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Abstract & Executive Summary

In this paper we describe an astrophysical simulation code SINGS, the Simple Interactive

N -body Gravitation Simulator, which has been designed to accurately model a wide range

of astrophysical systems, ranging from simulations of planetary motion to cosmological sim-

ulations of structure formation. SINGS provides support for both collisionless and collisional

particles, the latter of which employ impulse-based collision methods. SINGS provides vari-

ous parallel force code and integration schemes, allowing for a high degree of customisability.

In addition to the integration and force codes provided by SINGS, the code also provides

a rudimentary programmatic framework for the creation of simulation scenarios, which can

then be compiled to a simulation snapshot. These simulations can also be diagnosed at the

moment of a single snapshot. The simulation snapshots may also be independently analysed

by the user, employing a simple struct based layout suitable for analysis. In this report, we

detail these various components of SINGS and evaluate their performance and accuracy.

SINGS overall is still in its infancy as a tool. The program we detail, while indeed

powerful, should not be seen as an alternative or improvement upon existing mainstream

N -body codes like AREPO (Springel, 2010) or GADGET-4 (Springel, Pakmor, et al., 2021).

Our code uses OpenMP for parallelisation, which is unable to harness the full power of su-

percomputers running node-based architectures like more advanced codes. To do so would

entail the use of OpenMPI and a radical change in the architecture of the program. An-

other feature missing from SINGS is a parallel Cloud-In-Cell (CIC) Particle-Mesh (PM) code

utilising Fast Fourier Transforms (FFTs) to compute the gravitational potential across the

whole simulation, an additional order O(N logN) model to complement Barnes-Hut. How-

ever, implementing the model proved difficult given the existing SINGS architecture, which

also presented significant difficulties in parallelising the Cooley-Tukey algorithm used for the

FFTs. This meant that by the Supercomputing Challenge deadline we could not finish a

complete implementation. As a result, the version of SINGS we present does not include

the CIC PM code. There are a myriad of other features, such as the implementation of a

more realistic collisional gas modeling code (such as SPH) and the inclusion of a Hubble

parameter to support analysis of ΛCDM cosmologies, that we could not implement which

we discuss in Section 7. As SINGS is intended to be open source on release under GPLv2,

we invite others to collaborate in fleshing out the software. Overall though, SINGS in its

current form is a fully functional 3 dimensional N -body code with impressive capabilities

on supported hardware, with large simulations with particle counts in excess of 1,000,000

having been successfully demonstrated.
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1 Introduction

Simulations of astrophysical simulations have proved to be an invaluable tool in the various

realms of astrophysics. Numerical simulations have been used to understand the formation

of planetary systems, the interactions between galaxies and galaxy clusters, and the large

scale structural evolution of the universe. The rapid improvements in computer processing

capabilities and the development of faster, more elaborate calculation schemes has allowed

for exceptionally complex astrophysical simulations.

Prior to the advent of astrophysical simulations, study of large stellar objects like globular

clusters, galaxies, and galaxy clusters were limited to the static frames viewable in the night

sky. While information about the expansion of the Universe (Hubble, 1929), and to some

extent, dark matter (Zwicky, 1933), questions regarding the nature of galaxy collisions and

structure formation, among others, were impractical to be put to numerical analysis given

the O(N2) order of the computations involved.

Even some of the earliest and rudimentary astrophysical simulations like those of Holm-

berg (1941) and White (1976) demonstrated their power as a tool to validate and understand

the implications of various astrophysical models. The former simulated the collision between

two galaxies of stars by use of a clever setup involving lightbulbs in place for particles, the

nature of which allowed the lowering of the calculation order from O(N2) to O(N). Through

manual computation, the dynamics of galaxy collisions was modeled for the first time, the

spiral structures of the two galaxies being torn apart in the interaction, as many particles

were flung on escape trajectories. The latter was a computational simulation, thus able to

overcome the O(N2) order of the direct method, and demonstrated the evolution of galaxy

clusters approximated with 700 particles evolving under cosmic expansion.

The introduction of more advanced force calculation techniques such as the so-called tree

(Appel, 1981) and mesh codes (Eastwood and Roger Williams Hockney, 1974) with order

O(N logN) allowed for the investigation of even more complex astrophysical phenomena.

This progress culminated in the Millenium Run (Springel, White, et al., 2005) wherein

21603 particles were simulated in a (500 Mpc)3 cube, in effect modelling the evolution of

the universe from shortly after the big bang to the present. Today, even more ambitious

cosmological simulations like AbacusSummit (Maksimova et al., 2021) simulate simulation

spaces hundreds of mega-parsecs across, with trillions of particles. These simulations provide

key insight into the evolution of the early universe, regions with high redshift z > 10 that

are not easily accessible to direct observation.

With a clear motivation for developing these codes, we now present our work in creating

the code which can run simulations of scientifically useful resolution and magnitude: SINGS
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2 General Physics

2.1 Formulation of Gravity

The general formula we’ll use for calculating the forces between two particles i and j we’ll

derive from Newton’s law of Universal Gravitation

F = G
mimj

r2ji
(1)

where F is the magnitude of the force between two particles i and j, G is the gravitational

constant, mi and mj are the masses of the respective particles, and rji is their common

distance. This formula can itself be derived as the derivative with respect to position of the

gravitational potential energy U

U = −G
mimj

rji
(2)

Our first point of modification will come from the introduction of a softening parameter

ε. Close range interactions will be prone to gross violation of the conservation of energy, as

rij → 0, the computed forces will diverge. While ε will reduce the accuracy of the simulation,

for appropriate values this error is both negligble on large scales and increases the likelihood

of energy preserving interactions. We can introduce ε into U as such,

U = −G
mimj√
r2ji + ε2

(3)

and taking
d

dr
[U ] to get F ,

F = Grji
mimj

(r2ji + ε2)
3
2

(4)

What we’ve just described is an implementation of Plummer softening (Dyer and Ip,

1993), and this will serve as our generic force calculation formula when calculating the direct

forces between two particles. For the general force calculation methods we’ll discuss later

we’ll still use this Plummer softened force model, unless we have ε = 0, in which case we’ll

use (1). This is because both are essentially computationally equivalent in featuring a single

square root.

We also can analyse the relative error δ between the two predicted F at a constant rji.

Defining δ(ε) by

δ(ε) =

∣∣∣∣Fplummer − Factual

Factual

∣∣∣∣ (5)
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and considering that Fplummer < Factual for all ε ̸= 0 we can remove the absolute value by

negating the expression, expanding and simplifying to produce

δ(ε) = 1−
r3ji

(r2ji + ε2)
3
2

(6)

The relationship between the error, force computed by (4), and the actual force from (1) is

shown in Figure 1.

0.0 0.5 1.0 1.5 2.0 2.5

0.0
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0.4

0.6

0.8

1.0

Figure 1: A plot illustrating how the force computed by the Plummer model and Newton’s law,
along with the the relative error ε, using absolute units where rji = mi = mj = G = Factual = 1

2.2 Modelling Collisions

In modelling the collisions between two objects, we make use of an impulse based model.

That is, when two collisional particles i and j have collided, we compute an impulse on

each of the particles J along the collision normal vector n̂, which we’ll consider to be the

collisional normal vector on i from j. If we consider the change in the momentum for the
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two particles, we can set up a simple system

∆P⃗i = miv⃗
′
i −miv⃗i (7a)

∆P⃗j = mjv⃗
′
j −mjv⃗j (7b)

Given that J is going to conserve the momentum of the particles, we can modify (7) to yield

Jn̂ = miv⃗
′
i −miv⃗i (8a)

−Jn̂ = mjv⃗
′
j −mjv⃗j (8b)

or, rearranging and solving for v⃗′
i and v⃗′

j

v⃗′
i = v⃗i +

Jn̂

mi

(9a)

v⃗′
j = v⃗j −

Jn̂

mj

(9b)

Assuming a perfectly elastic collision (that is, one with a coefficient of restitution ϵ = 1),

we can produce the equation

v⃗′
rel · n̂ = −v⃗rel · n̂ (10)

where v⃗′
rel and v⃗rel is the relative velocity vector between i and j from i after and before the

collision, respectively. The expression v⃗′
rel · n̂ may also be expressed by

v⃗′
rel · n̂ = (v⃗′

i − v⃗′
j) · n̂ (11)

Substituting in the values for v⃗′
i and v⃗′

j from (9) and expressing v⃗′
rel in terms of v⃗rel from

(10) and simplifying produces

−v⃗rel · n̂ = v⃗rel · n̂+ Jn̂(
1

mi

+
1

mj

) · n̂ (12)

along with multiple regions and solving for our impulse

J = −2
v⃗rel · n̂
1
mi

+ 1
mj

(13)

This equation for our impulse magnitude we can now finally use to derive new velocity
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vectors for i and j using the formulas we set up in (8)

v⃗′
i = −2

(v⃗i − v⃗j)

1 + mi

mj

+ v⃗i (14a)

v⃗′
j = 2

(v⃗i − v⃗j)

1 +
mj

mi

+ v⃗j (14b)

Notice that the collision normal vector n̂ is not present in our final equation. The final order

of business is to tackle when collisions themselves happen. For that we use the same octree

that we describe in 3.2. We search up the tree starting from a given particle and search up

the tree a number of layers n, and if the criterion r < ε is satisfied—where r is the distance

between two particles in the neighboring nodes and ε is the plummer softening parameter

from 2.1—we compute the new collision velocities and run a single timestep to update their

position until they are no longer colliding with any particles.

3 Force Calculation

3.1 Direct Method

With the general form for the magnitude of forces between two particle pairs, we can apply a

force vector F⃗ji to i, that is the force vector on i from j, by multiplying our force magnitude

by the normal vector which points from i to j

F⃗ji = Grji
mimj

(r2ji + ε2)
3
2

r⃗j − r⃗i
|⃗rj − r⃗i|

(15)

where r⃗j and r⃗i are the position vectors of j and i respectively. Applying this same step to

(1) and noting that rji = |⃗rj − r⃗i|, we can produce the following softened and unsoftened

force equations:

F⃗ji = G
mimj

(r2ji + ε2)
3
2

(⃗rj − r⃗i) (16a)

F⃗ji = G
mimj

r3ji
(⃗rj − r⃗i) (16b)

Now that we have formulae for computing the force vector applied to i from j, we can
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use Newton’s second law to derive the acceleration vector a⃗i

a⃗i =

N∑
j ̸=i

F⃗ji

mi

(17)

Inserting in (16a) and (16b) yields the following set of equations

a⃗i =
N∑
j ̸=i

G
mj

(r2ji + ε2)
3
2

(⃗rj − r⃗i) (18a)

a⃗i =
N∑
j ̸=i

G
mj

r3ji
(⃗rj − r⃗i) (18b)

where (18b) provides an exact a⃗i and (18a) a softened one. These two equations are the

backbone of the direct method implementation in SINGS, which we also use as a reference

to compare the force calculations provided by other methods, particularly Equation (18a)

as it exactly gives particle accelerations. The chief drawback of the direct method is that

computations scale in order O(N2), which for simulations with large N necessitates the use

of other force codes.

3.2 Barnes-Hut

The algorithm described by Barnes and Hut (1986) (hereafter Barnes-Hut) is a hierarchical

tree algorithm that scales with order O(N logN). The Barnes-Hut tree is constructed by

recursively partitioning the simulation space into a sequence of cubes, with each cube con-

taining 8 child cubes representing an octant of the parent cube. These cubes form an octree

structure, where each cube is a node in the octree. We construct the octree starting with

one node representing the whole simulation space, and then partition it in such a way that

each node either 0 or 1 particle, or is itself a parent to more nodes. We call nodes of the first

variety external nodes, and the second internal nodes. The internal nodes store the center

of mass and total mass information of all their internal particles, such that they can be used

for approximate force calculation. A diagram illustrating the construction of a Barnes-Hut

tree is shown in Figure 2.

We then calculate the force on a particle by walking the tree and summing all the ap-

proximate forces. In traversing the tree, we approximate a node as a particle if the relation

l

r
< θ (19)
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n = 0 n = 1 n = 2 n = 3

Figure 2: An illustration of a 2 dimensional Barnes-Hut tree down to various depths n. From the
base layer, the space is subdivided until all particles occupy external nodes.

is met, where l is the length of the node, r is the distance from the particle to the node,

and θ is a tuneable accuracy parameter. If a node doesn’t satisfy (19), we expand the node,

testing on its child nodes. If we end up on an external node with a particle we do a direct

particle-particle force calculation before traversing back up through the tree. These steps

are repeated until all internal nodes satisfying (19) and other external nodes are visited.

Larger values of θ will result in larger approximations and thus larger errors, but will also

result in reduced compute times. As θ → 0, computations tend to grow with order O(N2),

and the computations become exactly those of the direct method at θ = 0. The force

calculation errors of Barnes-Hut for various values of θ is shown in Figure 3. as computed

across various SINGS simulations.

■

■

■

■
■

■
■■

■

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20
■

Figure 3: The average error in computed forces for various θ compared against the direct method

across 100 sims/θ, given by error(θ) =
|F⃗BH(θ) − F⃗Direct|

|F⃗Direct|
.
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Figure 4: A 2 dimensional SINGS 1 simulation of 12,000 particles, modelling the collision between
two galaxies. The frame on the left features the Barnes-Hut tree, the one on the right, the nodes
used in calculating the force on a particle on the far left.

These errors though are more than manageable for carefully chosen values of θ, and allow

us to simulate far larger and more complex systems. Figure 4 features frames from the 2

dimensional SINGS 1 code illustrating the massive reduction in computations enabled by

the Barnes-Hut method.

4 Integration

In this section, we discuss various methods of numerical integration for updating particle po-

sitions and velocities given the acceleration vectors generated by our force codes we describe

in Section 3. Two of the methods we describe are energy-conserving under Hamiltonian me-

chanics, that is, they are symplectic integrators. The others are general integration schemes

which can still maintain high order accuracy for certain choices of timesteps ∆t. Regarding

timesteps, we use a static timestep as opposed to adaptive, particle-specific timesteps for

the purpose of simplicity. Adaptive timesteps allow various particles to take on lower or

higher accuracy timesteps appropriately, which generally results in higher accuracy simu-

lations (Aarseth and Hoyle, 1963). However, the complexity they introduce resulted in us

sticking to fixed particle time steps.

4.1 Euler Methods

The two Euler methods are the simplest methods we include in SINGS for the purpose of

numerical integration. We include a second order version of the standard Euler method,
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where new velocities and positions are derived from

r⃗i+1 = r⃗i + v⃗i∆t (20a)

v⃗i+1 = v⃗i + a⃗i∆t (20b)

where r⃗i, v⃗i, and a⃗i are the position, velocity, and acceleration vectors of a particle at a

timestep i respectively. This method is non-symplectic and has first order error. Given the

low order of the error and its non-symplectic nature, this is generally not recommmended

as an integrator except for stable simulation configurations (such as modelling planetary

orbits.)

The other Euler method SINGS employs is the symplectic (sometimes, the semi-implicit)

Euler method, which computes the updated position vector using the new velocity vector as

such

v⃗i+1 = v⃗i + a⃗i∆t (21a)

r⃗i+1 = r⃗i + v⃗i+1∆t (21b)

Note that the order in which these computations have been made is flipped from (20). While

this method is still of the first order, its symplectic nature makes it ideal for simple and even

relatively complex simulations.

4.2 Runge-Kutta

The Runge-Kutta method is a non-symplectic method in SINGS. It computes functional

derivatives at times between t and t + ∆t, and weights them to produce a prediction for

the function at the next time step. The method we use, the fourth-order Runge-Kutta

method (henceforth RK4) has fourth order error, which makes it quite appealing despite it’s

non-symplectic nature.

If we consider y⃗i to be a vector containing the dependent variables of our system ⟨⃗ri, v⃗i⟩
and f⃗ to be a vector containing the derivatives of y⃗i, we can compute y⃗i+1 for our second
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order system by

k1 = ∆t f⃗(t, y⃗i) (22a)

k2 = ∆t f⃗(t+
1

2
∆t, y⃗i +

1

2
k1) (22b)

k3 = ∆t f⃗(t+
1

2
∆t, y⃗i +

1

2
k2) (22c)

k4 = ∆t f⃗(t+∆t, y⃗i + k3) (22d)

y⃗i+1 =
1

6
(k1 + 2k2 + 2k3 + k4) (22e)

where k1, k2, k3, and k4 are the RK4 weights. In order to compute the various values of f⃗ ,

we propagate each individual particle forward at their old velocity v⃗i at the timesteps which

are specified by the RK4 coefficeints. So while the integrator itself remains O(N) like all the

other integrators, we are having to calculate the force on each particle at those new locations

4 separate times, thus compared to other integrators we’d expect to see compute times at

least 4 times greater.

4.3 Leapfrog Integration

Leapfrog integration is the final integration method provided by SINGS, and is the primary

one used in major astrophysical simulation tools like GADGET (Springel, White, et al.

(2005), Springel, Pakmor, et al. (2021)). The Leapfrog integrator is a 3rd order symplectic

integrator, where with our fixed timesteps we calculate our position and velocity vectors by

r⃗i+1 = r⃗i + v⃗i∆t+ a⃗i∆t2 (23a)

v⃗i+1 = v⃗i +
1

2
(a⃗i+1 + a⃗i)∆t (23b)

This simple scheme allows us to quickly integrate our simulation in a similar time to the

Euler methods, yet with significantly lower computational error provided by the Leapfrog

integrator’s 3rd order accuracy.

5 Computation

Here we detail the specific programming aspects of SINGS, discussing the architecture of the

program, the libraries we used, and specific challenges during development.
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5.1 Why C?

SINGS is programmed entirely in vanilla C using the C99 standard for the Linux kernel.

No external libraries were used with the exception of OpenMP, which we discuss further in

5.3. The reason we chose C to write SINGS was its simplicity and performance. The object

oriented features of other languages like C++ wouldn’t be particularly useful and we felt

would only result in code ambiguity. C provided a simple framework where major program

elements, like the simulation state, particles, and the functions which act on them, boiled

down to passing structs between functions. That simplicity, coupled with the far higher

performance from C being a low-overhead, compiled language made it ideal for the high

computational demands of SINGS.

5.2 Modularity

The basic architecture of SINGS is highly modular, with SINGS execution split into 5 primary

steps, those being:

1. Simulation Initialisation

2. Force Calculation

3. Particle Integration

4. Collision Resolution

5. Simulation Serialisation

In the first step, SINGS reads in a snapshot and parameterfile. The latter of which is

used to build the internal simulation structure, and the former sets the internal simulation

variables that’ll be used. During the force calculation stage, the specified force code is

applied to all the particles in the simulation, and when completed, pass the particles off to

the desired integrator to have their positions updated. Before we pass off the simulation to be

serialised, we resolve any particle collisions via the methods outlined in 2.2. In the last step,

the simulation may be serialised and saved into a snapshot file. This doesn’t necessarily mean

the simulation has concluded, but rather that by user specification in the parameterfile—

specifically snapshot frequency—that the current timestep is one that we output. Large

simulations have snapshots that may take up many gigabytes, and so allowing the user to

choose the rate at which we write those snapshots to the disk paramount, lest we run the risk

of losing a run because of a crash, or filling up the disk if we were to serialise every frame.

Finally. Assuming the simulation still isn’t complete, we revert back to step 2 and propagate
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Simulat ion 
I ni t ial isat ion

For ce 
Calculat ion

Par t icle 
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Figure 5: A flowchart illustrating the large scale architecture of SINGS, in particular the standard
runtime loop between the 5 main execution stages.

the simulation forwards. A graphical representation of this entire process is shown in Figure

5.

A significant advantage in segmenting SINGS execution into these 5 stages is that they

each remain completely compartmentalised. No modification to any one of the discrete parts

of SINGS requires modification of any of the others.

To illustrate this point, we’ll show the modularity of the code in terms of integrators and

force codes (stages 2 and 3) for a single frame of a hypothetical simulation using a leapfrog

integration scheme and the direct method.

Here is the main simulation loop, as we are concerned with the integration step, we only

include it here. SINGS picks the configured integrator from a list of function pointers called

integrators[], and then passes in the simulation and force code from the array of function

pointers force_codes[] to run. Given we are using leapfrog integration and the direct

method, the indices for integrators[] and force_codes[] and are 3 and 0, respectively.
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//main . c

. . .

for ( int i = 0 ; i < sim . s im c fg . t imes teps ; i++ {
. . .

i n t e g r a t o r s [ sim . s im c fg . i n t e g r a t o r ](& sim , f o r c e c od e s [ sim . s im c fg . force method ] ) ;

. . .

}

For the leapfrog integrator, we must hold on to all of our current particle acceleration

vectors so we can complete the integration step (23). We then call our force code. Notice,

nothing in the leapfrog integrator touches the force codes, they simply pass the simulation

state back and forth. We then run a parallel loop to complete the integration step on each

of the particles.

// i n t e g r a t i on . c

. . .

void l e ap f r o g ( s t a t e ∗sim , void (∗ update ) ( s t a t e ∗ ) ) {
vec3 ∗ a i = c a l l o c ( sim−>num part i c l e s , s izeof ( vec3 ) ) ;

for ( int i = 0 ; i < sim−>num par t i c l e s ; i++) {
a i [ i ] = sim−>p a r t i c l e s [ i ] . acc ;

}
update ( sim ) ;

#pragma omp p a r a l l e l for

for ( int j = 0 ; j < sim−>num par t i c l e s ; j++) {
sim−>p a r t i c l e s [ j ] . pos = vec add ( sim−>p a r t i c l e s [ j ] . pos ,

vec add ( v e c s c a l e ( sim−>p a r t i c l e s [ j ] . ve l , sim−>s im c fg . dt ) ,

v e c s c a l e ( a i [ j ] , . 5 f ∗ sim−>s im c fg . dt∗sim−>s im c fg . dt ) ) ) ;

sim−>p a r t i c l e s [ j ] . v e l = vec add ( sim−>p a r t i c l e s [ j ] . ve l ,

v e c s c a l e ( vec add ( a i [ j ] , sim−>p a r t i c l e s [ j ] . acc ) ,

. 5 f ∗ sim−>s im c fg . dt ) ) ;

}

f r e e ( a i ) ;

}

Finally the force calculation step step, just the implementation of the direct method from

(18a). We run a parallel for loop across all the particles. The main aspect of these functions

to note is that the implementation of these functions do not inherently matter, as long as

they all use the same simulation state structure. All we have done in this 3 step process is

pass sim around between these various independent functions
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// phys i c s . c

. . .

void d i r e c t ( s t a t e ∗ sim ) {
#pragma omp p a r a l l e l for

for ( int i = 0 ; i < sim−>num par t i c l e s ; i++) {
sim−>p a r t i c l e s [ i ] . acc = ( vec3 ){0 , 0 , 0} ;
d i r e c t a c c (&sim−>p a r t i c l e s [ i ] , ∗ sim ) ;

}
}

void d i r e c t a c c ( p a r t i c l e ∗p , s t a t e sim ) {
for ( int j = 0 ; j < sim . num par t i c l e s ; j++) {

i f (p == sim . p a r t i c l e s+j )

continue ;

p−>acc = vec add (p−>acc , v e c s c a l e ( f g c a l c (∗p ,

sim . p a r t i c l e s [ j ] , sim . s im c fg ) , 1/p−>mass ) ) ;

}
}

5.3 Parallelisation

The parallelisation of SINGS is achieved via the use of OpenMP, the only external library

used in this project. We chose OpenMP for its simplicity, as it allowed us to focus on

developing an initially single core framework that could later be easily adapted for mult-

ple cores. At its heart, SINGS is essentially a bunch of nested loops, loops on particles,

whether that for calculating forces on those particles or integrating those forces to find their

positions and velocities. Because of the modularity of SINGS and the manner in which

our simulation data is stored, the state structure, we can easily parallelise the high level

loops which update particle parameters. This can be seen first hand in 5.2, where a simple

#pragma omp parallel for is all that’s needed to parallelise the algorithms.

To demonstrate the effectiveness of this parallelisation, we ran several simulations using

the direct method and our two symplectic integrators with various thread counts up to 12,

then normalised the y-axis by taking 1/runtime (we take runtime to be roughly ∝ 1/threads).

The results of this are shown in Figure 6.

5.4 Model Validation

We can validate SINGS models by checking for the consistency of certain well known sim-

ulation parameters, and seeing how they evolve over the course of a simulation. Examples

we’ve discussed earlier related to Plummer softening (Figure 1) and the Barnes-Hut method

(Figure 3). Another method besides computing the force directly is measuring the simulation
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Figure 6: A figure showing 1/runtime for various thread counts between the leapfrog and sym-
plectic Euler integration schemes.

energy. Recalling 2.1,

U = −G
mimj

rji
(2)

where U is the gravitational potential energy between two bodies. The only other source of

energy in the simulation is going to be the individual particle kinetic energies, given by

K =
1

2
miv

2
i (24)

thus, if we want to compute the total mechanical energy E of the simulation at a time t, we

can do a direct summation over all particle-pairs of their respective gravitational potential

energies and their kinetic energies. Doing this yields

E =
N∑
i ̸=j

1

2
miv

2
i −G

mimj

rji
(25)

This is one of the chief tools SINGS employs for diagnostics, as the reduction or increase

in energy of the system over time, while expected (especially with low particle counts with

many close-range interactions) might result in unrealistic outputs. A plot featuring the

relative energy Erel (given by Erel =

∣∣∣∣Ef

Ei

∣∣∣∣) across a simulation with various integrators is

shown in Figure 7.

Another measure of error that we haven’t yet discussed is the error resulting from high
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Figure 7: A plot of the relative energy Erel over the course of a full simulation for various integrator
choices.

∆t values. If we run the same analysis over the course of a simulation, comparing the change

in Erel for various ∆t we can produce the graph in Figure 8.
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Figure 8: The relative change in energy over the course of a simulation using the direct method
and different numerical integration methods, for various ∆t in the range [0, 3.2]

We see quite a clean relationship in the change in energy of the system with respect to

∆t across all integrators, though the randomness of a particular simulation state will mean

that at certain ∆t’s deviations from this fit will occur.
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6 Next Steps

As powerful a tool as SINGS is today, there are many areas within the codebase that could use

improvement along with a plethora of new techniques and approaches to N-body computation

which SINGS would benefit immensely from.

A specific example as discussed in the Abstract & Executive Summary was the Cloud-

in-Cell (CIC) Particle Mesh (PM) method. A high level description is that the Particle

Mesh method uses the Poisson equation and a Fast Fourier Transform (FFT) to compute

the gravitational potential in cubic cells across the simulation space. Using this potential

we can then apply a force to a particle inside the cell. This method like Barnes-Hut has

an order O(N logN), and is particularly well suited for computing the long-range forces on

particles extremely quickly (depending on the FFT algorithm), but is less well suited for

close interactions. This gives rise to derivations of the method like the Particle-Particle-

Particle Mesh (P3M) method (Roger W Hockney and Eastwood, 1988) which does a direct

force calculation between nearby particles. This latter method was initially planned to be

in SINGS at release but the present architecture did not adapt well to the method and our

FFT was not easily parallelised. However, we feel strongly that the future of SINGS will

likely involve some P3M implementation.

A reworking of the architecture to support P3M would also make way for the imple-

mentation of a more robust and realistic collisional particle model via Smoothed-Particle

Hydrodynamics (SPH) (Gingold and Monaghan, 1977). Our current collisional gas model

may be accurate if we take the particles to be like individual molecules colliding with one

another but in terms of astrophysical simulations, it simply doesn’t cut it. In short, SPH is a

mesh-free approach to model fluid flows. It approaches the problem by dividing a fluid into

discrete moving elements governed by a so-called ”kernel function”, which mediates particle

interactions. The power of SPH as a computationally efficient way to accurately model the

fluid-like flows of the interstellar and intergalactic mediums makes for its would-be imple-

mentation in SINGS highly desireable.

Before tackling any of these problems, however, there exists a major short term goal, and

that is the implementation of periodic boundary conditions. These are necessary for high

resolution structure formation simulations, and presently SINGS does not support them.

In essence, periodic boundary conditions result in particles that leave the simulation space

being acted on by mirrors of the simulation space. This is relatively cheap to compute as

the force from the mirrors of the simulation can be acquired by a coordinate transformation

on the particle. This is a high priority goal, and is likely the first major upgrade to SINGS

after the conclusion of the New Mexico Supercomputing Challenge.
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A smaller goal is to support a Hubble constant, essentially for modelling cosmic expan-

sion. This would allow SINGS to analyse real ΛCDM cosmologies, scenarios like those close

to the big bang, given the modification to the architecture to handle the numerical errors

associated with such extreme conditions. And on the larger scales, it would allow SINGS

to analyse structure formation in the context of an expanding universe. This isn’t a high

priority goal, but compared to some of the other ideas addressed here, it is the one most in

reach.

And finally, a distant stretch goal is the implementation of Open MPI. Modifying the

architecture to support the segmented memory of supercomputers would allow SINGS to

contribute to meaningful research, given the changes we’ve outlined in this section. The

current architecture around OpenMP is exceptionally simple in comparison to what an MPI

implementation would take, however, it would truly prove SINGS’ worth as a tool for mod-

elling astrophysical systems.

7 Conclusion

What we have demonstrated through analysis of the data generated by SINGS is that it

is an extremely capable tool for running complex astrophysical simulations. While the

architecture cannot handle the high particle counts and the collisional dynamics of more

mainstream astrophysical simulation codes, it more than holds its own. SINGS thus far has

been validated in handling simulations in particle counts in excess of 1,000,000, and with the

performance improvements facilitated by the multithreading of OpenMP will surely enable

the creation of larger, more complex simulations. OpenMP support brings many opportu-

nities for furthering the development of the software, and its implementation has probably

been the single greatest achievement in developing SINGS. The fleshed out Barnes-Hut im-

plementation already provided a strong foundation for further advancements, in addition

to SINGS’ general architectural modularity. The error diagnostic tools and the simulation

i/o, however rudimentary, make SINGS flexible and easy to use for those hoping to make

and run astrophysical simulations of their own. With the implementation of certain features

discussed in Section 6, SINGS has the potential to become far more than just a humble

N-body gravitation simulator.

The repositories for SINGS and SINGS I can be found on Github with the following

links. Also included is a repository containing all the materials used in the creation of this

document, including the raw data files generated from SINGS outputs. SINGS will slowly

be released onto the Github under the GPLv2 license, as the source code is polished and

documented. However, SINGS I as featured in this paper is already fully available for use,
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however rudimentary it is in comparison.

SINGS: https://github.com/CodingKraken/SINGS

SINGS I: https://github.com/CodingKraken/SINGS-I

This Paper and More: https://github.com/CodingKraken/SCC-SINGS-Paper
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