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Executive Summary
Machine learning has already presented large-scale effectiveness in diagnosing cancer.

However, how the field can be utilized to treat cancer remains underdeveloped. A model has

been created using publicly available data to determine aspects of a given patient’s cancer

treatment, such as if one should receive chemotherapy. This model is automatically adaptable to

any dataset in which the clinical data is in the .csv format with imagery in the DICOM format

and corresponding patient IDs between them. Three datasets were utilized for the development of

the model. Two of these datasets contain data from head and neck squamous cell carcinoma

patients, and one contains data from breast cancer patients. It consists of three submodels:

Clinical-Only, Image-Clinical, and CNN (convolutional neural network). These allow the model

to maintain its performance across a variety of unique demands. In addition, the model contains

an array of notable features such as support for a multi-target regression in the Clinical-Only and

Image-Clinical submodels and a novel encoding/decoding algorithm so that text values can be

utilized within the model. 91% test accuracy (n=296) has been achieved by the CNN submodel

when dictating if a patient should receive chemotherapy, and additional promising results have

been achieved on numerous other cancer treatment variables. Access to non-publicly available

data, which is often quantitatively and qualitatively superior, could further increase the model’s

applications. Since cancer treatment is irreversible and every patient is unique, it remains unclear

whether the model is capable of outperforming the human oncologists that fabricated the datasets

chosen in practical applications. However, the model is capable of at least a more economical

alternative and, at worst, an estimated 30% decrease in real-world accuracy compared to human

oncologists.
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Introduction

About Cancer
Cancer is a disease

caused by abnormal cells

dividing uncontrollably. The

cells do not die, and new cells

are created unnecessarily. These

excess cells form tumors [What

is Cancer?, 2015]. Almost ten

million people die from cancer annually [Roser & Ritchie, 2019]. Cancer has globally remained

the second most common cause of death for more than 30 years. There are many types of cancer

treatment. The process can be somewhat ambiguous as it is common for patients to receive a

combination of treatments that can include surgery, chemotherapy, radiation therapy,

immunotherapy, targeted therapy, or hormone therapy [Cancer Treatment, n.d.]. The type of

treatment for a given patient is often chosen based on the type of cancer and how advanced it is.

However, it can also be based on more broad factors such as the patient’s general health and age.

Definition of Problem
Almost ten million people die from cancer annually [Roser & Ritchie, 2019]. Machine

learning has presented effectiveness in diagnosing cancer. However, it remains less developed as

to how the field can be utilized to treat cancer. Currently, compiling a cancer treatment plan can

be a tedious process. A patient generally must consult numerous health professionals to receive

the most desirable care [How Treatment is Planned and Scheduled, 2020]. This is not an ideal
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practice as it results in unnecessary added costs and required resources. With millions within the

United States unable to adequately access equitable and affordable health care overall, reducing

care costs by increasing the presence of automation is ideal [Powell, 2016]. With the

ambiguousness of cancer treatment planning and the quantity of data on the subject that is

readily available, a machine learning model could be a feasible solution. A practical model for

the previously described usage will be adaptable to any dataset and therefore usable for any

cancer type. Although any target variable can be used in the model and testing will be done on

several, a target variable that will be concentrated on is the variable in each dataset that indicates

whether a patient has received chemotherapy or not. The delivery of this binary practice can vary

by dataset, but it is commonly implemented with “yes, no”; or “1, 0.”

Datasets
Although virtually any CSV-DICOM dataset is compatible, three datasets were most

significantly utilized to develop the computational model. The dataset referred to as

HNSCC-HN1 is a set of head and neck squamous cell carcinoma patients (N=137) with clinical

data and computed tomography (CT) [Wee & Dekker, 2019]. The dataset known as HNSCC

contains imaging, radiation therapy, and clinical data from head and neck squamous cell

carcinoma patients (N=627) at MD Anderson Cancer Center [Grossberg et al., 2020]. Lastly, the

so-called METABRIC dataset contains clinical, m-RNA levels z-score, and gene mutations data

for breast cancer patients (N=1904) [Alharbi, n.d.]. The non-imagery data for all of these are in

the comma-separated values (CSV) format, while the imagery was in the Digital Imaging and

Communications in Medicine (DICOM) format. DICOM is the standard format for the

administration of medical imaging and its accompanying data [Charles, n.d.]. CSV is a widely

utilized format for tabular data. Due to both formats being the standard for cancer data, they are

what the model is compatible with. All datasets are publicly available.
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Computational Method
In order to create a sensibly accommodating model, the computational model consists of

three instances of machine learning components that function significantly differently from each

other. This contributes to the objective of creating a model with the best performance, the least

amount of hyperparameters, and the broadest range of dataset support. For instance, the ideal

hyperparameters for a clinical-only dataset are unique from a clinical-image or image-only

dataset. All except for the CNN component support a multi-target regression in which the

number of outputs automatically adjusts based on how many target variables the user initially

inputs.

Data Preprocessing

Preprocessing data is an essential aspect of the creation of the model. The datasets that

have been gathered for use must be adapted into a more appropriate form for development. This

adaptation includes removing missing data, reducing noise, and normalization [Miller, 2019].  It

is also necessary to effectively partition the data into three categories: train, test, and validation.

Validation is utilized to adjust the hyperparameters for the best performance and consists of 20%

of the data chosen at random. After the hyperparameter tuning is finished, the test partition is

used to evaluate the model’s accuracy on new data. This partition is also 20% of the data. The

train partition consists of 60% of the data. These three divisions are formulated after eliminating

all rows with missing values. While this can often eliminate a significant portion from the

original dataset, it is necessary to retain a valid dimension of the data and to avoid errors when

creating the model due to NAN values. A common alternative to eliminating rows with missing

values is to replace a given missing value with the mean of its column [Lee, 2019, 109].

However, this would not be practical because many datasets include text values, and the

encoding algorithm is not suitable for this practice, especially for binary variables.
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Encoding/Decoding Algorithm

A novel algorithm has been developed in order to utilize text within a dataset. It works by

iterating through all characters in a given string and converting each character into its

corresponding Unicode character code. Then the codes are appended into a single numerical

value. This numerical value can be extremely large and can often cause issues with training the

network even with normalization. To avoid this, the value is divided by ten times its length to

retain its meaning yet not cause any issues. This always results in a float that is less than one and

greater than 0.

Feature Selection

All machine learning components incorporate the same feature selection algorithm. This

is to reduce noise in the data. Noise results from inapplicable features being present. It is

essential to minimize noise for several reasons: generally better performance, decreased
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overfitting, and less and more

predictable computational

expense [Shaikh, 2018]. The

model is less deluded by only

including features relevant to the

target variable, and performance

will likely increase. The algorithm

works by measuring the

correlation between the specified

target variable and every other variable in the dataset. This correlation is defined by the Pearson

Correlation Coefficient, which returns a value between -1 and 1. -1 indicates the strongest

possible negative correlation between two variables. 1 indicates the strongest possible positive

correlation. A value of 0 indicates no correlation. The model iterates through these values and

selects the 10 variables that correspond with the highest absolute values. This leaves nine

features excluding the target variable, which is guaranteed to have a value of 1 returned. Figure 3

depicts this target variable phenomenon. The distinctive yellow diagonal line in the visualization

is due to the relation between two matching variables always having a fully positive correlation.

When utilizing a multi-target regression, the same process is done but to each target variable

individually. Then each set of nine features are used in the model. So for two target variables, 18

features would be used; for three target variables, 27 features would be used, and so on.

Normalization

After feature selection and data partitioning, a normalization technique must be applied.

The objective of normalization is to change the values of columns in a dataset to use a common

scale without modifying the differences in the range of values. For instance, if the values of one
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column are between 0 and 1 while the values of another column are between 300,000 to 400,000,

the disproportion of these features could present issues when utilizing the model. The Sklearn

MinMaxScaler object is used to execute this. It scales each feature individually to the range of 0

to 1. If there is more than one target variable, this process is also applied to the target data.

Normalization is especially important in the model due to the nature of the encoding/decoding

algorithm. It often outputs values that are precise and small and results in datasets that are very

disproportionate from column to column.

Clinical-Only Model
The clinical-only submodel is designed to be utilized for the less computationally

expensive clinical data (.csv) aspect of a given dataset only. The dynamics required for a model

to perform acceptably on this type of data are significantly different from more computationally

expensive data such as imagery. The clinical-only model has reduced complexity compared to

the imagery-based designs. As the data is smaller, the model’s complexity must decrease to avoid

overfitting. This was achieved by reducing the number of weights and minimizing the number of

layers. Since the feature selection algorithm permits a maximum of nine features to be utilized

and imagery data is not supported, the clinical-only model can be tuned to its intended use on a

greater level due to its more predictable nature. The model accesses two different machine

learning components based on the number of target variables the user inputs. For a single target

variable, a machine learning component has been created using the Keras Sequential API, while

for more than one target variable, the component utilizes the Keras Functional API. The

Functional API generally allows much more flexibility for the model architecture than the

Sequential. Contrasting from the Sequential API, it allows for attributes such as shared layers

and multiple outputs [Fchollet, n.d.]
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Image-Clinical Model
The Image-Clinical submodel was conceived for the use of both Imagery and Clinical

data. Therefore it does require a greater amount of computational expense than the Clinical-Only

model. Additional functionality for this model includes the ability to load and adequately process

images in the DICOM format. Given a directory that contains DICOM files, the model flattens

each image into a one-dimensional NumPy array, appends each image’s corresponding patient ID

to the end of its array, and appends each one-dimensional array onto a two-dimensional array.

This resulting array is intended to be saved to be used later for its accompanying dataset as this

process can require a substantial amount of time to complete, particularly for many images. Once

the completed array is obtained, it can be concatenated with its previously preprocessed clinical

data by verifying the matching IDs between the two and inserting each ID’s corresponding

clinical data. Before utilizing the data, all IDs are removed.

The architecture of the Image-Clinical Model is similar to that of the Clinical-Only. The

main difference is the greater number of layers and generally having more nodes in each layer.

As the data that this submodel is intended for is much larger, its complexity should be increased.

Convolutional Neural Network
The convolutional neural network (CNN) submodel only uses imagery as input data and

includes two types of layers that result in a model that functions significantly different from its

counterparts: the convolutional layer and the pooling layer. Instead of the one-dimensional data

utilized in the Clinical-Only and Image-Clinical models, the CNN works with two-dimensional

data: non-flattened images. The convolutional layers carry out feature extraction with the use of

a kernel. This kernel eventually produces a feature map by going over the data and at each
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position performing matrix

multiplication then summing it

onto its corresponding location

on the result [Cornelisse, 2018].

Several feature maps will be

produced as the kernel will be

replicated across different parts

of the data. All of these feature

maps are put together to

formulate the final output of a

convolutional layer. Pooling layers occur after convolutional layers and are to reduce the spatial

size of the convolutional layer output. This decreases the number of parameters required to be

learned following the layer; therefore, performance is generally improved [Yamashita, 2018,

615-616]. There are two main types of pooling operations: max pooling and average pooling.

The model utilizes max pooling. Both variants, similarly to a convolutional layer, function using

a kernel that extracts various sectors individually from the input. Max pooling outputs the

maximum value in each sector and disregards all other values. Average pooling simply outputs

the average of all of the values in each sector. This has a “blur” effect on data; thus, average

pooling has a lessened ability to retain sharper features. Whereas the nature of max pooling is

somewhat the opposite. Max pooling has a greater ability to retain sharper features and reduce

the prevalence of elements such as a dark background as it will have lower values that will be

discarded if there is a brighter element in the kernel. Since it is common for dark backgrounds to

be prevalent in cancer imagery such as CT and MRI scans as shown in Figure 4, it is favorable to

reduce noise within the data by utilizing max pooling rather than average pooling.
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After the output from the final pooling layer is obtained, it is flattened into a one-dimensional

array of numbers and fed into a series of dense-layers starting with 64 nodes and a ReLU

activation function as the input layer and ending with one node and a linear activation function as

the output layer. Note that the CNN model does not support a multi-target regression: only one

target variable at a time can be utilized.

Conclusion
The initial objective of the model was to create a computational method that could aid in

compiling the most effective cancer treatment plan for a given patient. It was also an intent to

create the model so that it automatically adapts to an extensive range of data. Both of these

objectives have been met. Up to 91% test accuracy (n=296) has been obtained in the CNN

submodel for the HNSCC-HN1 dataset with "chemotherapy_given" as the target variable with

only ten epochs. This was the highest performance achieved out of all tests. Figure 5 depicts both

the validation and test accuracy for the Clinical-Only model on all three datasets. Similar

visualizations for the other two models can be found in the Appendix (Fig. 10 & 11). The CNN

outperforms the

Image-Clinical and the

Clinical-Only significantly.

This shows the magnitude of

efficiency that the CNN

possesses as it can produce

higher performance than the

other models with half of the

epochs and with no clinical

data. The most inadequate
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performance on the “chemotherapy_given” target variable was attained with the Clinical-Only

model on the HNSCC-HN1 dataset with 20 epochs: 74% accuracy (n=27). With the

Image-Clinical model producing 84% accuracy (n=296) with the same configuration, several

conclusions can be made. First, this may show that imagery is the most effective data variant to

predict this target variable. However, this is challenged with the HNSCC dataset producing its

best results on the Clinical-Only model and showing on-par or worst performance with the other

two models. So while this conclusion may be possible for the HNSCC-HN1 dataset, it is not

valid for the HNSCC dataset. Second, the Clinical-Only model has a smaller test data size due to

the lack of imagery. With only 27 examples to test with all chosen randomly and taken out of a

relatively small dataset on its own (N=137), it is possible that the test data simply contained

scenarios that the model was not familiar with. Note that the process used to partition the data

utilizes a set random state meaning the same randomly chosen patients will be used consistently

every time the model runs instead of a new set of random patients being chosen. So if this is the

case, performance will not change significantly by just running the model again. From this

information, it can be concluded that more clinical data from the HNSCC-HN1 dataset would be

an elementary method that would likely improve the Clinical-Only model’s relatively poor

performance on this dataset. Unfortunately, this cannot be done as the entire dataset has already

been obtained and utilized, so a new dataset with a similar variant of data should be acquired.

However, even this may not be viable in publicly available data. Other than the HNSCC-HN1

dataset on the Clinical-Only model, acceptable test performance was generally achieved on all

the datasets’ binary chemotherapy variables.

In addition to the chemotherapy variable, another critical variable to test is the post-radiation

therapy skeletal muscle status of a given patient, which is available only in the HNSCC dataset.

This is also a binary variable that indicates either depleted or non-depleted muscle based on the

skeletal muscle index calculated from post-radiation therapy imaging. The highest performance
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achieved for this target variable was 71% test accuracy (n=357) on the CNN model. However,

this is very close to the 70% test accuracy (n=357) achieved on the Image-Clinical model and the

69% test accuracy (n=42) achieved on the Clinical-Only model. So generally, the performance

for this variable across all submodels was relatively poor. The explanations for the chemotherapy

variable’s performance do not apply here because there is no significant disparity between the

performance of the CNN and the other two submodels, and there is a reasonable amount of

testing data available.

Finally, another significant variable is within the METABRIC dataset and indicates whether a

patient has received

radiation therapy. 85% test

accuracy (n=218) was

achieved with the

Clinical-Only model on

this variable. This performance is acceptable. Performance data from the Clinical-Only model is

presented in Table 1, and full performance details from the other two models can be seen in

Tables 1 & 2 in the Appendix. In conclusion, all of the significant variables chosen produced a

relatively successful accuracy. As expected, the CNN model presented higher efficiency than its

counterparts and produced higher accuracy on the preeminent chemotherapy variable. Since

cancer treatment is an irreversible process and every patient is unique, it is difficult to know if

the accuracy achieved in the model outperforms a traditionally utilized human oncologist. Also,

due to these factors, there is something to be said about the correctness of the data because, of

course, it was all conceived with human judgment, and it cannot be completely verified that the

patients within the datasets have been truly given the most viable treatment. Therefore, can the

model outperform the humans that fabricated the datasets utilized in realistic applications? It is

unclear and dependent on many factors. Nevertheless, the model is capable of at least matching
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the humans’ performance in possibly a more consistent and economical way. Also, considering

that the lowest test accuracy achieved was around 70%; theoretically, the highest real-world

performance decrease possible would be about 30% in comparison to human oncologists. This

figure may be a worthwhile tradeoff to make in return for a more financially dependable means

of cancer treatment.

Further Application
More advanced variations of this kind of model, along with other machine learning

cancer applications that have already been well developed, such as a diagnostic tool, could

almost completely automate the cancer treatment process and significantly reduce the need for

human intervention and judgment. However, the universal application of machine learning in

cancer treatment presents many challenges, and more advanced versions of the model should be

held to exceptionally high standards in terms of safety and inequitable bias [Kaushal et al.,

2020]. Although satisfactory performance was achieved with the model, the size of some of the

datasets could be questionable. Unfortunately, publicly available data can be limited. Access to

non-public data could help increase the scope of situations that the model is familiar with by

enlarging and diversifying the data utilized to develop it. Future studies could further compare

the effectiveness of models of these types to traditionally utilized human oncologists. A clinical

trial on live patients would be necessary to validate this comparison thoroughly.
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