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1 Executive Summary

I acquired data of residue interaction energies for many protein-packing problems. I wrote python code
transforming this data into Q matrices for each problem, involving creating an encoding scheme to
represent the residue sequence in binary in such a way tabulated interaction energies can be translated
into the Q matrix. I wrote code to upload this Q matrix to a quantum computer (the D-Wave
2000Q) and a neuromorphic computer (the Intel loihi), with instructions to draw several thousand
samples by repeatedly annealing or simulating. I received the set of samples from each machine,
and compared these solutions to solutions generated by a classical simulated annealing algorithm. I
analyzed which hardware performed the best and wrote various tests to determine how my algorithm
could be improved. I created a novel encoding scheme which, tested on the isomorphic map-coloring
problem, vastly outperformed the algorithm currently used in the literature, producing 3x as many
binary sequences that represented valid solutions.
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2 Introduction

2.1 The Protein Design Problem

Biological proteins are composed of a chain of amino acids (the residues) which fold the protein into a
definite structure due to the forces between the residues. This structure, which is completely defined
by the sequences of amino acids and potential energy of each interaction, gives the protein some
function, such as catalyzing a reaction. Protein structure prediction has the goal of calculating the
final structure of a protein given its amino acid sequence. This was named breakthrough of the year
by Science Magazine, going from being considered infeasible to a solved problem in a matter over the
past decades. Protein design is the reverse, starting from a protein structure and going backwards to
find the amino acid sequence that would fold to such a structure. This is perhaps more significant,
since being able to find the sequence that would fold to a desired structure would allow scientists
to create that protein in a lab, giving the ability to make designer proteins for any function. This
could mean binding a neurotoxin or COVID molecule to stop it, being a highly precise targeted drug,
or self-assembling into biological molecule-scale machines or computers. However, protein design is
combinatorially complex. There is an exponential amount of possible sequences, making it infeasible
to guess and check on a classical computer.

2.2 Quantum Annealing Computing

Quantum computers can theoretically find a global optimum solution to NP-complete problems in
O(1) time, making them excellent for solving NP-complete problems. In reality, neither quantum
annealing or quantum gate computing has shown this level of performance yet. An active area of
research is finding what problems are best matched for these computers, so the performance they
can reach currently is useful. Protein design, being an optimization-based, combinatorially complex
problem with large utility, is an excellent candidate to try applying quantum computing to. Quantum
annealing, rather than gate computing, is best matched to this scenario.

In a quantum annealer such as the D-Wave 2000Q there is a set of qubits which are either 1 or 0
when observed and collapsed, but can be in a quantum superposition of 1 and 0 before collapse. The
values of these qubits (once collapsed) represent the answer to the optimization problem posed by the
potential applied to them through quantum entanglement.

2.3 Neuromrophic Computing

Neuromorphic computers don’t use the traditional Von-Neumman model of seperate memory and
computation, but instead take inspiration from the biological brain to perform calculations. These
systems are composed of an array of leaky integrate and fire neurons which accumulate voltage from
spike signals recieved from other neurons, then fire their own spike signals through synapse transmis-
sion lines. This spike-based, memory-integrated model has the advantages of using thousands of times
less energy than traditional computers for the same level of calculation [BCHE19] and can solve opti-
mization problems, exploiting random noise as a resource to cross energy barriers [JHM16]. However,
its difficult to exploit these capabilities since these computers can’t be programmed with machine code
or any programming language. Instead, parameter values have to be loaded onto the device, setting
the connectivity of the neurons. This makes it difficult to encode just any problem for this device, but
they work especially well with quadratic unconstrained binary optimization.

2.4 Quadratic Unconstrained Binary Optimization

In Quadratic Unconstrained Binary Optimization (QUBO), the values being optimized over are a set
of bits. The criterion for optimization is the weighted sum of the products of each pair of bits:

E(x) =
∑
i

Qi,ixi +
∑
i,j

Qi,jxixj min
x

E(X) (1)

where x is a binary vector of n bits, Q is the n by n matrix defining the problem, and E(x) will be
called the energy. Both the D-wave 2000Q and Intel loihi are set up with a given Q matrix specific to
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the problem, and run a thousand times or more to sample solutions with low energy E (although they
may not necessarily find the global minimum).

In the D-Wave, the Qi,j represents the strength of the entanglement made between qubits i and
j. If both are 1, this weight contributes to the total energy of the system. Since it starts in the
lowest-energy state, the system aims to stay in the global minimum of this function, so when measured
the values of the qubits probabalistically collapse, often to a solution minimizing this equation.

Neuromorphic computers also manage to minimize this form of the energy function [JHM16]. If
neurons i and j are connected together symmetrically with a synapse of weight proportional to −Qi,j ,
one’s spiking will inhibit the other’s. With the addition of random noise to make spiking more prob-
abilistic, this leads to the system relaxing into a low energy configuration, where whether a neuron is
spiking or not represents a bit in the solution.

3 Research Question

The goal of this work was to test the protein design problem on quantum and neuromorphic hardware to
see how well these computers were suited for the problem. Simulated annealing, a classical computing
algorithm, was applied to the same cases for a comparison. What hardware is better for the problem
of protein design: quantum, neurmorphic, or classical computing?

4 Prior Work

Dr. Mulligan et al. designed and tested their QPacker algorithm which successfully created a peptide
running on the D-Wave 2000Q quantum annealer [MMM+19]. This is the only prior example of
quantum computing being applied to the protein design problem. Neuromorphic computing has never
been applied to the problem before now.

5 The Challenge: Encoding Protein Design as a QUBO

To use quantum or neuromorphic computers for protein design, the protein design problem simply
has to be encoded as a Q-matrix according to equation 1, and the optimization parameter x should
somehow represent the amino acid sequence in binary. Protein design already has some very convenient
parallels with QUBO. Proteins fold to minimize their total potential energy, meaning the sequence of
a fold will minimize the sum of one- and two-body interaction energies of contacting residues. In other
words, if amino acid A is contacting amino acid B, the interaction energy of A and B is added to
the total: E+ = U(A,B)xAxB where xA is a bit representing whether amino acid A is in the first
position, and xB is a bit representing whether amino acid B is in the other position. So by having
a bit for every type of amino acid in every position, the Q-matrix is constructed of copies of a table
of the pre-computed interaction energies of every pair of amino acids. This system is called one-hot,
where there as many bits per position as there are amino acids, but only one is equal to 1. However,
requiring only one bit have the value 1 is a constraint, which QUBO doesn’t allow. This constraint
can’t be programmed into the computers, which only take the input of a Q-matrix. Instead, a soft
constrain can be used, adding a high energy ”penalty” to solutions with two bits in one sequence
position equal to 1. This is a simple addition to the Q-matrix, and should decrease the probability of
finding solutions which are invalidly encoded, with more than one non-zero bit in a position.

6 Implementation

I wrote thousands of lines of python code reading in Rosetta amino acid interaction energy data, adding
artificial encoding constraint terms, sending the results to quantum and neuromorphic computers, and
analyzing solutions.

This included visualization method, file I/O methods, simulated annealing tests, one-hot constraint
confirmation, energy calculations, and more.

To prevent confusion of the reader, it’s important to emphasize quantum and nueromorphic
computers don’t run code. These devices are physics-based systems which evolve to find low-energy
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(i) Box-and-whiskers plot showing the distribution
of energy (y-axis) of solutions generated by (a) ran-
dom sequences, (b) simulated annealing, (c) D-Wave
2000Q, and (d) Intel loihi.

(ii) Box-and-whiskers plot showing the distribution of
energy (y-axis) of solutions generated by (a) random
sequences, (b) simulated annealing, and (c) Intel loihi.

solutions to a QUBO problem. They are not programmed, they are set up with a Q-matrix, and run
many times to generate a distribution of different samples.

7 Results of Hardware Comparison

On a particular small protein packing problem, I generated 10,000 solution samples from each of
simulated annealing, D-Wave 2000Q, and Intel loihi. Due to an unknown technical issue, loihi would
appear to fail after only a few samples, producing the same solution repeatedly. I calculated the energy
of each solution and plotted the distribution of energies, shown in Figure 1i. Many of the solutions
from D-Wave and loihi failed the soft constraint, producing solutions with multiple non-zero bits in
a position, an invalid encoding which doesn’t represent a sequence. These solutions are included in
the energy distribution plot, with the energy penalty term for failing the constraint included. D-wave
incurs so much from this penalty that the distribution dwarfs the others. To make the data more
clear, I plotted the energy distributions excluding the D-Wave, shown in Figure 1ii. As a control, I
generated random amino acid sequences and translated these to the one-hot binary representation of
the problem, calculating these energies and plotting them. These random sequences would be very
unlikely to fold in a lab, but they at least match the constraint, giving a reference for what kind of
energy might be required for a good solution.

8 Novel Encoding Approach

Seeing the clearly worse performance of the D-Wave system, with much higher-energy solutions on
average than any other architecture or the randomized control group, I thought about how to improve
this given the hardware. I scaled back to the isomorphic map-coloring problem, which has a much
simpler Q-matrix and had been done numerous times in the literature [Dah13]. This problem uses the
same one-hot encoding to represent the color of countries in a map. The approach in the literature for

6



Figure 2: Q matrix of my novel one-hot/binary integer hybrid encoding scheme. The first 3 bits may
encode any integer from 0-7 in binary. Of the next 8 (23) bits, only the one corresponding to the integer
will be 1 to minimize energy. This can be scaled to any number of bits and used in map-coloring and
similar QUBO problems.

enforcing one-hot encoding, which I used, implemented it as a soft constraint by assigning a very high
energy penalty to solutions with a one-hot encoded with more than one non-zero bit. That is, Qi,j had
a very high energy for all i and j representing mutually exclusive options (such as two amino acids in
one position). This meant a large portion of values of the Q-matrix were non-zero, which should mean
a large number of entanglement connections between each qubit in the D-Wave. However, the D-Wave
only supports a finite number of connections between qubits, so when there are too many it creates
a chain, connecting one qubit to many proxy qubits with a strong weights to give them all the same
value. These chains weaken the efficiency of the annealer, wasting many samples due to chain breaks
as qubits in a chain fail to have the same value. To decrease the amount of chains needed, I aimed to
create a different way of encoding the sequence or penalty to make the Q matrix more sparse. I came
up with a one-hot/binary hybrid encoding system. This had a bit for each option like the one-hot
system, but also had a number (equal to the log base 2 of the number of options) of extra bits, which
encoded an integer in binary corresponding to which of the bits should be 1. Rather than every bit
being connected to all the others, in my novel encoding, each only need be connected to the group
of integer-encoding bits. So rather than a dense block of values in the Q-matrix, my novel approach
has the Q-matrix shown in Figure 2. This system still pushes towards one-hot solutions with only one
amino acid chosen per position, and still has the one-hot representation so coupling the solution to
amino acid interaction energies or any other data would be simple. Increasing the percent of validly
encoded solutions from 9% to 32%, This innovation tripled the success rate of D-Wave, finding
3x as many validly-encoded solutions, a huge improvement that other quantum researchers
could make use of.

9 Conclusion

Running the same protein design QUBO on classical, quantum, and neuromorphic hardware, I found
classical vastly outperformed the others. However, quantum and neuromorphic technology are in their
infancy compared to classical computing. As the scale of quantum computers grow and their ability to
avoid decoherence improve, they may become more powerful tools for solving problems such as protein
design. Neuromorphic and quantum computers alike struggle to adhere to a soft constraint imposed
with an energy barrier in a QUBO. I developed a novel encoding scheme which triples the success
rate of a quantum computer’s solutions adhering to a soft constraint. I applied this to the case of the
map-coloring problem, which can be fit to numerous useful problems with real significance such as the
protein design problem.
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