Team Members

Catherine Sedillo

Teacher

Eric Vigil

Project Mentor

James Sedillo

Galaxies Far, Far, Away

New Mexico
Supercomputing Challenge
Final Report
April 5, 2023

Team Number 50

St. Thomas Aquinas School

Contents

EXECUTIVE SUMMAIY .ottt ee e ee e e et e e et e e e e e e aeeeeeeeaaaeeeaaeeaeeeaasaseanaesssesnsssanesnssssssssssnssssnsnssssns 1
INEFOTUCTION ..ttt eh et et e st e e s b e b e e b e eb e e s ae e eaeesanesabe e areebeeneeanees 2
V= ¥ Fo] Lo} oY 2SS 2
Convolutional Neural NEtWOIKSccoueiiiii ettt st e e e e 2
IMage Dataset and IMAgE ClasSSES....uuiiiiiiiiiiiiiiie e e e ccccitiee e e e e e et e e e e e e eserarreeeeaeeessabareeeeeseessnntesasesaseaassenes 2
SOTtWAre and HardWAreco.eo ittt et sr e b st eseeeeesne e e 3
D 1= I e (=T o fo Tol <11 [oV - N 4
Model and Verification MEthodsc.ueoiiiiiiii e s et 5
Convolutional Neural Network Archit@CtUre.........ooocieiiii e e 5
TENSOITIOW 2 @N0 KIS ...eeeiiiieiiieiiee ettt ettt ettt e bt e s st e s bt e s bt e e st e e s beeeaseeesaeeesreeenreens 6
Tensorflow 2 Model for Galaxy ClassificCationcocuiiiiiiiiiiiiece e 7
RESUIES ..ttt et ettt e s bt e sh e s ae e s abe s et e b e e bt e bt e b e bt e bt sae e sabesan e neeen b et e enreen 8
CONCIUSIONS ..ttt e e e st e e st e e st e e s b e e e b e e e sa b e e s b e e e b e e e sateeeabeeeshseesnbeesabeesnbeesaneesnreas 10
S (= T ol TSP TP TP UPTRTOPPUPIOt 10
Vol g o)y 1=To F= LT o YT o USRS 10

Executive Summary

Modern astronomical instruments are revealing an endless number of galaxies everywhere observations
are made. This creates an overwhelming volume of information beyond the capability of human effort.
With recent improvements in computing power and machine learning, the convolutional neural network

shows promise as an aid to the astronomical surveyor especially for galaxy classification.

The capabilities of machine learning for galaxy classification are demonstrated here using Python, the
Tensorflow 2 module, the Galaxy Zoo 2 dataset, and a small convolutional neural network model. A
custom-method of image preprocessing is detailed and applied to the imagery to aid the convolutional

neural network with achieving a high training accuracy.

Final training and validation of the convolutional neural network developed here resulted in a training
accuracy of 98% and a validation accuracy near 80%. A simple graphical user interface (GUI) was made to
allow the user to train, save, load, and interact with the CNN model and observe its class predictions in

real-time.

Page | 1

Introduction

Modern astronomical telescopes are looking deeper into the universe. The images that they produce
reveal the existence of countless stars and galaxies. The seemingly infinite quantity of these astronomical
objects in these images has become too much for humans to identify and characterize. Machine learning
can provide the ability to automatically classify these astronomical objects, allowing astronomers to

focus on more abstract concepts.

This project uses a Convolutional Neural Network (CNN) architecture combined with a preprocessing
technique to train a neural network to classify galaxies in the Galaxy Zoo 2 dataset. The goal is to achieve

high-accuracy predictions of the galaxy classification.

Methodology

Neural networks are popular for recognizing and classifying objects in images. Common uses include
video surveillance, self-driving vehicles, and cancer screening. The goal of this project is to apply this
capability for the purpose of identifying galaxy types in telescope imagery using a neural network

topology called the Convolutional Neural Network, or CNN.

Convolutional Neural Networks

Convolutional Neural Networks make up the first layers of a neural network intended for image
recognition. This is because, like the animal visual cortex, CNNs provide a feature-extraction capability to
the neural network (NN)[4, p. 518]. The output of a CNN layer is typically connected to a “max pooling”
layer creating what is referred to as a “feature map.” The layering of CNNs and max-pooling layers
provides the broader neural network with the capability to recognize more complex image features. A
set of fully-connected neural network layers make-up the final layers of the CNN with the last layer
composed of a number neurons corresponding to the number of object classes the CNN needs to

identify.

Image Dataset and Image Classes

Training a CNN must be done with the aid of a dataset that has an abundance of images which show the
objects of interest. For this project, the dataset was downloaded from the Galaxy Zoo 2 dataset available
in [1]. This dataset contains 243,437 images obtained by the Sloan Digital Sky Survey (SDSS) telescope.

This dataset features a multitude of galaxy types in color, 424x424 resolution, JPEG images along with

Page | 2

two spreadsheets for referencing each image’s classification. Image classes include the following

examples [5, p. 2860]:

e Er =smooth galaxy, completely round.

e SBc2m = barred disk galaxy with a just noticeable bulge and two medium-wound spiral arm(s).
e Seb = edge-on disk galaxy with a boxy bulge.

e Sc(l) = disk galaxy with a just noticeable bulge, no spiral structure, and irregular morphology.

e A=ystar

For this project, the classes were reduced to 3: elliptical galaxies, spiral/disk galaxies, and edge-on
spiral/disk galaxies. Stars and galaxies with irregular features were not included in the training and

validation datasets to improve training accuracy.

Software and Hardware
The software was developed using the Python programming language running within an Anaconda

environment. Python modules used included the following:

e OpenCV: for loading images, grayscale-conversion, and saving images.
e Scikit-Image: for generating intensity profile lines in images.

e tkinter: for application GUI rendering.

e Numpy: for list and matrix math.

e Pandas: for reading *.csv files

e Matplotlib: for plotting/visualizing data.

e Tensorflow 2: for building, training, and testing the CNN.

e os: for image directory queries.

e Random: for image file name shuffling.
Hardware specifications of the PC were:

e Intel i9-9900KF processor

e 64-GB system RAM.

e nVidia RTX-2080 Super graphics card with 8GB VRAM.
e Windows 10 OS.

Page | 3

Data Preprocessing

Data preprocessing can be any method that helps remove unnecessary information and/or enhances
relevant information within an image. According to [2, p.13], “In an image-understanding system, the
preprocessing stage often performs functions such as the gray scale manipulation, edge detection,
developing descriptions of objects or shapes in the image, image restoration, and geometric correction.”
The use of preprocessing allows the Neural Network to train on relevant information and comes highly

recommended from the research literature.

As suggested by [2, p.13], the galaxy images were first converted to grayscale to reduce the image
dimensionality from 3D-RGB (Red, Green, Blue) to 2D-grayscale. This resulted in 424x424-pixel images
with intensity values ranging from 0 to 255. Since the images contain an abundance of extra objects such
as stars and other galaxies, an approach was devised to remove these objects by interpreting the image
as a topographical map. Topographical maps feature contour lines representing locations of equal
altitude. For the galaxy images, contour lines represent pixels of equal intensity. Using the scikit-image
module available to Python, the find_contours() function was employed to generate contours for pixels
of intensity 60 (out of 255). Of the many contours generated by this function, the contour with the
largest length was chosen as it was most likely to correlate with the largest object in the image, this
being the galaxy of interest. A simple computation of the hypotenuse on each of this galaxy contour’s set
of coordinate pairs resulted in a list of radius values of the galaxy contour. The largest of these radii was
then used as the radius for creating a circular image filter where pixels within the circle had value 1 and
all pixels outside the filter had a values of 0. The image filter was made to have the same dimensions as
the original image (424x424) with the circular filter overlapping the galaxy. Multiplication of the
corresponding pixels of the image and the image filter generally removed most of the objects within the
image while keeping the galaxy visible. Examples of this are shown in the figures 1 and 2. The Python
application developed for this purpose (countour_prep.py) was used to preprocess a large batch of 8,443

image files for use by the CNN.

Page | 4

. Back Forward Start: 0 End: 100 Load Source Images

Figure 1 Preprocessing applied to a spiral galaxy image.

f Image Preprocessing: Contour

File

Start: 0 End: 10q Load Source Images

. Back Forward

Figure 2 Preprocessing applied to an elliptical galaxy image.

Model and Verification Methods

Convolutional Neural Network Architecture

Various CNN architectures were tested in this study in order to obtain one with the highest validation

accuracy. The final architecture tested took the form of figure 3.

Page | 5

Spiral/Disk

Edge-On S/D

(8z1) @z Auod
Buijood xe
(8zT) @z Auod
Buijood xe|y
(8zT) @z Auod
Buijood xey
(9g2) asuaq
(952) asuaq
(8zT) @suaq
(g) asuaq

Elliptical

)
-
0]
T
=
o]
O
(1]
wn
wn
(0]
o
=
QO
o
]

Figure 3 Final CNN architecture

As can be seen from the figure, the CNN takes a preprocessed image at its input. This image is then
presented to a convolutional layer for the first feature-extraction phase. Since convolutional layers
increase the dimensionality of the data, max-pooling layers are added behind the convolutional layers to
reduce or “downsample” the data [3, p.385]. Two additional convolutional layers are added to provide
the CNN with the ability to capture higher-level patterns from previous convolutional layers. Again, max-
pooling layers are added to reduce the growing dimensionality of the data output from the convolutional
layers. Finally, a flattening layer is used as an interface between the convolutional layers and the
subsequent dense layers. Dense layers represent the conventional type of neural network. Layer
configurations followed from what was commonly used in the research [4, pp.545-547] and [3, pp.392-
393] where convolutional layers were set to use 3x3 filters, max-pooling layers used 2x2 filters, and all
activation functions were of the “ReLU” type [3, p.258]. The final layer was different from the others in
that it used a “Softmax” activation function to provide a confidence value for multiclass classification [3,
p.268]. Experimentation was then performed by varying the sizes of the layers and noting the

performance of the CNN'’s training accuracy and validation accuracy.

Tensorflow 2 and Keras

The CNN was created using the Tensorflow 2 module and its Keras wrapper available to Python.
Tensorflow allows the neural network developer to conveniently enclose training samples and their class
descriptions into objects called “datasets.” Furthermore, testing data is also encapsulated into
Tensorflow dataset objects. With training and test data ready, the CNN “model” is created layer-by-layer
using Keras. Next, the layers are compiled along with the choice of optimizer, loss function, and the

metric to optimize. Finally, a fitting function is called against the model object with the dataset objects

Page | 6

and number of epochs as arguments. Tensorflow then proceeds to train the CNN, reporting the training
accuracy and validation accuracy after every epoch. Tensorflow also provides training and validation
process configurations called “pipelines” that can be used for data shuffling, caching, batching,
prefetching, and most important of all: preprocessing. After configuration and fitting, a trained

Tensorflow model is available to save to disk in hdf5 format.

Tensorflow 2 Model for Galaxy Classification
The following figure represents Tensorflow 2’s summary of the final CNN model developed for this

project.

Layer (type) Output Sha Param #

reshape (Reshape) (None, 200, 200, 1)
conv2d (Conv2D) (None, 198, 198, 128)

max_pooling2d (MaxPooling2D (None, 99, 99, 128)

conv2d_1 (Conv2D) (None, 97, 97, 128) 147584

max_pooling2d_1 (MaxPooling (None, 48, 48, 128) (%]
2D)

conv2d_2 (Conv2D) (None, 46, 46, 128) 147584

max_pooling2d_2 (MaxPooling (None, 23, 23, 128) %)
2D)

flatten (Flatten) (None, 67712) ()

dense (Dense) (None, 256) 17334528
dense_1 (Dense) (None, 256) 65792
dense_2 (Dense) (None, 128)

dense_3 (Dense) (None, 3)

Total params: 17,730,051

Trainable params: 17,730,051
Non-trainable params: ©

Figure 4 Tensorflow 2 model summary for the Galaxy Classifier App

Following the general consensus of the research literature [4, p.547] and [3, p.393], the following

Tensorflow 2 arguments were passed to the compile() function of the model object:

e Optimizer = ‘adam’

e Loss = ‘sparse_categorical_crossentropy’

Page | 7

e Metrics = [‘accuracy’]

Epoch count was limited to an initial run of 30. If the training accuracy suggested that the CNN’s accuracy

had more potential for improvement, an additional 30 epochs were run.

Additional minor preprocessing was performed by the Python application. This included cropping a
200x200 pixel image from the original 424x424 image and a normalization of the pixel values from the

original 0-to-255 range (8-bit unsigned integer) to a 0-to-1 range (32-bit, floating-point).

The preprocessed images were used to the fullest extent (8,440 out of 8,443 available) with an 80%
allocation to the training dataset (6,752 images) and a 20% allocation to the validation dataset (1,688
images). Once all training epochs completed, the Python application (main_final.py) plotted the training

accuracy and the validation accuracy as a function of the epoch number.

Results

The final model was trained and validated over a total of 60 epochs in two, 30-epoch runs. The first run

resulted in the data shown in figure 5.

Training Accuracy Validation Accuracy
0.95 -
0.800
0.90 -
0.775 4
0.85 -
0.750 4
0.80 -
0.725 4
0.75
0.700 4
0.70 -
0.675
0.65 -
0.650
0.60 -
0.625 -
0.55 -
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epoch Epoch

Figure 5 Training and validation accuracy of the final model, first 30-epochs

Training accuracy yielded 96% with validation accuracy yielding 81%. In an attempt to improve the

validation accuracy, a second, 30-epoch training run was done yielding the following result in figure 6.

Page | 8

Training Accuracy Validation Accuracy

0.985 4
0.81 4
0.980
0.80 4
0.975 675
0.970 4 0.78 1
0.965 0.77
0.960 0.76 1
0.955 0.75 1
0.950 0.74 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epoch Epoch

Figure 6 Training and validation accuracy of the final model's second, 30-epoch run.

Here, training accuracy improved to 98%, but validation accuracy declined to 79%, an indication that the

additional training was tending toward overfitting the data.

The final realization of the Python program (main_final.py) is an interactive graphical user interface (GUI)

shown in figure 7.

Truth: § 0.8
Predict: Spiral/Disk: 0.997

0.0 0.2 0.4 0.6 0.8 1.0

Preprocessing
Resize XY To: 200
Machine Learning Controls-

Training Images: 6752 Testing Images: 1688 Epochs: 30 Train Test

Image Controls
Load Images | Back | Forward

Figure 7 The Galaxy Classifier application GUI

This GUI allows the user to observe the preprocessed galaxy image, along with its true and predicted
classification. The 3D plot in the center provides a topographical perspective of the image pixel intensity.

Controls are provided at the bottom to load the image set, cycle through the images, and train the CNN.

Page | 9

Conclusions

Machine learning with convolutional neural networks most-certainly demonstrates a promising
capability for the classification of galaxies in astronomical surveys. High training accuracies are
demonstrably obtained with the convolutional neural network employed, but high-validation accuracies
are a bit more challenging to achieve. The use of custom-developed preprocessing methods, such as the
technique demonstrated in this project, contribute significantly to the CNN’s ability to obtain high-
accuracy classification predictions. With the freely-available dataset provided by Galaxy Zoo, the free
tools available to Python, any motivated machine-learning developer who wishes to test their own
preprocessing algorithm and neural network tuning skills can undertake this galaxy classification

challenge.

References

[1] https://zenodo.org/record/3565489#.2Ct2rPbML-h

[2] Kulkarni, Arun D. “Artificial Neural Networks for Image Understanding.” Van Nostrand Reinhold, 1993.
[3] Liu, Yuxi H. “Python Machine Learning by Example.” Packt Publishing, 2020.

[4] Raschka, Sebastian and Mirjalili, Vahid. “Python Machine Learning.” Packt Publishing, 2019.

[5] Willet, Kyle W., et al. “Galaxy Zoo 2: Detailed Morphological Classifications for 304,122 Galaxies from

the Sloan Digital Sky Survey.” Monthly Notices of the Royal Astronomical Society, 2013.

Acknowledgements

Special thanks to Christopher Hoppe for his generous interim review of this project.

Page | 10

	cover_page
	team50-final-report

