersection-dist

if intersection?

8E ;; Make the patches have appropriate colors, set up the roads and intersections agentsets,
103 ;; and initialize the traffic lights to one setting

116 to setup-patches

m ;5 initialize the patch-owned varisbles and color the patches to a base-color

112 ask patches

if distance patch-here > @
if heading = towards patch-here [
report distance patch-here
1

set intersection? false 1
set auto? false

set green-light-up? true letd 1
set my-row -1 1oop [

set my-column -
set my-phase -1

let p patch-ahead d
if [intersection?] of p [report distance p]

set pcolor brown + 3 setdd+1
set father nobody 1
set Cost-path @ 170 end
set visited? false 171
set active? false 172 to-report next-intersection-pat
173 letd 1
74 loop [
;5 initialize the global variables that hold patch agentsets 175 let p patch-ahead d
set roads patches with 176 if [intersection?] of p [report p]
[(floor((pxcor + max-pxcor - floor(grid-x-inc - 1)) mod grid-x-inc) = @) or 177 setdd+1
(floor((pycor + max-pycor) mod grid-y-inc) = e)] s |]
set intersections roads with 179 | end
[(floor((pxcor + max-pxcor - floor(grid-x-inc - 1)) mod grid-x-inc) = @) and 130
(floor((pycor + max-pycor) mod grid-y-inc) =)] 18

; this reports how long it will take to get from one
ask roads [set pcolor white] intersection to a neighboring intersection

setup-intersections
end

;; destination = neighboring patch
53 start time = how long you've been traveling
70 to-report travel-time [destination start-time]
let dist distance destination

let direction "W

let red-time o

;5 Give the intersections appropriate values for the intersection?, my-row, and my-column
;5 patch variables. Make all the traffic lights start off so that the lights are red

; horizontally and green vertically.

setup-intersections

ask intersections

[if pycor > [pycor] of destination
set intersection? true
set green-light-up? true
set my-phase @

set direction "0"

196

237
238
239
240

292

326

if pxcor < [pxcor] of destination

set direction "R"

1

33 when we would get to the next intersection with a green light
let green-time (dist / speed-limit) + start-time

;3 how long the wait time at the intersection is
if [intersection?] of destination

set red-time [wait-time-at-intersection green-time direction] of destination

1

report green-time + red-time - start-time
end

this returns the amount of time the car has to
wait until the light ahead of it turns green

; time = time when we get to intersection

direction = direction that the car is heading (R and D)
to-report wait-time-at-intersection [time direction]
jigreen-light-up?

3 ;my-phase

H

H
H

;3 shows if the light ahead in the direction you're traveling
33 is green as opposed to if the light ahead is up or down
let future-green-light? false

33 Shows how many times the light will change until the car gets there
let number-of-light-changes floor((phase + time) / ticks-per-cycle)

33 what the phase will be at the given time
let future-phase (phase + time) mod ticks-per-cycle

33 shows if the light ahead will be green going vertically or horizontally
let future-green-light-up? green-light-up?

if (number-of-light-changes mod 2) = 1

[

set future-green-light-up? not green-light-up?

1

;3 sets future green light to the opposite of
;3 future green light up when it's going right
if (direction = "R")

[

set active? true

1

; exists? indicates if in some instant of the search there are no options to continue.
; In this case, there is no path connecting #start and #Goal
let exists? true
; The searching loop is executed while we don't reach the #Goal and we think a path exists
while [not [visited?] of #Goal and exists?]
[

; we only work on the valid pacthes that are active

let options roads with [active?]

; If any

ifelse any? options

; Take one of the active patches with minimal expected cost
ask min-one-of options [Total-expected-cost #Goal]
[

; Store its real cost (to reach it) to compute the real cost of its children
let Cost-path-father Cost-path

; and deactivate it, because its children will be computed right now

set active? false

; Compute its valid neighbors and look for an extension of the path

let valid-neighbors one-way-neighbors with [member? self roads]

ask valid-neighbors

[

There are 2 types of valid neighbors:

- Those that have never been visited (therefore, the path we are building is the
best for them right now)

- Those that have been visited previously (therefore we must check if the path we
are building is better or not, by comparing its expected length with the one
stored in the patch)

one trick to work with both type uniforaly is to give for the first case an upper
bound big enough to be sure that the new path will always be smaller.

let t ifelse-value visited? [Total-expected-cost #Goal] [2 ~ 20]

; If this temporal cost is worse than the new one, we substitute the information in

; the patch to store the new one (with the neighbors of the first case, it will be

; always the case)

let neighbor self

set father myself

let neighbor-cost [travel-time neighbor Cost-path-father] of father

if t > (Cost-path-father + weuristic #Goal + neighbor-cost)

[

; The current patch becomes the father of its neighbor in the new path
; set father myself

set visited? true

set active? true

; and store the real cost in the neighbor from the real cost of its father
set Cost-path Cost-path-father + neighbor-cost

244 set future-green-light? not future-green-light-up?
245 1
246
247 33 sets future green light to future green light when it's going down
248 if (direction = "D")
249 [
25 set future-green-light? future-green-light-up?
251 1
252
253 33 if future green light is true then the car doesn't have to wait at a red
254 33 light. Therefore the time is e
255 ifelse (future-green-light?)
256 r
257 report @
258
259
260 report ticks-per-cycle - future-phase
261
262
263 end
264
265 to-report Total-expected-cost [#Goal]
266 report Cost-path + Heuristic #Goal
267 end
268
269 to-report Heuristic [#Goal]
27e report distance #Goal
271 end
272
273 to-report one-way-neighbors
274 report (patch-set patch-at 1 @ patch-at @ -1)
275 end
276
277 ;3 Fernando Sancho Caparrini
278 to-report A* [#Start #Goal]
279 ; clear all the information in the agents, and reset them
280 ask roads with [visited?]
281
282 set father nobody
283 set Cost-path @
284 set visited? false
285 set active? false
286]
287 3 Active the starting point to begin the searching loop
288 ask #start
289
290 set father self
291 set visited? true
340 set Final-Cost precision Cost-path 3
341 1111
382 5 If there are no more options, there is no path between #start and #Goal
343
344 set exists? false
345 11
345 ; After the searching loop, if there exists a path
347 ifelse exists?
328
389 ; we extract the list of patches in the path, form #Start to #Goal by jumping back from
350 ; #Goal to #start by using the fathers of every patch
351 let current #Goal
352 set Final-Cost (precision [Cost-path] of #Goal 3)
353 let rep (list current)
354 while [current I= #start]
355 [
356 set current [father] of current
357 set rep fput current rep
358]
359 report rep
360 1
361 [
362 ; Otherwise, there is no path, and we return False
363 report false
364
365 end

3686
369

;3 Initialize the turtle variables to appropriate values and place the turtle on an empty road patch.
to setup-cars ;; turtle procedure
set speed @

set wait-time o
set onroad true
put-on-empty-road

set up-car? false

set turn-direction "R"

jifelse intersection?

; ifelse random 2 = @
;[set up-car? true]
;[set up-car? false]

He
5 if the turtle is on a vertical road (rather than a horizontal one)
; ifelse (floor((pxcor + max-pxcor - floor(grid-x-inc - 1)) mod grid-x-inc) = @)
5 [set up-car? true]
5 [set up-car? false]

388 jifelse up-car?

N 436 [
389 5[set heading 18@] 437
3% | set heading 50 438 £d nxt-int
391 if xcor > 20 or ycor < -20 439 Jiset wp-card mot wp-cor?
292 [set onroad true] 240 jjset index index + 1
;Zj ne 441 while [(item @ route) != patch-here]
222 [
395 i
396 ;; Find a road patch without any turtles on it and place the turtle there. m) set route remove-iten @ route
39705 to put-on-empty-road ;; turtle procedure o
398 setxy -18 12 446 3 set manual-route "RRRDD"
399 end w |3
m aa8 | if item index manual-route = "R"
iiiiiiiiiiiiiiiiins] [set turn-direction "R"]
402E] 53333 iy ase | ; if item index manual-route = "D"
m 5 Runtise Procedures ;; as1 | [set turn-direction "D"]
3333333335353555555 oo
:: s Run the simulation 453 3;if item index route = @
53 Run the simulatio 454 33 [set up-car? not up-car?]
2076 to go 455
P update-current 256 if [pxcor] of item 1 route > [pxcor] of item @ route
210 ;3 have the intersections change their color :2; [set turn-direction "R"]
411 . .
- - 459 if [pycor] of item 1 route < [pycor] of item @ route
o set num-cars-stopped © 460 [set turn-direction "0"]
414 ;3 set the turtles speed for this time thru the procedure, move them forward their speed, [461 R .
215 33 record data for plotting, and set the color of the turtles to an appropriate color 462 set index index + 1
216 ;; based on their speed 463 B . .
a7 ask turtles [264 3;Randomize turns idk
418 265 33 set randomTurn random 2
466 ;3 if randomTurn = @
419 35
220 467 33 [set up-car? not up-car?]
421 ;;Change the direction that the car is facing 468 ;
422 if turn-direction = "R" 469
423 [set heading 9@] 479
424 if turn-direction = "L" 471 fd speed
425 [set heading 27e] 472]
426 if turn-direction = "U" 473 record-data
427 [set heading @] 474 set-car-color
428 if turn-direction = "0" 475
429 [set heading 18@] 476
430 477 33 update the phase and the global clock
431 478 next-phase
432 479 set-signals
433 set-car-speed ag0 tick
434 let nxt-int next-intersection-dist 481 31
435 ifelse speed > nxt-int 232 end
4847 to choose-current 532 [
485 if mouse-down? 533 set plabel "
486 [532
487 let x-mouse mouse-xcor 535]
488 let y-mouse mouse-ycor 536 end
489 if [intersection?] of patch x-mouse y-mouse 537
4% [538 33 have the traffic lights change color if phase equals each intersections' my-phase
491 update-current 533 to set-signals
492 unlabel-current 529 ask intersections with [auto? and phase = floor ((my-phase * ticks-per-cycle) / 1ee)]
493 make-current patch x-mouse y-mouse 541 r
494 1label-current 542 set green-light-up? (not green-light-up?)
495 . stop 543 set-signal-colors
496 544
497 1 545 end
498 end 546
499 R ~ R 547 ;; This procedure checks the variable green-light-up? at each intersection and sets the
562 ;; Set up the current light and the interface to change it. sag | ;; traffic lights to have the green light up or the green light to the left.
5e1(] to make-current [light] 549 to set-signal-colors ;; intersection (patch) procedure
5082 set current-light light 550 ifelse power?
503 set current-phase [my-phase] of current-light 551 r
584 set current-auto? [auto?] of current-light 552 ifelse green-light-up?
585 end 553
506 . 554 ask patch-at -1 @ [set pcolor red]
587 33 update the variables for the current light 555 ask patch-at @ 1 [set pcolor green]
ses[] to update-current 556]
509 ask current-light [557
518 set my-phase current-phase 558 ask patch-at -1 @ [set pcolor green]
511 set auto? current-auto? 559 ask patch-at @ 1 [set pcolor red]
512 1 560]
513 end 561 1
514 562
515 ;; label the current light 563 ask patch-at -1 @ [set pcolor white]
516 to label-current 564 ask patch-at @ 1 [set pcolor white]
517 ask current-light 565 1
518 [566 end
519 ask patch-at -1 1 567
520 [568 ;to up-until-intersection [speed]
521 set plabel-color black 569
522 set plabel "current” 570
523 1 571 ;; set the turtles’ speed based on whether they are at a red traffic light or the speed of the
524 1 572 33 turtle (if any) on the patch in front of them
525 end 573 to set-car-speed ;; turtle procedure
526 574
527 | ;; unlabel the current light (because we've chosen a new one) 575 ifelse pcolor = red
528 to unlabel-current 576 [set speed e]
529 ask current-light 577 [
530 [578 33Right
531 ask patch-at -1 1 579 if turn-direction = "R

[set-speed 1 @]

if turn-direction = "L
[set-speed -1 @]

ifelse any? (turtles-ahead with [up-car? != [up-car?] of myself])

[
set speed o
i set green-light-up? (not green-light-up?)
set speed [speed] of one-of turtles-ahead _ set-signal-colors
s1ow-down

3 [speed-up]
end

to slow-down

The Conclusions We Reached by Analyzing Our Results

If Jimmy had used our algorithm, he would have avoided the red lights and would not
have been suspended. For others who are also late often, or have gas problems, this
would help them. Through our tests, we found that by avoiding red lights, our traveling
time was greatly reduced. While pathfinding is good for getting to your destination,

pathfinding and adjusting to traffic lights is even better.

Most Significant Achievement on the Project

“I think getting the cars to go a different direction than up and down was a big
achievement. It doesn’t seem like something bug but we spent a lot of time trying to get

that to work” - Isaac

“When we made the car go down and right instead of just going down, or just going
right” - McLight

Acknowledgment of the People and Organizations that Helped Us

Caia Brown
Wayne Witzel
Fernando Sancho Caparrini

NetLogo

