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Abstract

Air pollution is among the leading causes of premature deaths across the world and disproportionately

impacts the Global South due to lesser air quality regulation and research on regional air pollution

monitoring when compared to the United States, Europe, and East Asia. This project consists of three

models to address air quality in different ways in Mexico. The first program includes data cleanup,

visualization, training, and testing for a machine-learning model to provide hourly air pollution

forecasts up to 48 hours in advance as an immediate means of minimizing the harm of hazardous

air pollution events for numerous cities, with high seasonal accuracy scores up to R2=0.77. Second,

physical model simulations validated by a statistical analysis of historical relationships between ozone

and its precursors present long-term policy suggestions to safely reduce ozone levels at each city, a

challenge due to ozone’s counter-intuitive behavior (highlighted during the pandemic lockdowns).

Finally, to provide continuous estimates of air pollution in regions without monitoring stations, a

machine-learning model that incorporates historical ground monitoring, meteorological parameters,

and physical model simulations is developed and tested, with cross-validated R2 scores up to 0.73 -

the first of its kind covering all of Mexico.



1 INTRODUCTION

1. Introduction

Responsible for one in five premature deaths each year, air pollution is a major concern for both

environmental and human health. It is the single greatest environmental health risk according to the

World Health Organization [1], and anthropogenic emissions are the primary drivers of climate change

[2]. The United States upholds National Ambient Air Quality Standards (NAAQS) for six of the most

common air pollutants (also known as criteria pollutants), including particle pollution, ground-level

ozone, carbon monoxide, sulfur dioxide, nitrogen dioxide, and lead. Of the six pollutants, particle

pollution and ground-level ozone pose the most immediate and severe health threats [3].

Air quality can be improved greatly through regulation. In the United States, successful

implementation of the Environmental Protection Agency’s Clean Air Act reduced air pollution by over

62% percent since the 1970s, avoiding an estimated 200,000 premature deaths since then [4]. This policy

and similar regulations have been supported by hundreds of studies using numerous atmospheric

chemistry models.[5].

Air pollution models may be used for various purposes, including forecasting future pollutant

concentrations, predicting how air quality will change in response to different emission levels, and

estimating pollutant concentrations where ground stations are not available. Each of these topics

are crucial to informed policy making and public health, and may be achieved by using physical or

statistical models [6].

Physics-based atmospheric chemistry models are capable of simulating air quality under new

emission scenarios, allowing for a causal relationship (often indirect because of complex ozone

chemistry) between emissions and air quality to be determined. However, these models face

shortcomings due to their sensitivity to initial conditions (such as input emissions), characteristic of

deterministic chaos and unpredictable behavior observed in nonlinear dynamical systems such as

the weather [7]. This results in the issue of physical models having 1) extreme dependence on input

initial conditions and 2) instability over time and high uncertainty as a standalone model of pollution

modeling. These weaknesses are exacerbated in physical models of air pollution in less developed

nations, as there are generally fewer ground stations available to measure initial conditions required

for such models in the first place.

In addition to physical models, regression-based statistical analyses have been conducted to

support policy research. More recently, increasingly advanced machine learning algorithms have been

used to understand historical correlations and relationships between air pollutants and other variables

[8]. Driven by large data and often hundreds of ground pollutant monitors, countries with fewer

stations to begin with are at an additional disadvantage.

A combination of both physics-based and statistical models is a strong approach to overcome the

disadvantages of each mode. However, the characteristics of each method present significant barriers

to countries with fewer resources available for ground monitoring. This lack of research and regulation

in the Global South is reflected by the disproportional mortality rates due to air pollution in these

countries, as over 90% of air pollution-related deaths occur in low- and middle-income countries [9].
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1 INTRODUCTION

While US firms may appear to integrate "green" policies, recent studies describe a concerning trend

of companies only outsourcing polluting activities to poorer countries with minimal environmental

protections rather than meaningfully reducing emissions [10]. While the WHO presents guidelines for

air quality, approximately 34% of countries entirely lack legally-mandated air quality standards [11].

There is no international alignment to address the pollution causing eight million annual premature

deaths, a figure estimated to grow by over 50% by 2050 [12].

Mexico was chosen for its vast unmonitored regions and proximity to other countries in Latin

America with even less monitoring. Additionally, the majority of studies on air quality in Mexico are

focused on Monterrey or Greater Mexico City, which both continue to experience dangerous pollution

levels posing a threat to their collective populations of over twenty million [13].

Figure 1. Average 24-hour particulate matter concentration at stations in Mexico. Most exceed the
WHO limit of 15 µg/m3 for no more than three to four days in an entire year [1].

To combat the disparity in geographic focus of research, this paper presents a three-part approach

to both immediate and long-term means to reduce air pollution in Mexico, with data sources and

methods that may be easily applied to other regions of the world as a baseline for more specialized

regional studies.

1. First, a short-term ozone forecast predicts future concentrations for a public tool to mitigate

exposure of vulnerable populations to upcoming hazardous ozone events.

2. Second, a long-term policy recommendation is made using various physical models to simulate

ozone levels with different emissions scenarios, supported by historical analysis of pollutant

relationships to determine the limiting factor of ozone in each city.

3. Finally, a nationwide model to estimate particulate matter in regions without ground stations is

developed using satellite data, historical ground pollutant monitoring, and land use variables.

This is compared to NASA’s MERRA-2 hourly surface particulate matter estimates for the year of

2018.
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2 SHORT-TERM OZONE FORECASTING

2. Short-Term Ozone Forecasting

2.1. Background

In the troposphere, ozone (O3) is a harmful pollutant formed by photochemical reactions between

nitrogen oxides (NOx) and volatile organic compounds (VOCs), as well as sunlight [14]. Rather than

being directly emitted, ozone is a secondary pollutant, making its concentrations more difficult to

predict and control than a primary pollutant such as particulate matter. Ozone causes throat irritation,

coughing, and increases the susceptibility to lung diseases such as asthma [4], but people may avoid

dangerous ambient ozone levels with forecasting. Ozone is also known to harm vegetation [15],

with major economic impacts as decreases in crop yield due to long-term ozone exposure equal

approximately five hundred million Mexican pesos (about $25 million USD) per year [16].

Several studies to forecast ozone have taken place in Mexico. In Monterrey, time series forecasting

involving meteorological parameters predicted short-term ozone concentrations within the day using

a linear SARMA model [17]. The computational cost and accuracy of Support Vector Machine or SVM

was evaluated in to predict real-time ozone, particulate matter, and nitrous oxide in Mexico City by

Sotomayor et. al in 2013 [18]. This study differs in its longer pollutant forecasts up to 48 hours in

advance, analysis of seasonal variance, and application to cities across the entire country of Mexico.

There are many machine learning algorithms capable of identifying non-linear relationships in

complicated data, where various input (or independent variables) are trained to predict an output (or

dependent variable). In this model, the current pollutant and meteorological variables will be an input,

trained to predict a future ozone concentration as an output.

XGBoost, or extreme gradient boosted trees, is highly optimized for speed, designed to handle

missing data, and supports regularization to reduce the potential of over-fitting [19]. XGBoost is

widely used for regression problems for its high performance with short training times, and was used

for the study.

2.2. Data Collection, Cleanup, & Analysis

Hourly data from 80 ground pollutant measuring stations for 2018 were downloaded from the

Sistema Nacional de Información de Calidad del Aire (SINAICA) from Mexico’s Instituto Nacional

de Ecología y Cambio Climático (INECC) [20]. Due to the machine learning model’s sensitivity to

nan ("not a number" or missing) values, linear interpolation was applied to fill gaps for less than 6

consecutive hours between valid measurements, filling in no more than 5% of the original data for each

variable. Columns with less than 80% completion were dropped, and measurements with irregular or

invalid readings were removed.

While most stations also monitored weather parameters, some did not or were very inconsistent.

To provide data where weather measurements were missing, ERA-5 ECMWF hourly data for land and

single hourly levels over Mexico were downloaded for each station.
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2 SHORT-TERM OZONE FORECASTING

The ERA-5 climate reanalysis product has reliable hourly global estimations of weather variables

[21] and was validated with station measurements with an average linear correlation between

temperature (R=0.91), relative humidity (R=0.84), solar radiation (R=0.64), and surface pressure

(R=0.78).

Preliminary correlations and statistical tests were conducted to ensure quality of data going into

the model. Individual correlations between variables and ozone were made to understand what factors

may be most predictive of future ozone levels, although the linear Pearson correlation coefficient does

not capture non-linear relationships that may be useful in the final model. There was much temporal

and spatial variation in linear relationships across locations.
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Figure 2. A histogram of the linear relationships between current pollutants and future ozone levels in
Torreón, Mexico.

Due to seasonal variations in meteorological and anthropogenic patterns, ozone concentrations

and relationships with precursor variables vary across the year. As a result, models may benefit by

being trained specific to the seasons, in addition to a year-long model. Mexico’s seasons consist of

warm dry (March - May), rain (June - October), and cold dry (from November - February) [22].
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Figure 3. Average hourly ozone values over one day for different seasons in Torreón, Mexico.

Linear multiple regression is the simplest form of machine learning, and may be used as a baseline

in ozone prediction studies [23]. To gauge the relative forecasting capabilities of the data, accuracy

scores of linear regression models trained to predict ozone from 1 to 48 hours in advance were used to

determine how far out in advance a more robust model could reliably predict.
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Figure 4. Accuracy of simple linear multiple regression ozone model with varying forecast time.

Figure 4 demonstrates a significant increase in predictive capability at the 24 hour and 48 hour

marks across all seasons, suggesting diurnal patterns that improve prediction accuracy at daily intervals

despite being further in advance.

2.3. Machine Learning Forecast Model

Because this is a time series problem, k-fold cross validation is not a valid method due to its use

of training data ahead of time of the test sample [24]. Instead, a time series split was used to fairly

evaluate the models, conducting cross-validation on a rolling basis to avoid bias from training on

future values.

Figure 5. Time series cross-validation [24].

Models were evaluated using several metrics [25]. Mean absolute error, or MAE (1), represents

the absolute value of the average difference between the expected and predicted values. Root Mean

Square Error, or RMSE (2), is a measure of the standard deviation of residuals and is more affected by

outliers than the MAE. For both these metrics, smaller values indicate greater accuracy. R-squared, or

the coefficient of determination, is reported on a sample of the data unexposed to the model, allowing

for an evaluation of how much of the variance in the dependence variable is explained in the model.
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1
n
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n
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2 SHORT-TERM OZONE FORECASTING

To optimize the model for each training period, tuning for each model was conducted using an

exhaustive search to find the optimal hyperparameters for learning rate (0.01-0.3), maximum tree

depth (between 5-30), and the number of trees (50-250). Feature selection, or the decision of which

variables to include, was conducted using a combination of automatic detection of unrelated variables

and manual cutoff levels for percentage of missing data interpolated or dropped. These were both

done on a seasonal and station-to-station basis.

2.4. Results

For each station, the models were trained and tested with different season and forecast abilities for

24 and 48 hours. The cross-validated metrics for the best performing model of each city are reported in

Table 1.

Table 1. Ozone 24 hour forecast results.

Region City Season MAE RMSE R2 R

Northwest
Chihuahua Cold Dry 0.0027 0.0035 0.5931 0.7701
Mexicali Warm Dry 0.0031 0.0039 0.5761 0.7590
Tijuana Warm Dry 0.0030 0.0039 0.5389 0.7341

Northeast

Durango Cold Dry 0.0041 0.0055 0.7749 0.8803
Torreón Warm Dry 0.0029 0.0040 0.5747 0.7581
Saltillo Warm Dry 0.0030 0.0038 0.6220 0.7887
Monterrey Warm Dry 0.0030 0.0039 0.5406 0.7353

Central
Guerrero Warm Dry 0.0037 0.0045 0.6756 0.8219
Puebla Cold Dry 0.0025 0.0033 0.6335 0.7959
Valle de Mexico Warm Dry 0.0030 0.0038 0.6255 0.7909

West

Guadalajara Warm Dry 0.0025 0.0034 0.4654 0.6822
Leon Cold Dry 0.0039 0.0049 0.6637 0.8147
Aguascalientes Warm Dry 0.0034 0.0047 0.4574 0.6763
Morelia Cold Dry 0.0037 0.0037 0.5952 0.7715

Southeast
Minatitlan Cold Dry 0.0035 0.0044 0.5931 0.8142
Xalapa Cold Dry 0.0024 0.0031 0.6359 0.7974
Oaxaca Cold Dry 0.0025 0.0036 0.7427 0.7427

R2 accuracy values ranged temporally and spatially with highest overall scores in the City of

Durango in the cold dry season and lowest in Aguascalientes. Score by season tended to be highest for

cold dry (R2=0.77, R=0.87) and lowest during the rain (R2=0.46, R=0.67), possibly due to the increase

in rainstorms which temporarily clear the air of pollution, decreasing the model’s predictive ability.

2.5. Discussion

With quality control and simple implementation, this machine learning model maintains high

accuracy across different cities with best performance when models are trained seasonally and by

region. Cities within the same region consistently performed strongest in the same seasons, with warm

dry seasonal models performing best in the northeast and central regions of Mexico, while cold dry

seasonal models dominated in the southeast.

However, a data-driven model only presents estimations based on past events, and is not capable

of capturing the changing chemistry that may result from differing emission amounts and sources. For

a deeper understanding, physics-based models are a valid option.
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3 LONG-TERM OZONE POLICY RECOMMENDATION

3. Long-Term Ozone Policy Recommendation

3.1. Background

While data-driven forecast models have reliable results in predicting future ozone in current

circumstances, they only present correlations rather than causation. The rate of ozone formation is a

variable and complex function dependent on the underlying atmospheric chemistry, which may be

understood using physical models to simulate possible emission scenarios for effective policy [26].

Figure 6. A diagram of several equations involved in ozone formation [27].

Tropospheric ozone is a dangerous and unpredictable pollutant formed by reactions between

sunlight and primary pollutants. Volatile organic compounds, or VOCs, are a variety of chemicals

released by natural biogenic processes in trees, plants, and animals, with background concentrations

throughout the world [28] in addition to man-made sources such as in paints, cleaning agents, and

petroleum fuels. When anthropogenic emissions of nitrous oxides (NOx) from fossil fuel combustion

are added to the atmosphere, NOx begin to interact with VOCs and sunlight to form ozone. At lesser

emitted quantities, nitrous oxides are the limiting factor of ozone formation, which would make

lowering NOx the policy goal. However, in many urban locations the amount of emitted NOx is so

high that it consumes all available VOCs, in turn making VOCs the limiting factor.

While real-world experimentation is often not possible, a unique opportunity to observe ozone

behavior arose in 2020. When COVID lockdowns across the world significantly reduced economic

activity and transportation, primary pollutant emission levels fell to record lows [29]. While ozone

precursor pollutants such as nitrogen oxides (NOx) drastically decreased, ozone remained high and

even increased in Mexico City, as can be noted in Figure 7.
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Figure 7. Levels of pollutants over one year- 2020 (dark blue) had lower NOx (left) but higher O3 (right)
compared to previous years. Beginning of lockdowns in March are marked with the dotted line.
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3 LONG-TERM OZONE POLICY RECOMMENDATION

This was unexpected, since ozone is a secondary pollutant formed by chemical reactions involving

nitrogen oxides which decreased. Yet this trend has been noted in other urban locations that have

enacted policies in attempt to reduce ozone, such as China when in 2013 the Clean Air Action Plan

led to rapid decreases in particulate matter (PM) and NOx concentrations. There, surface ozone

skyrocketed in major cities, which offset some of the health benefits from the PM and NOx emission

decreases [30].

The goal of this section is to determine the limiting factor of urban ozone formation with

photochemical box models in Mexico City and a country-wide statistical analysis to suggest long-term

policy recommendations for numerous cities.

3.2. Eulerian Model

The first model is based on a steady-state solution of a uniformly mixed "box" (Figure 8), assuming

negligible deposition from the bottom and transport out the top. This model had a fixed location, or a

Eulerian frame [31], which included terms to account for emission rates and wind removal.

Figure 8. Simplified Eulerian "box" model, where Q represents input emissions [32].

Initially, the ozone formation equations used by Laird et al. [33] were used in the model,

originating from the basic advection-diffusion chemistry conservation of mass equation:

d[O3]

dt
= k1[NO2] + k3[NO][O3]−

U
D
[O3] (3)

Where NO, NO2, and O3 are volume averages and U is horizontal wind normal to the box. Ozone

volume average concentration for any daytime hour was assumed to be in steady state, and the

equations for other chemicals in the model were derived in the same manner.

Using Mexico City’s 2018 emissions inventory [34], tons per year of NO, NO2, CO, propene, and

ethylene were converted to molecules per cm3 per second as inputs to the model. However, the initial

emissions model (left, Figure 9) returned negative ozone values (in red), so the equations from Laird

involving RO2, a placeholder for organic peroxyl radicals where R is an organic group, were re-derived.

Terms originally dropped and assumed to be negligible were re-incorporated in order to make the

equation for RO2 a quadratic. This resulted in all positive values. The amount of ozone produced after

one hour was plotted against varying amounts of initial NOx (NO + NO2) in Figure 9.
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3 LONG-TERM OZONE POLICY RECOMMENDATION

Figure 9. Quadratic RO2 Eulerian emissions model (right) returns only positive values.

Interestingly, an inverse relationship between ozone and initial NOx concentration is noted in the

upper half of initial NOx levels, indicating that the location is VOC-limited.

This modified Eulerian box model provides plausible ozone values and incorporates real emissions

data from Mexico City. However, it assumes steady state conditions for all pollutants which does not

hold true in reality as various chemicals critical to ozone behavior have varying rates of formation

across the day. To address this, a complex Lagrangian model was created for a more realistic simulation.

3.3. Lagrangian Model

The complex model follows an air parcel through space, known as a Lagrangian frame where

input concentrations undergo photochemical reactions for a set period of time. Eight essential ozone

formation reactions from Seinfeld and Pandis [35] are listed in Figure 10. With a constant source of

HOx = HO2 + OH + RO2, the other seven rate equations are derived from these chemical equations in

Figure 11; three species (OH, HO2, and RO2) are steady state [36], leaving four differential equations

(for RH, NO, NO2, and O3) to be solved for by stepping forward in time.

Figure 10. Essential ozone formation reactions from Seinfeld and Pandis [35]used in Lagrangian model.
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3 LONG-TERM OZONE POLICY RECOMMENDATION

Figure 11. Differential ozone equations derived from equations in Figure 10.

The model was ran with varying initial NOx and RH (VOC) concentrations for a 10 hour period.

On the resulting isopleth in Figure 14, ozone in parts per billion (ppb) is represented by contours, with

initial NOx and VOC concentrations on the Y and X axes, respectively. The dotted red line depicts the

shift from negative correlation between ozone and NOx (above) and positive correlation (below).

Figure 12. Isopleth Lagrangian model results, including datapoints from Mexico City in 1997 (triangles)
and 2017 (circles) for their maximum (red) and minumum (green) ranges at each time.

Figure 13. Key for historical placements on the isopleth.

10
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Below the threshold line (with lower initial NOx concentrations), decreasing NOx may help

decrease ozone formation as well. However if the initial NOx concentration is above that threshold

line, ozone will increase as NOx decreases.

Requiring lab equipment and manual testing, the high volatility of VOCs makes their

measurement difficult [37], so only data for the observed VOC and NOx levels in Mexico City in 1997

[38] and 2017 [39] were plotted on the isopleth chart. Despite the overall improvements in air quality,

all measured points on the isopleth are above the threshold line, indicating that Mexico City has been

VOC-limited for the past several decades. While NOx concentrations have decreased slightly, ozone

has remained high and possibly increased due to insufficient decreases in VOC concentration.

Taking only a cross-section of the isopleth with a set VOC concentration of 300 ppb (within the

range of recent VOC measurements in Mexico City), the change in ozone produced after one hour

in relation to NOx change is very similar to that of the Quadratic Emissions Model, where ozone

increases with NOx up until a maxima where afterwards the relationships is inverse. This indicates

that the simpler model was able to capture aspects of the more complex behavior.

3.4. Statistical Analysis

While Mexico City’s location in a well-mixed valley allowed the physical models to simulate

plausible ozone behavior, they are very idealized. A statistical analysis on observed relationships

between ozone and its precursors is necessary to 1) validate the placement of Mexico City on the

isopleth and its status as a VOC-limited location with an inverse relationship between ozone and NOx

and 2) suggest the limiting factor in cities without measurements of VOCs, as not all locations have the

resources or equipment necessary to do so.

Due to the lack of VOC measurements in most Mexican cities, the linear relationships between

NOx and ozone were focused on for the statistical analysis because hourly data of NOx and ozone

concentrations are more readily available and may be used to identify the limiting factor of ozone [40].

Mexico City’s placement on the isopleth above the threshold indicating a VOC-limited condition

is supported in Table 2, where the Ciudad de México (Mexico City) has a strong negative correlation

(R=-0.74) between ozone and NOx.
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3.5. Results

Table 2. Statistical analysis results, where a strong negative correlation between O3 and NOx suggests
a VOC-limited condition (often the case in urban areas).

Region City O3 to NOx

Northwest
Chihuahua -0.5734
Mexicali -0.2519
Tijuana -0.3734

Northeast

Durango -0.502
Torreón 0.3750
Saltillo -0.3827
Monterrey 0.018

Central
Guerrero -0.5499
Puebla -0.2189
Ciudad de México -0.7435

West

Guadalajara -0.4516
Leon -0.3799
Aguascalientes -0.4050
Morelia -0.037

Southeast
Minatitlan -0.0707
Xalapa -0.3540
Oaxaca -0.2120

Additionally, the relationships between NOx and ozone vary greatly by location, indicating

different limiting factors of ozone formation with significant implications for policy in each location.

For instance, a location with a strongly negative correlation between NOx and O3 is likely to have

initially high NOx concentrations (such as a city with many cars), and is at risk of increasing ozone

when NOx is lowered without also decreasing VOC appropriately. This is similar to what was seen

during the COVID lockdown in Mexico City [41].

3.6. Discussion

Although the physical models were very idealized, even the simpler steady-state emissions model

was successful in capturing the relationships between ozone and its precursors, indicating a limiting

factor and appropriate strategy for lowering ozone.

This program presents multiple physical models that may be run using regional emissions data

where available, and finds the historical correlation to support the physical model’s estimations of

conditions for each city.
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4. Surface Particulate Matter Estimation

4.1. Background

Of all criteria pollutants, particulate matter with a diameter of less than 2.5 micrometers, or

PM2.5, is the most dangerous to human health due to its microscopic size and ability to infiltrate the

bloodstream and respiratory system [42]. Both short and long term exposure to PM2.5 has been proven

to increase risk of heart and respiratory disease, and asthma, strongly linked to premature deaths [43].

Particulate matter consists of suspended solid and liquid particles, and is a primary pollutant emitted

by fossil fuel combustion, wood burning, and a variety of other physical and chemical sources [44].

Research studies on mortality, health, and economic costs of particulate matter often require

data on the continuous distribution of pollution, as point-sources from ground monitors alone are

insufficient in supporting proper policy change [45]. Since the 1990s, aerosol maps have been created

for more developed nations to calculate the distribution of air pollution at high temporal (often daily)

and spatial (from 1 to 10km2) resolutions [46].

While ground stations have limited geographic coverage as point sources of data, satellite coverage

is global and frequent. Aerosol optical depth, or AOD, is a unitless optical measurement of light

extinction, such as by aerosols or haze. Remote sensing is often used in models estimating continuous

distribution of PM2.5, as it can make up a large component of haze and smog measured by AOD. This

has been done in the Northeastern United States, where an ensemble-based machine learning model

trained on satellite data, weather parameters, and land-use variables predicted particulate matter at a

1x1km2 daily resolution with an R2 ranging from 0.52 to 0.81 [47]. The GOCI geostationary satellite

provides high-resolution measurements of AOD specifically over the Korean peninsula, and was used

used by Pendergrass et. al to estimate surface particulate matter concentrations across Korea with

an R2 of 0.89 for daily PM2.5 estimations at a 6x6km2 resolution using a Random Forest model [48].

Another Random Forest model in Japan used MAIAC AOD to map continuous particulate matter

across the country, had an R2 of 0.86 for daily estimations at a 1x1km2 resolution [49].

Previous studies in Latin America are limited to a citywide scope. In 2019, Carmona et al. used

MODIS data, WRF-Chem simulations and ERA-5 ECMWF data in an ensemble neural network to

estimate PM 2.5 in Lima, Peru at the 1x1km2 daily resolution, with an R2 of 0.70 [18]. Gutiérrez et.

al used an XGBoost model to estimate daily mean and maximum PM 2.5 concentrations in Mexico

City, with R2 ranging from 0.64 to 0.86 for daily mean values [50]. In Monterrey, an ensemble neural

network was trained to use Merra-2 meteorological fields and aerosol components to predict monthly

mean particulate matter concentrations at three stations, with R2 scores ranging from 0.29 to 0.85 [51].

This study differs in its approach to map the entire country at a high temporal (hourly) and spatial

(1x1km2) resolution, as continuous surface particulate matter prediction has not yet been attempted

across all of Mexico. Performance is compared to that of NASA’s Merra-2 estimates of particulate

matter as a baseline, and an in-depth analysis of model building on prediction time is conducted.
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4.2. Data Collection

Ground-monitored station data for hourly particulate matter was collected and cleaned in addition

to climate variables from ERA5 using methods detailed in Section 2.2.

MODIS (or Moderate Resolution Imaging Spectroradiometer) is an instrument aboard the Terra

and Aqua satellites. MAIAC, or Multi-Angle Implementation of Atmospheric Correction, utilizes data

from MODIS instruments on both satellites to provide atmospheric measurements multiple times per

day (depending on the number of orbits over each location). Variables include AOD at 470 and 550

nanometers, AOD uncertainty, and column water vapor at a 1x1km2 resolution [52], each of which

may be related to surface particulate matter concentration [53]. In South America, MAIAC’s AOD

was validated in 2017 by Martins et. al [54], suggesting similar accuracy over Central America as well.

Data for the four MODIS sinusinoidal tiles covering Mexico were downloaded for the year of 2018,

with overpass times from roughly 16:00-20:00 UTC.

Figure 14. Plot of MAIAC AOD over northwest Mexico on August 4, 2018.

4.3. Data Exploration

The goal of creating a high-resolution model is to estimate particulate matter in locations without

monitoring. Due to the complex non-linear relationships between particulate matter and its related

variables, machine learning may be used to train models using data from locations that do monitor

particulate matter, as long as all the input variables are available for the entire area of Mexico. The

variables and data sources used in the model are listed in Figure 15.
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Figure 15. Parameters used, where input data are available for all of Mexico and used by models to
predict the output hourly PM2.5 where stations are not available.

Over Mexico, the AOD value is a single daily average of three orbits during a short timeframe

(16:00-20:00 UTC), which presents many possibilities for optimizing model accuracy by determining 1)

the ideal range of hours when the model can be used for and 2) at which hour can particulate matter

be predicted most accurately.

An in-depth exploration of the model’s predictive ability with various time frames was conducted

primarily in Mexico City due to the completeness of the data. While all stations had relatively similar

patterns in training window ability, these methods are capable of being reproduced for stations at an

individual basis for increased optimization. They also may be applied to similar high-resolution PM2.5

remote sensing studies in other locations.

First, while models could be trained to predict surface particulate matter at all 24 hours of the day,

these may have lower accuracy than models trained to specifically predict hours during the time AOD

is measured. Since particulate matter pollution typically peaks in the daytime within the period of the

AOD measurement (10:00 am - 2:00 pm local time), it is a viable option to create models focused on

estimating the most relevant and accurate hours.

To test this, models were trained on different subsets of a day. It was found that across all seasons,

models trained to predict hourly concentrations between 4:00-23:00 UTC performed best (R2=0.78),

compared to those trained to predict all 24 hours (R2=0.71) or only the hours of satellite overpass

(R2=0.61).

While particulate matter concentration is measured at ground stations on the surface of the Earth,

aerosol optical depth is a measurement of the optical properties of the entire atmospheric column,

meaning it may be more accurate at estimating the particulate matter concentrations from earlier times

of the day because of vertical aerosol transportation. While in practice this may result in slightly

delayed estimations, a higher accuracy would be valued for most studies involving long-term analysis

of particulate matter distribution.
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Figure 16. Accuracy of XGBoost model across seasons for predicting particulate matter n hours ago in
Mexico City.

Figure 16 demonstrates the ability of seasonal models to estimate the particulate matter

concentrations up to 48 hours in the past. For all models, accuracy is highest when predicting

particulate matter concentrations 0-2 hours ago, but maintain strong predictive ability up to 48 hours

in the past.

As of now, there are no high-resolution continuous distribution maps of particulate matter over

Mexico. However, NASA’s Merra-2 global historical reanalysis model provides global hourly estimates

on the aerosol subspecies [55] that may be used to calculate particulate matter concentration using:

[PM2.5] = 1.375 ∗ [SO4] + [OC] + [BC] + [DU2.5] + [SS2.5] (4)

Where sulfate, organic carbon, black carbon, dust, and sea-salt concentrations are combined [56].

The linear correlations between actual PM2.5 and Merra-2 estimates are listed in Table 3, in addition to

the cross-validated results of year-long model performance and time taken (in seconds) at each station.

4.4. Results

Table 3. Particulate matter estimation for year-long model results across all cities.

Region City Merra-2 R R R2 RMSE MAE Test R2 Time
Northwest Mexicali 0.0984 0.857 0.734 17.103 9.367 0.816 1312.6

Northeast Durango 0.066 0.799 0.639 0.7749 5.606 0.689 1157.73
Torreón -0.035 0.784 0.616 0.5747 6.752 0.625 1065.56

Central

Ciudad de México -0.104 0.881 0.776 7.032 5.160 0.855 211.64
Tlaxcala -0.009 0.786 0.618 2.456 1.744 0.550 226.93
Cuernavaca 0.052 0.751 0.564 7.957 4.597 0.134 854.92
Puebla 0.080 0.699 0.489 8.707 6.089 0.296 1673.51

West

Guadalajara -0.063 0.820 0.673 11.154 6.695 0.753 1180.94
Salamanca -0.033 0.819 0.671 9.039 5.496 0.759 100.17
Morelia 0.0296 0.792 0.628 7.811 5.044 0.758 476.45
Tepic 0.010 0.741 0.549 4.769 3.350 0.636 530.18
Aguascalientes -0.053 0.610 0.372 10.460 6.714 0.419 1176.58

Southeast
Mérida -0.023 0.834 0.695 7.657 5.161 0.834 708.36
Xalapa 0.196 0.811 0.657 7.583 3.981 0.712 958.3
Oaxaca -0.043 0.624 0.390 9.092 4.181 0.598 520.1
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4 SURFACE PARTICULATE MATTER ESTIMATION

The model maintained high performance across many regions of Mexico, and Figure 17 compares

the performance of the predicted vs actual concentrations for Merra-2 and the new model, respectively.
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Figure 17. Tested on the same sample, the new model (right) has a high level of accuracy in predicting
hourly particulate matter in Mexico City.

As noted in Table 3, the correlation between the actual vs new model’s predicted PM2.5 (average

R=0.77) is much stronger than Merra-2’s PM2.5 yearlong estimate (R=0.011, statistically insignificant

with p < .05), though it should be noted that Merra-2’s estimates are slightly improved during the

cold-dry season (averaging an R=0.18). However, physical simulations used by Merra-2 with regional

bias-correction may be useful to increase accuracy in future studies.

This model improves upon current methods of particulate matter estimation and has many future

applications for long-term policy making, epidemiological, health, and environmental impact studies,

and for optimal future sensor placement recommendations, such as how Kelp et al. used continuous

particulate matter maps in the US to quantify uncertainty and variability [57]. With reliable results at

each city tested, the country-wide model’s future incorporation of road types and densities, population

distribution, and other land use variables has great potential to further improve results.
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5. Discussion

These three approaches serve as an accessible baseline for further research at a regional scale

for eventually global applications, which may be achieved through citizen science. The European

Environment Agency reported that citizen science has been successful in widespread measurement

and awareness of pollutants using low-cost sensors [58], and competitions such as NASA’s Airathon:

Predict Air Quality challenged teams from across the world to create the most accurate models for

predicting particulate matter and NO2 using AOD measurements over certain cities. Also from NASA,

the Applied Remote Sensing Training (ARSET) programs offer many online resources and lectures

on how beginners can access and use remote sensing data, and has already reached thousands of

participants in over 117 countries with multilingual trainings on air quality monitoring and other

environmental applications of remote sensing [59].

These initiatives may inspire citizens to raise awareness of air pollution in areas with little to no

previous region-specific research. The detailed methodology and explanation of various approaches

to modelling air pollution in this paper present many opportunities for future development, as each

component may be improved by:

1. Short-Term Ozone Forecasting

• Optimizing models for regional seasons

• Incorporating other variables with hourly data such as local emissions or traffic levels

• Testing of other machine learning algorithms such as Random Forest or neural networks

2. Long-Term Ozone Policy Recommendation

• Developing simplified Eulerian and Lagrangian model simulations using regional emissions

data

• Analyzing historical correlations between O3 and NOx

3. Surface Particulate Matter Estimation

• Incorporating ground pollution data from low-cost sensors, available from platforms such

as OpenAQ [60]

• Using the best available satellite data depending on region, such as GOCI over East Asia

and the future TEMPO satellite over North America [61]

• Using a similar framework for mapping other pollutants including ozone, CO2, or NOx

with the goal to identify key sources and decrease global warming from greenhouse gases
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6. Conclusion

Air pollution remains one of the deadliest threats to humanity due to its high toll on human

health and the environment, with increasing relevance in policy making as the main driver of climate

change. Because of the great spatial variation in infrastructure, climate, and population characteristics

across the Earth, air quality monitoring is most accurate when studied at a regional scale. Increased

research focus on the Global South is crucial as wealthy countries continue to push environmentally

harmful activities to poorer countries with few current regulations and monitoring.

This project presents a three-part approach to addressing air pollution: first, the process of creating

a data-driven machine learning model to forecast ozone concentrations is described as an immediate

tool for public health. With an average R correlation of 0.79 across all tested stations, this forecast

model has reliable estimates of ozone up to 48 hours in advance.

Next, several physical photochemical box models incorporating local emissions data were

developed to determine the limiting factor of ozone formation, validated with observed statistical

relationships between ozone and its precursors at numerous cities.

Last, the development of a machine learning model to map continuous particulate matter

concentration serves as a means to estimate the distribution of the most harmful pollutant across the

entire country of Mexico, crucial to understanding the sources and where policy must be enforced.

Compared to the Merra-2’s highest accuracy during the cold dry season (R=0.18), the model displayed

a high accuracy with average R=0.77. The explanation on extensive testing in training hours may also

yield improved results for existing continuous particulate matter maps in other countries.

As discussed by Molina et al. [62], in addition to research, political and social efforts are

necessary to drive lasting and effective improvements in air quality. However, these both are built

upon interdisciplinary studies conducted on the region of focus. Designed for countries with fewer

monitoring stations and previous research, these models have widespread application using publicly

available data and accessible programs that require minimal computing power. The codes for each

component are available in a public repository online, and aim to provide researchers focusing on

geographically understudied areas with the resources to overcome historical barriers and inspire

worldwide movement towards improving air quality.
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